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Abstract 

Microplastics have emerged as a pressing environmental concern, exerting profound impacts on ecosystems, water bodies, 
terrestrial landscapes, and human food sources. In light of the global plastic waste crisis, innovative strategies are being explored 
to manage and recycle plastic waste, with an emphasis on microplastics. Research endeavours aimed at transforming waste 
microplastics into valuable resources align seamlessly with circular economy principles. Microplastics can be collected using 
surface water sampling, air sampling, sediment sampling, soil sampling, shoreline sampling, as well as wastewater and effluent 
sampling. Microplastics can be chemically and physically characterised for composition selection and then converted using 
biological, chemical, and mechanical approaches. Biological conversion involves microbial activity and enzyme utilisation, 
chemical conversion involves chemically breaking down polymers into smaller molecules that can be used as feedstock for 
valuable materials, while mechanical conversion applies physical force to reduce polymer size. Both conventional and 
biodegradable plastics can undergo biological, chemical, and mechanical recycling to an extent to maintain their value and 
prevent the waste of non-renewable resources. However, there are challenges to overcome in the conversion of microplastics, 
including cost-effectiveness, scalability, environmental friendliness, and regulatory considerations. Appropriate macroplastic 
management and life cycle assessment analyses are still crucial for transitioning to a sustainable and circular economy. 
 
Keywords: microplastics, conversion techniques, value-added products 
 

Abstrak 
Mikroplastik telah muncul sebagai kebimbangan alam sekitar yang mendesak, memberikan impak yang mendalam terhadap 
ekosistem, badan air, landskap terestrial, dan sumber makanan manusia. Dalam konteks krisis sisa plastik global, strategi inovatif 
sedang dikaji untuk mengurus dan mengitar semula sisa plastik, dengan penekanan pada mikroplastik. Usaha penyelidikan yang 
bertujuan untuk mengubah mikroplastik sisa menjadi sumber daya bernilai selari dengan prinsip ekonomi bulat. Mikroplastik 
boleh dikumpulkan melalui pengambilan sampel air permukaan, pengambilan sampel udara, pengambilan sampel sedimen, 
pengambilan sampel tanah, pengambilan sampel garis pantai, serta pengambilan sampel air sisa dan air buangan. Mikroplastik 
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boleh dicirikan secara kimia dan fizikal untuk pemilihan komposisi, dan kemudian diubah menggunakan pendekatan biologi, 
kimia, dan mekanikal. Penukaran biologi melibatkan aktiviti mikrob dan penggunaan enzim, penukaran kimia melibatkan 
pemecahan kimia polimer menjadi molekul yang lebih kecil yang boleh digunakan sebagai bahan mentah untuk bahan bernilai, 
manakala penukaran mekanikal menggunakan daya fizikal untuk mengurangkan saiz polimer. Plastik konvensional dan plastik 
terbiodegradasi boleh mengalami kitar semula biologi, kimia, dan mekanikal untuk mengekalkan nilai mereka dan mengelakkan 
pembaziran sumber tidak boleh diperbaharui. Walau bagaimanapun, terdapat cabaran yang perlu diatasi dalam penukaran 
mikroplastik, termasuk kos-efektif, skalabiliti, kemesraan alam sekitar, dan pertimbangan peraturan. Pengurusan makroplastik 
yang sesuai dan analisis penilaian kitar hidup masih penting untuk bergerak ke arah ekonomi lestari dan bulat. 
 
Kata kunci: mikroplastik, teknik penukaran, produk bernilai tambah

Introduction 
Microplastics have ubiquitously permeated the 
ecosystems of the planet, penetrating the atmosphere, 
water bodies, terrestrial regions, and even human food 
sources, signifying a critical predicament of global 
contamination [1-4]. Microplastics, small plastic 
particles less than 5 millimetres in size, are at the 
forefront of significant environmental concerns and 
thus have been intensively studied to understand their 
abundance, distribution, and sources [5-7]. The various 
sources of microplastics include fragmentation of 
larger plastic items, personal care products, textiles, 
industrial processes, and plastic resins used in 
manufacturing [8, 9]. In addition, the potential impacts 
of microplastics on aquatic organisms include feeding, 
growth, reproduction, as well as bioaccumulation of 
environmental pollutants from microplastic-pollutant 
complexes due to the vector ability of microplastics 
[10-13]. 
 
The persistence of microplastics in the environment 
and their potential to cause adverse ecological and 
health effects have escalated the search for sustainable 
solutions to address their accumulation. Research into 
the waste utilization of microplastics for value-added 
products is a new cutting-edge field being presently 
considered and expected to further intensify, staying 
abreast with the presence of multiple driving forces 
from international, national, environmental, economic, 
and social aspects [14]. The global plastic waste crisis 
has reached an annual microplastic waste generation of 
3 million tonnes [15], leading to increased international 
and national interests, such as UNEP, in finding 
innovative ways to manage and recycle plastic waste, 
including microplastics [16]. Resource scarcity and the 
circular economy are also at the leading edge of the 
environmental drives propelling research in utilising 
waste plastics [17]. While the extraction of virgin 
materials and fossil fuels for manufacturing is 

resource-intensive and can contribute to environmental 
degradation, research into converting waste 
microplastics into value-added products can help to 
reduce resource consumption and thus align with the 
principles of the circular economy [18]. From an 
economic viewpoint, industrial opportunities arise from 
transforming microplastics into valuable materials, 
generating revenue from value-added products, 
reducing costs associated with waste disposal, and 
developing new markets for recycled materials [19, 
20]. Consumer and industry demand for 
environmentally friendly and sustainable products is 
growing due to the plastic-free movement and public 
awareness of plastic pollution and environmental issues 
[21]. Additionally, the conversion of microplastics can 
occur through biological, chemical, and mechanical 
conversion techniques but research is lacking 
compared to macroplastics and conventional plastics 
[22]. 
 
