Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 555 - 568

 

GLYCEROL ACETYLATION INTO ACETINS OVER SnO2-BASED BIMETALLIC OXIDE CATALYST

 

(Pengasetilan Gliserol kepada Asetin Menggunakan Mangkin Dwilogam Oksida

Berasaskan SnO2)

 

Ain Arisya Azami1, Irmawati Ramli1,2,3*, Shera Farisya Mohamad Rasid1,2, Muhammad Shamirul Khairul Lail1, Mohd Rafein Zakaria3, and Sarwat Iqbal4

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Catalysis Science and Technology Research Centre (PutraCat), Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia                                                                                                                                     

 3Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia                                                                                                                                        

 4Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom

 

*Corresponding author: irmawati@upm.edu.my

 

 

Received: 12 October 2023; Accepted: 13 March 2024; Published:  29 June 2024

 

 

Abstract

Tin oxide-based bimetallic oxide catalysts, MOx (MOx = Al2O3, TiO2, Y2O3) with a molar ratio of MOx:SnO2 of 1:1 was prepared by the solid-state method. X-ray diffraction (XRD) analysis showed that tin oxide, SnO2, was present in all samples as a cassiterite phase with a tetragonal structure. The presence of other oxides, aluminum oxide (Al2O3), titanium oxide (TiO2), yttrium oxide (Y2O3) in the respective Al2O3/SnO2, TiO2/SnO2, Y2O3/SnO2 were also identified and confirmed by X-ray fluorescence (XRF) analysis. A small exothermic peak at 480 °C and 750 °C in the differential thermal gravimetric (DTG) analysis revealed the oxidation of sub-oxide defects, took place which are very common in SnO2-based samples. Further Fourier transform infrared spectroscopy (FTIR) analysis indicated the presence of Sn-O bonds, reflecting the abundance of tin-oxygen bonds in the materials. Acidity measurements by titration showed that both TiO2/ SnO2 and Y2O3/SnO2 have the same acidity value of 0.23 mmol/g whereas Al2O3/SnO2 and monoxide SnO2 at 0.20 mmol/g. These catalysts were tested for the acetylation of glycerol to monoacetin (MA), diacetin (DA) and triacetin (TA) in a batch reactor at a molar ratio of glycerol: acetic acid of 1:6 w/v, a temperature of 100 °C, a reaction time of 2 h and a catalyst loading of 0.5 g. The tests showed complete conversion of glycerol by all catalysts, with the selective product being mainly MA, which was 64%, 62%, 57% and 43% for Al2O3/SnO2, Y2O3/SnO2, SnO2 and TiO2/SnO2, respectively. The percentage selectivity of the more valuable products, DA + TA, was produced in the following order, TiO2/SnO2 > SnO2 > Y2O3/SnO2 > Al2O3/SnO2 with 57%, 43%, 37%, and 35%, respectively. Further analysis of TiO2/SnO2 revealed that the catalyst not only had a high acidity, but also an increased BET surface area of 9.8 m2/g compared to 8.6 m2/g for SnO2 when TiO2 was incorporated into SnO2. Analysis of the surface elements by energy dispersive X-ray spectroscopy (EDX) revealed a high surface oxygen content, which is consistent with the high acidity of the sample.

 

Keywords: glycerol acetylation, tin oxide, SnO2-based bimetallic oxide, monoacetin, diacetin

