Malaysian Journal of
Analytical Sciences, Vol 28 No 3 (2024): 555 - 568
GLYCEROL ACETYLATION INTO ACETINS OVER SnO2-BASED
BIMETALLIC OXIDE CATALYST
(Pengasetilan Gliserol kepada Asetin Menggunakan
Mangkin Dwilogam Oksida
Berasaskan SnO2)
Ain Arisya Azami1,
Irmawati Ramli1,2,3*, Shera Farisya Mohamad Rasid1,2,
Muhammad Shamirul Khairul Lail1, Mohd Rafein Zakaria3, and
Sarwat Iqbal4
1Department of Chemistry, Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Catalysis Science and Technology Research Centre (PutraCat),
Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia
3Laboratory of Processing and
Product Development, Institute of Plantation Studies, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Cardiff Catalysis Institute,
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff
CF10 3AT, United Kingdom
*Corresponding author: irmawati@upm.edu.my
Received:
12 October 2023; Accepted: 13 March 2024; Published: 29 June 2024
Abstract
Tin oxide-based bimetallic
oxide catalysts, MOx (MOx
= Al2O3, TiO2, Y2O3)
with a molar ratio of MOx:SnO2 of 1:1 was prepared by the
solid-state method. X-ray diffraction (XRD) analysis showed that tin oxide, SnO2,
was present in all samples as a cassiterite phase with a tetragonal structure.
The presence of other oxides, aluminum oxide (Al2O3),
titanium oxide (TiO2), yttrium oxide (Y2O3) in
the respective Al2O3/SnO2, TiO2/SnO2,
Y2O3/SnO2 were also identified and confirmed
by X-ray fluorescence (XRF) analysis. A small exothermic peak at 480 °C and 750
°C in the differential thermal gravimetric (DTG) analysis revealed the
oxidation of sub-oxide defects, took place which are very common in SnO2-based
samples. Further Fourier transform infrared spectroscopy (FTIR) analysis
indicated the presence of Sn-O bonds, reflecting the abundance of tin-oxygen
bonds in the materials. Acidity measurements by titration showed that both TiO2/
SnO2 and Y2O3/SnO2 have the same
acidity value of 0.23 mmol/g whereas Al2O3/SnO2
and monoxide SnO2 at 0.20 mmol/g. These catalysts were tested for
the acetylation of glycerol to monoacetin (MA), diacetin (DA) and triacetin (TA) in a batch reactor at a
molar ratio of glycerol: acetic acid of 1:6 w/v, a temperature of 100 °C, a
reaction time of 2 h and a catalyst loading of 0.5 g. The tests showed complete
conversion of glycerol by all catalysts, with the selective product being
mainly MA, which was 64%, 62%, 57% and 43% for Al2O3/SnO2,
Y2O3/SnO2, SnO2 and TiO2/SnO2,
respectively. The percentage selectivity of the more valuable products, DA +
TA, was produced in the following order, TiO2/SnO2 > SnO2
> Y2O3/SnO2 > Al2O3/SnO2
with 57%, 43%, 37%, and 35%, respectively. Further analysis of TiO2/SnO2
revealed that the catalyst not only had a high acidity, but also an increased
BET surface area of 9.8 m2/g compared to 8.6 m2/g for SnO2
when TiO2 was incorporated into SnO2. Analysis of the surface
elements by energy dispersive X-ray spectroscopy (EDX) revealed a high surface
oxygen content, which is consistent with the high acidity of the sample.