Therefore, in the pressing quest to address global 
plastic pollution, the efficacy of converting 
conventional microplastics into value-added products 
presents a pivotal state-of-the-art juncture in 
sustainable resource management and environmental 
mitigation. This article reviews the collection, physical 
and chemical characterisation, biological, chemical, 
and mechanical conversion methods, potential value-
added product applications, and environmental 
considerations associated with conventional 
microplastics. 
 

Collection and characterisation of conventional 
microplastics 

Supply chain management is essential for successful 
waste material manufacturing by coordinating the flow 
of materials from waste collection to final product 
manufacturing [23]. In other words, microplastic 
collection methods are vital for adequate material 
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supply in manufacturing and vary depending on the 
environment where microplastics are collected. In 
microplastic research, microplastics are commonly 
collected using manta trawl, grab sampling, and bulk 
water filtration targeting marine and freshwater [24, 
25]. In general, major collection methods include 
surface water sampling, air sampling, sediment 
sampling, soil sampling, beach and shoreline sampling, 
wastewater and effluent sampling, and biota sampling 
(Table 1) [26-29]. Surface water sampling involves 
collecting water samples from rivers, lakes, and 
oceans, and filtering them to separate microplastics 
[27, 29]. Sediment sampling isolates microplastics 

from water bodies, while air sampling collects airborne 
particles [26, 30]. Biota sampling for microplastics has 
been used to examine organisms like fish and shellfish 
to determine ingestion occurrence or their ingestion 
rates on microplastics [29, 31]. Soil sampling extracts 
microplastics from sources like plastic mulch in 
agriculture or atmospheric deposition [28], while 
wastewater and effluent sampling at wastewater 
treatment plants provides insights into microplastic 
presence and fate in waste streams [32]. Additionally, 
beach and shoreline samplings involve manually 
picking up debris or using specialised devices to collect 
microplastics [33]. 

 
Table 1. The method types, advantages, and limitations of common collection approaches for microplastics 

Methods Advantages Limitations References 

Surface  
water  
sampling 

 Provides information on plastic 
distribution.  

 Comparatively simple and widely used. 

 Restricted to surface-bound microplastics.  
 May underestimate the subsurface 

microplastic amount.   
 

[24] 
[25] 
[29] 

Air  
sampling 

 Helps assess the microplastic amount in 
the atmosphere.   

 Non-invasive and can cover large areas. 
 

 Difficult to distinguish microplastics from 
other particles. 

 Limited information on microplastic sources.  
 

[26] 

Sediment  
sampling 

 Gives information on the accumulated 
history of plastic.  

 Allows study of buried microplastics. 
 

 Time- and effort-consuming.  
 Sediment and benthos disturbance during 

sampling.  
 

[30] 

Soil  
sampling 

 Gives information on plastic 
contamination of terrestrial 
ecosystems.  

 Can evaluate the uptake potential of 
plants. 

 Microplastics might be mixed with natural 
particles.  

 Separating microplastics from organic matter 
is challenging.  

 Limited standardized protocols. 
 

[28] 

Beach and  
shoreline  
sampling 

 Direct observation of shoreline plastic 
pollution.  

 Aids in understanding the ocean-to-
land plastic transfer. 

 Only a small portion of all marine 
microplastics are captured.  

 Limited to accessible shorelines. 
Microplastics may not be as noticeable if 
macroplastics are present. 

 

[33] 

Wastewater 
and  
effluent  
sampling 

 Perspectives on plastic input from 
different sources.  

 Allows targeting of pollution sources. 

 Variation in microplastic loads and types in 
different effluents.  

 Small particle detection in complicated 
matrices is difficult.  

 Limited data on microplastic fate after release. 
 

[32] 

Biota  
sampling 

 Identifies potential harm that 
microplastics could cause to 
ecosystems.  

 Links plastic pollution to higher 
trophic levels. 

 Invasive on living organisms. 
 Requires specialized techniques for extraction 

and analysis.  
 Limited species-specific data.  

Distinguishing environmental particles from 
ingested microplastics is challenging. 

[31] 
[29] 

Among the microplastic collection methods listed, air 
sampling and surface water sampling can be considered 

relatively clean and hygienic with less time and effort 
consumption, since air and water samplings mainly 
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involve collecting particles that are airborne, in marine, 
or freshwater environments, reducing the risk of direct 
contact with potentially contaminated materials. 
However, the process faces numerous challenges, such 
as microplastics from wastewater and effluent for 
conversion into food packaging or clinical applications 
may require additional treatment for consumer safety, 
the polymers making up microplastics contain 
chemical additives such as plasticizers, flame 
retardants, and antimicrobial agents. These additives 
need to be discarded priory the conversion process. The 
wide range and intricate nature of microplastics in 
terms of their types, shapes, sizes, colours, 
compositions, and additives pose challenges in their 
separation, classification, and characterization. In real 
environment, the low quality and purity of microplastic 

waste, potentially harboring contaminants like organic 
matter, metals, pathogens, and other pollutants, pose 
risks to the functionality and safety of the resultant 
products. Biota sampling involves not only contact 
with biological samples that may have been infected 
but also the dissection of living organisms [34, 35]. On 
the other hand, sediment sampling, soil sampling, 
beach and shoreline sampling, may have varying levels 
of cleanliness, hygienic conditions, and time and effort 
consumption (e.g., separation of sediment and 
microplastics) depending on the specific circumstances 
and precautions taken during the sampling process. 
Sample processing includes collection, transportation, 
storage, filtration, separation, and extraction techniques 
(Figure 1).  