Abstrak

Mangkin dwilogam oksida berasaskan timah oksida, MOx (MOx = Al2O3, TiO2, Y2O3) dengan nisbah molar MOx:SnO2 pada 1:1 telah disediakan melalui kaedah keadaan pepejal. Analisis pembelauan sinar-X (XRD) menunjukkan timah oksida, SnO2, hadir di dalam semua sampel sebagai fasa kasiterit dengan struktur tetragonal. Kehadiran oksida lain iaitu aluminum oksida (Al2O3), titanium oksida (TiO2), itrium oksida (Y2O3) dalam Al2O3/SnO2, TiO2/SnO2, Y2O3/SnO2 masing-masing juga dikenal pasti dan disahkan oleh analisis pendarflor sinar-X (XRF). Puncak eksotermik kecil pada 480 °C dan 750 °C dalam analisis pembezaan gravimetrik terma (DTG) mendedahkan pengoksidaan kecacatan sub-oksida telah berlaku, iaitu kejadian yang biasa terjadi bagi sampel berasaskan SnO2. Selanjutnya, analisis spektroskopi inframerah transformasi Fourier (FTIR) menunjukkan kehadiran ikatan Sn-O yang menterjemahkan limpahan ikatan timah-oksigen dalam bahan. Pengukuran keasidan secara penitratan menunjukkan kedua-dua TiO2/SnO2 dan Y2O3/SnO2 mempunyai nilai keasidan yang sama iaitu 0.23 mmol/g, manakala Al2O3/SnO2 dan monoksida SnO2 pada 0.20 mmol/g. Semua mangkin telah diuji untuk pengasetilan gliserol kepada monoasetin (MA), diasetin (DA) dan triasetin (TA) dalam reaktor kelompok pada nisbah molar gliserol:asid asetik 1:6 b/i, suhu 100 °C, masa tindak balas 2 j dan muatan mangkin 0.5 g. Hasil ujian menunjukkan penukaran lengkap gliserol oleh semua mangkin, dengan pemilihan produk rata-ratanya MA iaitu 64%, 62%, 57% dan 43% bagi masing-masing Al2O3/SnO2, Y2O3/SnO2, SnO2 dan TiO2/SnO2. Manakala penghasilan produk yang lebih bernilai iaitu DA + TA, adalah mengikut urutan  TiO2/SnO2 > SnO2 > Y2O3/SnO2 > Al2O3/SnO2 dengan masing-masing 57%, 43%, 37%, dan 35%. Analisis lanjutan terhadap TiO2/SnO2 mendedahkan bahawa mangkin ini bukan hanya mempunyai keasidan yang tinggi tetapi juga mempunyai peningkatan luas permukaan sebanyak 9.8 m2/g berbanding 8.6 m2/g bagi SnO2, apabila TiO2 digabungkan pada SnO2. Analisis unsur permukaan oleh spektroskopi penyebaran tenaga sinar-X (EDX) menunjukkan kandungan oksigen permukaan yang tinggi, selaras dengan keasidan tinggi sampel berkenaan.

 

Kata kunci: pengasetilan gliserol, timah oksida, dwilogam oksida berasaskan SnO2, monoasetin, diasetin


References

1.      International Energy Agency. (2023). Transport - Energy System. IEA. https://www.iea.org/energy-system/transport [Access online 20 April 2023].

2.      Parveez, G.K.A., Kamil, N.N., Zawawi N.Z., Ong-Abdullah, M., Rasuddin R., Loh, S.K., Selvaduray, K.R., Hoong S.S., and Idris, Z. (2022). Oil palm economic performance in Malaysia and R&D progress in 2021. Journal of Oil Palm Research, 34(2): 185-218.

3.      Armylisas, A.H.N., Hoong, S.S. and Tuan Ismail, T. (2023). Characterization of crude glycerol and glycerol pitch from palm-based residual biomass. Biomass Conversion and Biorefinery, 2023: 1-13.

4.      Li, M., Alotaibi, M.K.H., Li, L., and Abomohra, A., (2022). Enhanced waste glycerol recycling by yeast for efficient biodiesel production: Towards waste biorefinery. Biomass Bioenergy, 159: 106410.

5.      Bartoli, M., Zhu, C., Chae, M., and Bressler, D. C. (2019). Glycerol acetylation mediated by thermally hydrolysed biosolids-based material. Catalysts, 10(1): 5-19.

6.      Nda-Umar, U.I., Ramli, I., Muhamad, E. N., Azri, N., Amadi, U. F., and Taufiq-Yap, Y. H. (2020). Influence of heterogeneous catalysts and reaction parameters on the acetylation of glycerol to acetin: A review. Applied Sciences, 10: 7155.

7.      Shera Farisya, M. R., Irmawati, R., Shafizah, I. N., Taufiq-Yap, Y. H., Muhamad, E. N., Lee, S. L., and Salamun, N. (2021). Assessment on the effect of sulfuric acid concentration on physicochemical properties of sulfated-titania catalyst and glycerol acetylation performance. Catalysts, 11: 1542.

8.      Bewana, S., Ndolomingo, M.J., Meijboom, R., Bingwa, N. (2021). Cobalt oxide promoted tin oxide catalysts for highly selective glycerol acetylation reaction. Inorganic Chemistry Communications, 128: 108578.

9.      Sudarsanam, P., Mallesham, B., Prasad, A.N., Reddy, P.S., and Reddy, B.M. (2013). Synthesis of bio-additive fuels from acetalization of glycerol with benzaldehyde over molybdenum promoted green solid acid catalysts. Fuel Processing Technology, 106: 539-545.

10.   Wang, D., Bai, D., Xiong, J., Chen, Z., Zhao, X., Wu, H., Shan, J., Wei, S., and Zhang, X. (2023). The atom-efficient production of glycerol carbonate via transesterification between dimethyl carbonate and glycerol over fluorinated Al2O3-ZrO2 solid solution catalysts with suitable acidic-basic property. Journal of Applied Catalysis A: General, 665: 119370.