Keywords: glycerol acetylation, tin oxide, SnO2-based
bimetallic oxide, monoacetin, diacetin
Abstrak
Mangkin dwilogam oksida berasaskan timah oksida, MOx
(MOx = Al2O3, TiO2, Y2O3)
dengan nisbah molar MOx:SnO2 pada 1:1 telah disediakan melalui
kaedah keadaan pepejal. Analisis pembelauan sinar-X (XRD) menunjukkan timah
oksida, SnO2, hadir di dalam semua sampel sebagai fasa kasiterit
dengan struktur tetragonal. Kehadiran oksida lain iaitu aluminum oksida (Al2O3),
titanium oksida (TiO2), itrium oksida (Y2O3)
dalam Al2O3/SnO2, TiO2/SnO2,
Y2O3/SnO2 masing-masing juga dikenal pasti dan
disahkan oleh analisis pendarflor sinar-X (XRF). Puncak eksotermik kecil pada
480 °C dan 750 °C dalam analisis pembezaan gravimetrik terma (DTG) mendedahkan
pengoksidaan kecacatan sub-oksida telah berlaku, iaitu kejadian yang biasa terjadi
bagi sampel berasaskan SnO2. Selanjutnya, analisis spektroskopi
inframerah transformasi Fourier (FTIR) menunjukkan kehadiran ikatan Sn-O yang menterjemahkan
limpahan ikatan timah-oksigen dalam bahan. Pengukuran keasidan secara
penitratan menunjukkan kedua-dua TiO2/SnO2 dan Y2O3/SnO2
mempunyai nilai keasidan yang sama iaitu 0.23 mmol/g, manakala Al2O3/SnO2
dan monoksida SnO2 pada 0.20 mmol/g. Semua mangkin telah diuji untuk
pengasetilan gliserol kepada monoasetin (MA), diasetin (DA) dan triasetin (TA) dalam
reaktor kelompok pada nisbah molar gliserol:asid asetik 1:6 b/i, suhu 100 °C, masa
tindak balas 2 j dan muatan mangkin 0.5 g. Hasil ujian menunjukkan penukaran
lengkap gliserol oleh semua mangkin, dengan pemilihan produk rata-ratanya MA
iaitu 64%, 62%, 57% dan 43% bagi masing-masing Al2O3/SnO2,
Y2O3/SnO2, SnO2 dan TiO2/SnO2.
Manakala penghasilan produk yang lebih bernilai iaitu DA + TA, adalah mengikut
urutan TiO2/SnO2
> SnO2 > Y2O3/SnO2 > Al2O3/SnO2
dengan masing-masing 57%, 43%, 37%, dan 35%. Analisis lanjutan terhadap TiO2/SnO2
mendedahkan bahawa mangkin ini bukan hanya mempunyai keasidan yang tinggi
tetapi juga mempunyai peningkatan luas permukaan sebanyak 9.8 m2/g
berbanding 8.6 m2/g bagi SnO2, apabila TiO2 digabungkan
pada SnO2. Analisis unsur permukaan oleh spektroskopi penyebaran
tenaga sinar-X (EDX) menunjukkan kandungan oksigen permukaan yang tinggi,
selaras dengan keasidan tinggi sampel berkenaan.
Kata kunci:
pengasetilan gliserol, timah oksida, dwilogam oksida berasaskan SnO2,
monoasetin, diasetin
References
1.
International Energy
Agency. (2023). Transport - Energy System. IEA. https://www.iea.org/energy-system/transport [Access online 20 April 2023].
2.
Parveez, G.K.A., Kamil,
N.N., Zawawi N.Z., Ong-Abdullah, M., Rasuddin R., Loh, S.K., Selvaduray, K.R.,
Hoong S.S., and Idris, Z. (2022). Oil palm economic performance in Malaysia and
R&D progress in 2021. Journal of Oil Palm Research, 34(2): 185-218.
3.
Armylisas, A.H.N., Hoong,
S.S. and Tuan Ismail, T. (2023). Characterization of crude glycerol and
glycerol pitch from palm-based residual biomass. Biomass Conversion and
Biorefinery, 2023: 1-13.
4.
Li, M., Alotaibi, M.K.H.,
Li, L., and Abomohra, A., (2022). Enhanced waste glycerol recycling by yeast
for efficient biodiesel production: Towards waste biorefinery. Biomass
Bioenergy, 159: 106410.
5.
Bartoli, M., Zhu, C.,
Chae, M., and Bressler, D. C. (2019). Glycerol acetylation mediated by
thermally hydrolysed biosolids-based material. Catalysts, 10(1): 5-19.
6.
Nda-Umar, U.I., Ramli,
I., Muhamad, E. N., Azri, N., Amadi, U. F., and Taufiq-Yap, Y. H. (2020).
Influence of heterogeneous catalysts and reaction parameters on the acetylation
of glycerol to acetin: A review. Applied Sciences, 10: 7155.