 
Figure 1. General conceptual illustration of collecting microplastics [26-29, 36-40]

In microplastic conversion to value-added products, 
additional microplastic characterisation steps are 
required to categorise or selectively collect 
microplastics according to their composition, using 
fluorescent spectroscopy, Fourier-transform infrared 
spectroscopy (FTIR), micro-Raman spectroscopy, mass 
spectrometry, chromatography, pressurized fluid 
extraction (PFE), density separation, and fluorescence 
microscopy via hydrophobic fluorochrome dye staining 
(e.g., Nile red staining) to verify the composition or 
properties of the collected microplastics. Presently, a 
blend of physical methods such as microscopy and 
chemical methods like spectroscopy is extensively 

employed for microplastic examination. This strategy 
reduces the occurrence of inaccurate positive and 
negative results. [41-44]. In plastics manufacturing, 
identical resin compositions are crucial for 
homogenous products as variations in these 
compositions can lead to defects, inconsistencies, or 
undesirable characteristics, affecting the appearance 
and performance of the final product [45, 46]. For 
industrial conversion of microplastics to value-added 
products, rapid collection and characterisation methods 
of high capacity are required to channel the 
microplastics to the appropriate manufacturing 
techniques and product types.  
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Physical characterisation 
Physical characterization of plastic plays a significant 
role in determining and better understanding the 
properties of a plastic polymer including to determine 
the optimum surrounding condition to catalyse high-
efficiency biodegradation of the plastic polymer and to 
ensure a higher quality and reliability of the plastic 
product that can adapt to a variety of applications. Due 
to the complicated nature and properties of the 
polymer, specific tests are required for each unique 
characteristic of each polymer and among the physical 
properties that are commonly tested and measured are 
comprising of mechanical properties such as flexural 
rigidity, tensile strength, hardness and wear and tear 
resistance [47]. Tensile strength of a plastic polymer is 
described and tested through the application of the 
maximum tensile stress before the polymer is fractured 
into fragments which are commonly utilized in load-
bearing applications. According to Sola et al. [48], the 
tensile test is one of the commonly used mechanical 
tests in the industrial sector due to multiple factors such 
as relatively short, simple procedures and lack of in-
depth requirements of research and development 
allowing industrial players to test for tensile strength 
without spending an extra cost for external services.  
 
As the world has reached a point of a global boiling era 
as mentioned by the UN secretary general, studying the 
effect of heating of plastic to the polymer and its 
degradation properties have never been more relevant 
as the temperature of the global surface increasing at an 
alarming rate since the past decade [49] (Niranjan, 
2023). Thermal-based analysis of polymers comprises 
a few analyses that are thermogravimetric analysis 
(TGA), differential thermal analysis (DTA), 
differential scanning calorimetry (DSC) and evolved 

gas analysis (EGA). As summarized by Ng et al. [50], 
TGA functions to analyse mainly the thermal stability, 
properties of composites and oxidative stabilities of 
polymer samples. The above-mentioned thermal 
analysis: DMA are reported to study the viscoelastic 
properties of polymeric samples that would further 
complement the TGA analysis. Another similar 
analysis that applies the thermal-based analysis is Melt 
Flow Index Measurement (MFI), which studies the 
process of thermoplastic polymers by measuring of 
flow of molten plastic [51]. This process is crucial for 
the application of moulding injection as well as 
extrusion processes.  
 
Chemical characterisation 
Polymers regardless of size have their respective 
monomers, linkages, reactive chains, or end-groups 
that determine their characteristics that could enable 
the creation of polymer networks reliably and 
repeatedly with desired features. Through chemical 
characterization, researchers can unveil surface 
functionalities, including oxidation, hydrophobicity, 
and adsorbed substances. Moreover, they can 
understand changes in polymer structure resulting from 
UV exposure, mechanical forces, and microbial 
activity. [52, 53]. There are many methods for 
identifying objects and determining their chemical 
composition as shown in Figure 2 [54]. SEM-EDS aids 
in quick differentiation between non-plastic and plastic 
pellets and can find microscopic particles that are 
missed by optical inspection. EDS was used to 
determine the qualitative elemental composition of the 
microplastic surface. In addition, tool plays a critical 
role in the identification of pollutants linked to 
microplastics, such as toxic metals. [55, 56].

Figure 2. Methods in chemical characterisation
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The most popular method for locating microplastics is 
Fourier-transform infrared (FTIR) which is typically 
used to determine the polymeric composition of the 
microparticles, while Raman spectroscopy since it is 
straightforward, reliable, and non-destructive [52, 57-
59]. However, the detection of domain differences 
within a sub-micrometre region with traditional Raman 
or FTIR spectroscopy offers average chemical 
information at a bulk area with very limited spatial 
resolution, which may restrict the analysis of 
nanoplastics that are smaller than the spatial resolution 
[60, 61]. The use of hybrid approaches, namely atomic 
force microscopy-Raman (AFM-Raman) and AFM-IR 
techniques, have been considered to map and identify 
composites at the nanoscale on sample surfaces. AFM 
has the ability to function in various modes, such as 
contact mode, tapping mode, or phase mode, which are 
determined by the force feedback type and the probe's 
oscillation frequency. [62, 63]. Apart from that, NIR 
spectroscopy also can be used to characterize and 
differentiate microplastics and is capable of seeing 
deeper into the plastic compared to other spectroscopy 
methods [54, 64]. Quantitative 1H NMR spectroscopy 
gives a way to identify microplastics both qualitatively 
and quantitatively which is also a cost-efficient, quick, 
and easy technology that provides a significant 
advantage over other detection techniques. In fact, this 
technique is non-destructive and non-invasive, 
eliminating the need for sample preparation or 
solvents. [65-67]. Thermal degradation of MPs has 
been discovered to be advantageous since it can 
simultaneously identify the type of polymer and detect 
chemical components, additives, and gases in the 
intricate formulation [68]. Thermal degradation 
includes pyrolysis as well as GC-MS where the product 
of pyrolysis (heating and melting of the microplastics) 
will undergo GC-MS for separation and detection of 
compounds present. This method has the capability to 
address certain drawbacks of spectroscopy approaches, 
including low detection limits, matrix interferences, 
and sample heterogeneity. [69, 70].  
 
Analysis of MPs in environmental samples is hampered 
by microplastic contamination from the sampling and 
laboratory environments, which can affect both 
qualitative and quantitative determination that includes 
the most popular methods [71]. A series of newly 
created analytical protocols for the precise and 
selective detection of the polymers, along with 

specialized methods that include extraction of polymer 
using different solvents, hydrolytic depolymerization, 
purification, and quantification procedures that are 
tailored for condensation polymers, pyrolysis-gas 
chromatography-mass spectrometry (Py-GC/MS), and 
followed by physical characterization process [72]. 1H 
NMR spectroscopy and the thermal desorption gas 
chromatography-mass spectrometry (TD-GC-MS) 
technology were used in a multi-analytical strategy to 
characterize the microplastics in different degradation 
times. Utilizing multiple strategies can surpass the 
limitations of each individual method, offering a more 
thorough and dependable insight into the 
characteristics of microplastics, including particle 
number, size, shape, mass, composition, and additives. 
[73, 74]. 
 

Conversion of conventional microplastics 
As the development and applications of plastic have 
revolutionized the modern-day world, the constant 
increase in the usage of plastic in daily life has raised 
environmental concerns as plastic waste persists in the 
environment longer than intended. The valorisation of 
plastic waste, conventional plastic, shows a prospect in 
supporting the circular economy model [75]. 
Conversion of conventional microplastic to added 
value products takes the recycling principle to another 
level which is not just the recycling of the product 
itself but down to the monomer recycling of the said 
products through depolymerization of microplastic. 
Depolymerization of the polymer allows the 
monomeric products to be recycled to produce different 
yet environmentally friendly and economically 
valuable products closing the loop of recycling [76].  
 
Research regarding the conversion of waste products to 
added value has been done extensively in the past 
decade as the valorisation of waste offers a prospective 
solution supporting the circular economy [77]. The 
waste-to-energy conversion technology involves the 
utilization of waste products to produce a variety of 
fuels that can be further used to generate other products 
and maintain a sustainable energy supply (Figure 3) 
[4]. Among the pathways discovered to increase the 
conversion of waste products into added value are 
biological, chemical, and mechanical pathways. 
Biological conversion utilizes the natural ability of 
microorganisms to further recycle the end-of-use 
plastic to produce simpler compounds that can be 
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recovered [78]. In addition, pyrolysis has gained 
popularity recently as the chemical pathway of 
conversion of plastic waste toward the production of 
gasoline, diesel and oils via heating of waste materials 
in the absence of oxygen [79]. Mechanical conversion 

of waste to value added products on the other hand, 
involves the change in the physical state of the waste 
products via the shredding and grinding process 
without altering the chemical or biological structure of 
the waste products [80].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Techniques to convert plastic or microplastics waste to energy

Biological conversion 
In general, the bioconversion of traditional biowaste 
such as agricultural, domestic, and industrial waste to 
value-added products comprises four primary 
conversion pathways, microbial, enzymatic, 
fermentation, and composting conversion pathways 
[81]. In this review, the valorisation of plastic waste 
through bioconversion pathways will be further 
explored. Biological conversion of plastic waste refers 
to the recent advances of innovative strategies for 
adding value to end-of-life plastic-based products by 
exploiting the fundamental abilities of the microbial 
factory [82]. Conventional petrol-based polymers are 
categorized into two groups depending on their 
chemical structure. The two categories of petrol-
polymer are polymers that possess hydrolysable ester 
bonds and functional groups of esters and amides (PET 
and PUR) that have higher biodegradability compared 
to non-hydrolysable (PE, PS, PP, and PVC) which 
possess a stable carbon chain backbone [23, 78]. 
Recent advances in biological plastic conversion 
comprise two main elements: plastic-degrading 
microorganisms and enhancing enzymes for 
degradation. Both elements play a crucial part in the 
process of bioconversion of plastic to obtain the 
desired end-products. The efficiency and productivity 
of biological conversion of plastic waste into substrate 

depends on multiple factors such as the type of plastic-
degrading microorganism used, depolymerization 
through enzymatic reactions and end-product value 
[23, 83].  
 