7.
Shera Farisya, M. R.,
Irmawati, R., Shafizah, I. N., Taufiq-Yap, Y. H., Muhamad, E. N., Lee, S. L., and
Salamun, N. (2021). Assessment on the effect of sulfuric acid concentration on
physicochemical properties of sulfated-titania catalyst and glycerol
acetylation performance. Catalysts, 11: 1542.
8.
Bewana, S., Ndolomingo,
M.J., Meijboom, R., Bingwa, N. (2021). Cobalt oxide promoted tin oxide
catalysts for highly selective glycerol acetylation reaction. Inorganic
Chemistry Communications, 128: 108578.
9.
Sudarsanam, P.,
Mallesham, B., Prasad, A.N., Reddy, P.S., and Reddy, B.M. (2013). Synthesis of
bio-additive fuels from acetalization of glycerol with benzaldehyde over
molybdenum promoted green solid acid catalysts. Fuel Processing Technology,
106: 539-545.
10.
Wang, D., Bai, D., Xiong,
J., Chen, Z., Zhao, X., Wu, H., Shan, J., Wei, S., and Zhang, X. (2023). The atom-efficient
production of glycerol carbonate via transesterification between dimethyl
carbonate and glycerol over fluorinated Al2O3-ZrO2
solid solution catalysts with suitable acidic-basic property. Journal of
Applied Catalysis A: General, 665: 119370.
11.
Safaripour, M., Saidi,
M., Nodeh, H.R. (2023). Synthesis and application of barium tin oxide-reduced
graphene oxide nanocomposite as a highly stable heterogeneous catalyst for the
biodiesel production. Journal of Renewable Energy, 217: 119199.
12.
Xie, W. and Zhao, L.
(2013). Production of biodiesel by transesterification of soybean oil using
calcium supported tin oxides as heterogeneous catalysts. Energy Conversion
and Management, 76: 55-62.
13.
Bhadane, M.S., Dahiwale,
S.S., Sature, K.R.,Patil, B.J., Mandlik, N.T., Bhoraskar, V.N., Dhole,
S.D. (2017). Synthesis and TSL
properties of SnO2:Eu nanophosphor for high gamma dosimetry. Journal
of Alloys and Compounds, 695: 1918-1923.
14.
Stefan, M., Leostean, C.,
Pana, O., Popa, A., Toloman, D., Macavei, S., Perhaita, I., Barbu-Tudoran, L., and
Silipas, D. (2020). Interface tailoring of SnO2-TiO2 photocatalysts
modified with anionic/cationic surfactants. Journal of Material Sciences,
55: 3279-3298.
15.
Deshmukh, L. and Kadam,
S.L. (2023). Effect of microwave annealing on tin oxide nanomaterials. Materials
Today: Proceedings, 8:359.
16.
Bowles, J.F.W. (2021).
Encyclopedia of Geology. 2nd Edition. Academic Press, Colorado, USA:
pp. 428- 441.
17.
Lesafi, F.J., Pogrebnaya,
T., and King’ondu, C.K. (2023). Mesoporous SnO2-MoO3 catalyst
for diesel oxidative desulfurization: Impact of the SnO2/MoO3
ratio on catalytic efficiency. Heliyon, 9(8): 23-30.
18.
Goscianska, J. and
Malaika, A. (2019). A facile post-synthetic modification of ordered mesoporous
carbon to get efficient catalysts for the formation of acetins. Catalysis
Today, 357: 84-93.
19.
Nda-Umar, U.I., Ramli,
I., Muhamad, E.N., Taufiq-Yap, Y.H., and Azri, N. (2020). Synthesis and
characterization of sulfonated carbon catalysts derived from biomass waste and
its evaluation in glycerol acetylation. Biomass Conversion and Biorefinery,
12: 2045-2060.
20.
Malaika A. and Kozlowski
M. (2019). Glycerol conversion towards valuable fuel blending compounds with
the assistance of SO3H-functionalized carbon xerogels and spheres. Fuel
Processing Technology, 184: 19- 26.
21.