Plastic-degrading microorganisms 
Studies on the utilization of microorganisms in the 
degradation of plastic waste have been extensively 
done in the pursuit of a sustainable approach to plastic 
waste solutions. In a study conducted by Yoshida et al. 
[84], reported that Ideonella sakaiensis 201-F6 can 
produce enzymes with the ability to degrade PET into 
terephthalic acid (TPA) and ethylene glycol (EG) 
which can be assimilated for metabolic activity. It has 
been found that I. sakaiensis is capable of surviving on 
PET alone as a carbon source whilst utilizing two main 
enzymes that are PETase and MHETase [85, 86]. 
 
The genus Pseudomonas sp. is also among the most 
researched bacteria due to its versatility in degrading a 
wide range of polymers. A study conducted by Lee et 
al. [87] showed that Pseudomonas aeruginosa isolated 
from the guts of superworms exhibit biodegradability 
properties towards four synthetic plastics, PE, PS, PPS 
and PP with the fastest degradation on the PE type 
plastic. The terrestrial bacterium Bacillus subtilis 
possesses synthetic degrading abilities and has been 
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reported to efficiently degrade conventional plastic 
type PET with the rate of 9.26% in 30 days which 
supports biodegradation of conventional plastic 
through microbial factory [88]. To date, there are 
currently 949 microorganisms associated with plastic 
according to the plastic microbial biodegradation 
database (PMBD) [89]. 
 
Enzymatic depolymerization 
Degradation of synthetic oligomers and polymers by 
enzymatic activity commonly involves two categories 
of enzymes that are hydrolases (e.g., esterases, lipases, 
cutinases, proteases) and oxidases (e.g., 
dehydrogenases, laccases) [90]. Depolymerization 
functions to chemically breakdown polymers from 
macromolecules to lower compounds of oligomers and 
monomers through the process of enzymatic activities 
such as hydrolysis, oxidation, or hydroxylation that 
will allow the reuse of these monomers through 
repolymerization process [78, 91]. For example, 
conventional plastic such as PP, PE, and PVC poses 
similar structure of C-C as the main chain that can be 
further turned into various type of fatty acids through 
the act of enzyme activity [75, 92, 93]. In a different 
study by Zhang et al. [94], conventional plastic PS can 
be converted into aromatic monomers, which leads to 
the oxidation of styrene epoxide catalyzed by the 
enzyme styrene monooxygenase (SMO) or styrene 
dioxygenase (SDO).  
 
The biodegradation of PET employs a two-enzyme 
system which utilizes the PETase to hydrolyze PET 
into TPA, EG and MHET and MHETase enzyme to 
further hydrolyze MHET into TPA and EG [84, 86, 
95]. To date, most PET-degrading enzymes have been 
found in two main genera of bacteria, Pseudomonas sp. 
and Bacillus sp. While other bacterial strains produce 
PET degrading enzymes such as Brevibacillus 
parabrevis, Staphylococcus aureus, Streptococcus 
pyogenes and Clostridium thermocellum, research 
studies have shown that the usage of microbial 
consortia comprising Pseudomonas sp. and Bacillus sp. 
have proven to have increased degradation efficiency 
of PET polymer [96, 97].  
 
Chemical conversion 
Chemical conversion or chemical upcycling 
approaches for converting conventional microplastics 
into value-added goods are gaining popularity as a 

potential solution to the world's plastic pollution 
problem. It involves a process that breaks down the 
polymers into smaller molecules which could then be 
used as a feedstock for a variety of valuable chemicals 
and materials. Microplastics are microscopic plastic 
particles, frequently less than five millimetres in size, 
found in a variety of environmental compartments such 
as oceans, rivers, and soil. Converting these 
microplastics into valuable materials has the potential 
to minimize their environmental impact while also 
providing economic rewards. This section briefly 
discusses the two techniques of chemical upcycling 
widely studied over the years. 
 
Depolymerization 
Depolymerization is a process where long polymer 
chains are broken down into small monomer units 
allowing new products to be synthesised using these 
monomers. Research was done to investigate the 
techniques of depolymerization such as using transition 
metals [98], enzymes [99], catalysts [100], 
electrocatalysis [101] and more. In 2012, a team of 
researchers used a PNP-Ru pincer complex (Ru-1, 0.1 
mol %) as a catalyst to perform the first hydrogenative 
depolymerization of waste poly(propylene carbonate) 
(PPC) which yielded 1,2-propylenediol and methanol 
[102]. Besides, Mao et al. [101] reported the utilization 
of electrocatalytic upcycling of PET microplastics to 
formate, terephthalic acid and potassium sulphate using 
a novel catalyst Mn0.1Ni0.9Co2O4-δ rod-shaped fibre 
(RSFs) catalyst. Recently, enzymes are being used to 
facilitate the hydrolysis of amides, esters, or urethane 
bonds within microplastics, such as polyamides, 
polyesters, or polyurethanes, for the generation of 
monomers or oligomers, which can subsequently 
undergo analysis using techniques includes 
chromatography or spectroscopy. In addition, fungi are 
introduced to secrete various digestive enzymes and 
proteins that attach to the polymer surface, penetrate it, 
and degrade macromolecules into small organic 
compounds, such as carbon dioxide, water and methane 
[103, 104]. 

 
Pyrolysis 
Pyrolysis is a thermochemical technique that 
decomposes waste materials into energy products such 
as liquid oil and gases in hypoxic conditions and at 
high operating temperatures ranging from 400 to 
800°C [105, 106]. A myriad of studies has been 
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conducted on the conversion of microplastics to value-
added products via the pyrolysis technique. Nabgan 
and coworkers [107] investigated the potential of 
utilizing microplastic wastes to produce value-added 
products using the pyrolysis-catalytic steam reforming 
technique. They synthesized the nano-catalyst, Ni-
Pt/Ti-Al, and loaded it into the pyrolysis reactor before 
introducing the phenol-dissolved microplastics into the 
fixed-bed continuous flow quartz reactor at 500 – 
700°C at standard atmospheric pressure. Several liquid 
oils were generated such as 1,2-
bis(trimethylsilyl)benzene, bis(2-ethylhexyl) phthalate, 
cyclohexane-1,3-dione, 2-allylaminomethylene-5,5-
dimethyl- and more. Agriculture is one of the largest 
plastic waste producers. The generated waste plastic 
mulching films are normally disposed of 
conventionally (incineration and landfilling) which 
introduces greenhouse gases and microplastics in the 
ecosystem [108]. Because of this Jung and coworkers 
[108] investigated the disposal of the mulching films 
through a CO2-assisted catalytic pyrolysis. It was 
reported that hydrogen gas, short-chained and long-
chained hydrocarbons were formed through thermal 
degradation of the mulching films. When a Ni/SiO2 
catalyst was used the hydrogen gas production 
skyrocketed to 100 times more. Furthermore, when 
CO2 was introduced as a flow gas CO production was 
observed.  
 
Gasification 
Gasification is a technological process that converts 
any carbonaceous (carbon-based) raw material into 
synthesis gas (syngas). Gasification takes place in a 
gasifier, which is typically a high temperature/pressure 
vessel in which oxygen (or air) and steam come into 
direct contact with the coal or other feed material, 
resulting in a sequence of chemical processes that 
convert the feed to syngas and ash/slag (mineral 
wastes) [109]. The gasification of polypropylene was 
studied by Wang et al. [110]. They compared the 
effects of the presence of a catalyst with none. 
Expectedly, the catalyst (Ni/Al2O3) set-up has vastly 
improved the yield of H2, CO, hydrocarbons and total 
syngas by 137%, 38.2%, 98.2%, and 44.1%, 
respectively. Not only that, Moghadam et al. [111] 
conducted a study on syngas production from palm 
kernel shells and polyethylene wastes via the 
gasification process. The paper reported that a co-
gasification process under optimized conditions was 

able to yield 422.4 g/kg feedstock and 135.27 g/kg 
feedstock of syngas and H2, respectively.  
 
Mechanical conversion  
Mechanical conversion is the mechanical force applied 
as a catalyst to reduce the molecular weight of the 
polymer [112]. Properties of plastics can be classified 
in terms of weight, hardness, tensile strength, thermal 
properties, electrical properties, and chemical 
properties [113] (Alauddin et al., 1995). Thus, breaking 
the plastic with external mechanical force could break 
and change those properties to some level. A study 
highlighted that mechanical conversion affects the 
structure of the polymer and reduces the quality of the 
product in terms of mechanical properties regardless of 
the type of the polymer [114]. Yet, mechanical 
recycling is a practical method for maintaining plastic's 
inherent worth, preventing the waste of non-renewable 
resources [115].  
 
Grinding and milling techniques 
Milling in general is a technique or process of cutting 
or grinding material using a rotary cutter and 
incorporates the conversion of mechanical energy into 
thermal energy and was the first technique to produce 
microplastic particles [116, 117]. The milling and 
grinding process is a crucial step before thermal 
conduction [118]. Meanwhile, a study by Eitzen et al 
[116] shows that longer cryogenic milling and pre-
cooling duration could produce small particles of 
polystyrene (PS).  
 
Cryogenic grinding with a wet-sieving technique could 
enable maximum yield of the polyvinyl chloride (PVC) 
and smaller microparticles could be obtained if the 
microparticles undergo 2 cycles of the grinding process 
[119]. There is also a new grinding technique that has 
been revealed which is the melt grinding technique that 
has the advantage of not having drying steps in the 
usual grinding technique where the time consumption 
was high [120]. Cryogenic milling and grinding are the 
processes that incorporate low temperatures to 
overcome the issue mentioned before such as heating 
despite milling or grinding conventional microplastic 
as each type of microplastic has respective 
characteristics that differ by physical and chemical 
properties. In conclusion, the grinding and milling 
technique is the early stage before the plastics are 
further proceeded for extrusion and injection moulding 
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as smaller plastics can be melted in large quantities in a 
shorter time compared to large plastics. 
 
Extrusion and injection moulding 
Injection moulding is a technique where injecting 
material into a mould with high temperature and 
pressure in a closed system [121], meanwhile, 
extrusion is a technique of pushing out a material 
through an opening with the help of an extruder [122]. 
The extrusion and injection moulding of conventional 
plastic can cause issues such as degradation of their 
features and usability arise when a combination of heat 
and mechanical shear affects the recycling of both 
post-industry and post-consumer plastics [123]. 
Changes in chain length and mechanical characteristics 
are a constant problem, even though the methods of 

degradation vary among polymers, especially upon 
thermal conduction [124]. For instance, the 
thermomechanical process results in a drastic reduction 
in poly (ethylene terephthalate) (PET) characteristics 
[125]. Also, polyolefins that include HDPE, LDPE, and 
PP shows varied mechanism; HDPE and LDPE have a 
high probability in chain branching, but PP has a high 
probability in chain scission upon extrusion [124, 126]. 
Extrusion is best for long, uniform products and is 
cost-effective for mass production. Injection moulding 
suits complex, irregular items with precision for 
custom orders. Unlike extrusion, it handles both 
thermoplastics and thermosets [127]. Figure 4 shows a 
combination of mechanical and chemical technique to 
convert plastic waste into value added products such as 
fuels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Mechanical and chemical treatment of valorisation of plastic waste