Malaika A., Mesjasz D., Kozlowski, M. (2023). Maximizing the selectivity to triacetin in glycerol
acetylation through a plastic waste-derived carbon catalyst development and
selection of a reaction unit. Fuel, 333(1): 126271.
22.
Thommes, M., Kaneko, K.,
Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing,
K.S.W. (2015). Physisorption of gases, with special reference to the evaluation
of surface area and pore size distribution (IUPAC Technical Report). Pure
and Applied Chemistry, 87(9-10): 1051-1069.
23.
Ramalingam, R.J., T.
Radhika, Adam, F., and Dolla, T.H. (2016). Acetylation of glycerol over
bimetallic Ag–Cu doped rice husk silica based biomass catalyst for bio-fuel
additives application. International Journal of Industrial Chemistry, 7:
187-194.
24.
Abida, K., and Ali, A. (2022). A
review on catalytic role of heterogeneous acidic catalysts during glycerol
acetylation to yield acetins. Journal of the Indian Chemical Society,
99(1): 100459.
25.
Hidayati, N., Sari, R.
P., and Purnama, H. (2021). Catalysis of glycerol acetylation on solid acid
catalyst: A review. Jurnal Kimia Sains & Aplikasi, 23(12): 414-423.
26.
Ali, O. M., Mamat, R.,
Rasul, M. G., and Najafi, G. (2017). Chapter Eighteen - potential of biodiesel
as fuel for diesel engine (M. G. Rasul, A. kalam Azad, & S. C. Sharma, Eds.).
Clean Energy for Sustainable Development Comparisons and Contrasts of New
Approaches. Academic Press: pp. 557-590.
27.
Asiri, A.M., Adeosun,
W.A., Khan, S.B., Alamry, K.A., Marwani, H.M., Zakeeruddin, S.M., Grätzel, M.
(2022). Solid-state synthesis of CdFe2O4 binary catalyst
for potential application in renewable hydrogen fuel generation, Scientific
Reports, 22: 1632.
28.
Stefan, M., Leostean, C.,
Pana, O., Popa, A., Toloman, D., Macavei, S., Perhaita, I., Barbu-Tudoran, L.,
Silipas, D. (2020). Interface tailoring of SnO2-TiO2
photocatalysts modified with anionic/cationic surfactants. Journal of
Materials Science, 55: 3279-3298.
29.
Bhadane, M. S., Dahiwale, S. S., Sature, K. R., Patil, B. J.,
Mandlik, N. T., Bhoraskar, V. N., and Dhole, S. D. (2017). Synthesis and TSL properties of SnO2: Eu
nanophosphor for high gamma dosimetry. Journal of Alloys and Compounds,
695: 1918-1923.
30.
Künneth, C., Batra, R.,
Rossetti Jr, G. A., Ramprasad, R., and Kersch, A. (2019). Thermodynamics of
phase stability and ferroelectricity from first principles. In Ferroelectricity
in doped hafnium oxide: Materials, properties and devices.Woodhead Publishing: pp.
245-289.
31.
Emmerich, K. (2010).
Thermal analysis in the characterization and processing of industrial minerals.
In G. E. Christidis (Ed.), Advances in the characterization of industrial
minerals. European Mineralogical Union.
32.
SciSpace - Question.
(2023). Why does the intensity of the FTIR peak decrease due to the amount per
unit volume? | 5 Answers from Research papers. https://typeset.io/questions/why-does-the-intensity-of-the-ftir-peak-decrease-due-to-the-26ei8ohjzr [Access online 6 January 2024]
33.
Mufrodi, Z., Rochmadi,
S., and Budiman, A. (2012). Chemical kinetics for synthesis of triacetin from
biodiesel byproduct. International Journal of Chemistry, 4(2): 101.
34.
Carr, R. T., Neurock, M.,
and Iglesia, E. (2011). Catalytic consequences of acid strength in the
conversion of methanol to dimethyl ether. Journal of Catalysis, 278(1):
78-93.
35.
Venkatesha, N. J., Bhat,
Y. S., and Prakash, B. S. J. (2016). Volume accessibility of acid sites in
modified montmorillonite and triacetin selectivity in acetylation of glycerol. RSC
Advances, 6(51): 45819-45828.