Potential applications of value-added products 
The transformation of microplastics into value-added 
products requires consideration of material properties, 
process selection, waste utilisation, and environmental 
concerns. Material properties, such as composition, 
size, and shape, play a significant role in determining 
the suitability of waste materials for specific 
manufacturing processes [128], as well as the 
compatibility between waste materials and other 
components or additives for proper integration and 
performance since the properties of manufactured 
products should meet the required standards and 
specifications for their intended applications [129]. The 

selection of conversion and manufacturing processes is 
dependent on available resources and technologies, 
where process optimization and innovation are required 
to improve efficiency and sustainability. In 
microplastic research, the state-of-the-art focus has 
presently pivoted towards the waste utilisation, 
material properties, conversion process selection, and 
environmental implications of all types of 
microplastics [20, 106, 129]. These leading-edge 
endeavours underscore the imminent potential to 
transform microplastics into a range of valuable 
products, emphasizing the timeliness and urgency of 
such innovative pursuits. 
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Utilizing nature’s process of breaking down complex 
compounds into simpler compounds mechanism in the 
innovative approach of recycling plastic waste has 
opened a new door towards plastic waste management. 
The biological approach to converting plastic waste 
through the coupled act of plastic-degrading bacteria 
and enzymatic degradation has shown promising 
results. For example, the intermediate produced from 
enzymatic reactions of PETase and MHETas can be 
used for further metabolic reactions, in PHA polymer 
production through microbial fermentation [78, 97, 
130]. Enzymatic hydrolysis of plastic waste, including 
impurities from PLA-PET, is being researched as an 
eco-friendly method of bio-recycling plastic trash. 
Recent studies suggest an innovative hybrid approach 
merging thermal and electrochemical techniques to 
convert both plastic waste and biomass into 
exceptionally pure hydrogen and carbon nanotubes. 
Moreover, the method introduces a carbon capturing 
process using a molten salt, which can subsequently be 
transformed into valuable carbon nanotubes through 
electrochemical means powered by renewable energy 
sources. [131, 132].  
 

Challenges associated with the conversion of 
microplastics to value-added products 

Regulatory and policy considerations 
Plastic is the main material used for packaging and 
textiles in various sectors. Excessive plastic usage has 
led to tremendous plastic waste generation. According 
to Tiwari et al. [133], the top three countries that 
produce the most plastic are in Asia within the Indo-
Pacific region, namely India, China and the 
Philippines. Many countries have established 
regulations, action plans and policies to regulate and 
control plastic waste generation (Table 2) Despite 
many regulations that have been enforced, the 
accumulation of plastic usage at the rate of 25 million 
tonnes per year continues due to their persistence in the 
environment [134]. In addition, in certain countries, the 
mitigation plans and regulations are mostly focusing on 
plastics but not microplastics. Today’s microplastic is a 
global issue since it can be found everywhere. Vectors 
for drugs in medical sectors and microbeads in beauty 
care products are known as primary microplastics, 

while secondary microplastics are tiny plastics 
deteriorated from primary microplastics [135, 136].  
 
As a result of growing concern towards these tiny 
plastic particles, few countries have imposed national 
legislation to combat microplastic specifically (Table 
3).  All these plastic grains eventually end up in the 
ocean, posing major threats to the ecosystem, where 
they have been reported to be found in all levels of 
aquatic environments [137, 138]. Microplastics that are 
consumed by fish will eventually contaminate the 
human body through seafood consumption [139]. 
Consequently, this sparks a growing number of 
research and publications on the effects of microplastic 
towards fish and human beings. Kutralam-Muniasamy 
et al. [140] indicated that the actual consequences of 
microplastics are merely understood scientifically. In a 
recent study, Carrington [141] reported that 
microplastic has been detected in human blood for the 
first time. Although the impacts of microplastic in the 
human body are still being explored, a solution to 
substitute conventional plastic with an eco-friendlier 
alternative is urgently needed.  
 
Fundamentally, reducing macroplastic usage through 
prohibition and restriction use of plastics will reduce 
the presence of microplastic in the ecosystem. 
However, Mitrano et al. [142] stated that it is unclear 
whether technical bans can help in the reduction of 
microplastic. They opined that proper macroplastic 
management is the ideal way to reduce microplastic as 
a transition towards a circular economy. An 
amendment to the government framework is suggested 
to focus on waste utilisation by repurposing and 
converting the waste into other products. Although 
many regulations were in place, microplastic pollution 
is hard to solve, so the focus should be concentrated on 
the utilisation of microplastic into value-added 
products, to address the circular economy concept and 
to comply with the Sustainable Development Goals 6, 
7, 12, 13, 14, 15. We need specific guidelines, 
regulations and policies to regulate and control 
microplastic pollution, by regulating microplastic 
production, supporting microplastic conversion into 
value-added products, and encouraging a circular 
economy that reduces the usage of raw resources.
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Table 2. Policies and regulations on plastic waste established by countries 

Year  Country  Regulations 
2016 India Plastic Waste Management Rules (2016)  
2008 China  China State Council had issued a Notice restricting the Production and Sale 

of Plastic Shopping Bags  
2020 China  National Development and Reform Commission (NDRC) and the Ministry of 

Ecology and Environment (MEE) released an “Opinions on Further 
Strengthening the Control of Plastic Pollution 

2022 Philippines Extended Producer Responsibility Act (EPRA) 2022 
2022 Philippines  Department of Environment and Natural Resources (2020) has banned the 

usage of unnecessary single-use plastics in offices under the National Solid 
Waste Management Commission. 

2011 Italy  Banned traditional plastic bags and substituted them with biodegradable bags 
2012  Sweden  Started to focus on the replacement of fossil-based raw materials with bio-

based raw materials in their research and development needs 
2013 Canada Banned the usage of traditional plastic bags in Toronto  
2023 United 

Arab 
Emirates 
(UAE) 

 
Banned shopping bags that are not oxo-photodegradable.  

2021 Australia Published the National Plastics Plan 2021 to address and reduce plastic waste 
generation 

2019 Scotland Banned plastic cotton buds in 2019 and 2021, a ban was imposed on single-
use plastic items 

2018  Malaysia  Malaysia’s Roadmap Towards Zero Single-use Plastics 2018-2030 
2021 Malaysia  Ministry of Environment & Water (2021) published the Malaysia Plastic 

Sustainability Roadmap 2021-2030 
      References [143-150] 

 
Table 3. Policies and regulations on microplastic established by countries 

Year  Country  Regulations 
2014 Netherlands Ban the usage of microbeads in cosmetic products. 
2015 United States (US) Microbeads-Free Waters Act of 2015 
2017 Canada  Microbeads in Toiletries Regulations 2017 
2016 France  Law n° 2016-1087 for the recovery of biodiversity, nature and landscapes 
2018 Italy  General Budget Law 2018 no. 205 of 27 
2017  New Zealand Waste Minimisation (Microbeads) Regulations 2017 
1998 Sweden  Ordinance (1998: 944) on prohibitions, etc. in certain cases in connection 

with the handling, importation and export of chemical products 
2017 England Environmental Protection (Microbeads) Regulations 2017  
2018 Scotland Environmental Protection (Microbeads) Regulations 2018 
2018 Wales Environmental Protection (Microbeads) Regulations 2018 
2018 Northern Ireland Environmental Protection (Microbeads) Regulations 2018 
2023 United States (US) National Strategy to Prevent Plastic Pollution proposed by the United 

States Environmental Protection Agency 
       References [151-158] 

Future directions and emerging trends 
In the future, there is a need for standardised 
methodologies for microplastic analysis, quantification, 
and classification. The accurate characterisation of 
microplastics is crucial for appropriate categorisation 
and isolation of microplastics before downstream 
conversion processing, hence escalating future research 

is expected on the development of advanced techniques 
that allow for rapid and precise analysis of 
microplastics. For example, method improvisations on 
mechanical recycling and biodegradation optimisation 
through specific designs of microbial consortia or 
enzymes could recover high-quality conventional 
microplastics and accelerate the breakdown process of 
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biodegradable microplastics. As innovative conversion 
technologies emerge, future microplastic research 
could include the development and integration of 
circular economy models into broader frameworks that 
incorporate microplastic recovery, conversion, and 
reuse, thus reducing the dependence on virgin plastics. 
While future research expansion is expected on the 
conversion of conventional microplastics to biofuels, 
the simultaneous production of biodegradable 
microplastics and biofuels from renewable resources 
might also be considered. In addition, future regulatory 
frameworks are also expected to encompass both 
conventional and biodegradable microplastics, ensuring 
that products claiming to be biodegradable undergo 
rigorous testing to validate their claims before “green” 
or eco-friendly labels are permitted. Policymakers must 
collaborate with researchers and industries to develop 
effective waste management strategies that prevent 
microplastics from entering the environment. By 
embracing a multidisciplinary and holistic approach, 
international and national collaboration among 
researchers, industries, policymakers, governments, 
and non-governmental organizations is paramount for 
driving meaningful progress in microplastic research 
via the exchange of knowledge, resources, and 
expertise.  
 

Conclusion 
This study explores the potential of converting 
conventional microplastics into value-added products 
by comprehensively exploring the collection, 
characterisation (i.e., physical and chemical), 
conversion (i.e., biological, chemical, and mechanical) 
methods, providing valuable insights into the potential 
of mitigating microplastic pollution while deriving 
value from these materials. The physical and chemical 
characterisation of microplastics highlights the 
distinctive attributes of conventional microplastics to 
tailor suitable conversion approaches based on the 
various compositions of microplastics. Biological 
conversion is a promising avenue, as it shows the 
ability of microorganisms to degrade both types of 
microplastics, suggesting the potential for 
bioremediation of microplastic pollution. Chemical and 
mechanical conversion pathways also offer routes to 
synthesize value-added products such as biofuels from 
microplastic materials.  
 

 

 

 

 

 

 

 

 

 

Furthermore,  the  exploration  of  potential  applications
of  value-added  products  derived  from  microplastics
underlines their potential to contribute to the transition
towards  a  more  sustainable  and  circular  economy.
Regulatory  and  policy  considerations  are  also  crucial,
as the conversion processes may be subject to varying
regulations,  requiring  coordination  and  adaptive
governance  structures.  Moreover,  challenges  in  the
conversion processes, such as technical constraints and
economic feasibility, emphasise the need for continued
research  and  development  efforts.  Collaboration
between  academia,  industry,  and  policymakers  is
essential  in  mitigating  plastic  pollution  and  fostering
circular economies.
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