11.   Safaripour, M., Saidi, M., Nodeh, H.R. (2023). Synthesis and application of barium tin oxide-reduced graphene oxide nanocomposite as a highly stable heterogeneous catalyst for the biodiesel production. Journal of Renewable Energy, 217: 119199.

12.   Xie, W. and Zhao, L. (2013). Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts. Energy Conversion and Management, 76: 55-62.

13.   Bhadane, M.S., Dahiwale, S.S., Sature, K.R.,Patil, B.J., Mandlik, N.T., Bhoraskar, V.N., Dhole, S.D.  (2017). Synthesis and TSL properties of SnO2:Eu nanophosphor for high gamma dosimetry. Journal of Alloys and Compounds, 695: 1918-1923.

14.   Stefan, M., Leostean, C., Pana, O., Popa, A., Toloman, D., Macavei, S., Perhaita, I., Barbu-Tudoran, L., and Silipas, D. (2020). Interface tailoring of SnO2-TiO2 photocatalysts modified with anionic/cationic surfactants. Journal of Material Sciences, 55: 3279-3298.

15.   Deshmukh, L. and Kadam, S.L. (2023). Effect of microwave annealing on tin oxide nanomaterials. Materials Today: Proceedings, 8:359.

16.   Bowles, J.F.W. (2021). Encyclopedia of Geology. 2nd Edition. Academic Press, Colorado, USA: pp. 428- 441.

17.   Lesafi, F.J., Pogrebnaya, T., and King’ondu, C.K. (2023). Mesoporous SnO2-MoO3 catalyst for diesel oxidative desulfurization: Impact of the SnO2/MoO3 ratio on catalytic efficiency. Heliyon, 9(8): 23-30.

18.   Goscianska, J. and Malaika, A. (2019). A facile post-synthetic modification of ordered mesoporous carbon to get efficient catalysts for the formation of acetins. Catalysis Today, 357: 84-93.

19.   Nda-Umar, U.I., Ramli, I., Muhamad, E.N., Taufiq-Yap, Y.H., and Azri, N. (2020). Synthesis and characterization of sulfonated carbon catalysts derived from biomass waste and its evaluation in glycerol acetylation. Biomass Conversion and Biorefinery, 12: 2045-2060.

20.   Malaika A. and Kozlowski M. (2019). Glycerol conversion towards valuable fuel blending compounds with the assistance of SO3H-functionalized carbon xerogels and spheres. Fuel Processing Technology, 184: 19- 26.

21.   Malaika A., Mesjasz D., Kozlowski, M. (2023). Maximizing the selectivity to triacetin in glycerol acetylation through a plastic waste-derived carbon catalyst development and selection of a reaction unit. Fuel, 333(1): 126271.

22.   Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10): 1051-1069.

23.   Ramalingam, R.J., T. Radhika, Adam, F., and Dolla, T.H. (2016). Acetylation of glycerol over bimetallic Ag–Cu doped rice husk silica based biomass catalyst for bio-fuel additives application. International Journal of Industrial Chemistry, 7: 187-194.

24.   Abida, K., and Ali, A. (2022). A review on catalytic role of heterogeneous acidic catalysts during glycerol acetylation to yield acetins. Journal of the Indian Chemical Society, 99(1): 100459.

25.   Hidayati, N., Sari, R. P., and Purnama, H. (2021). Catalysis of glycerol acetylation on solid acid catalyst: A review. Jurnal Kimia Sains & Aplikasi, 23(12): 414-423.

26.   Ali, O. M., Mamat, R., Rasul, M. G., and Najafi, G. (2017). Chapter Eighteen - potential of biodiesel as fuel for diesel engine (M. G. Rasul, A. kalam Azad, & S. C. Sharma, Eds.). Clean Energy for Sustainable Development Comparisons and Contrasts of New Approaches. Academic Press: pp. 557-590.

27.   Asiri, A.M., Adeosun, W.A., Khan, S.B., Alamry, K.A., Marwani, H.M., Zakeeruddin, S.M., Grätzel, M. (2022). Solid-state synthesis of CdFe2O4 binary catalyst for potential application in renewable hydrogen fuel generation, Scientific Reports, 22: 1632.

28.   Stefan, M., Leostean, C., Pana, O., Popa, A., Toloman, D., Macavei, S., Perhaita, I., Barbu-Tudoran, L., Silipas, D. (2020). Interface tailoring of SnO2-TiO2 photocatalysts modified with anionic/cationic surfactants. Journal of Materials Science, 55: 3279-3298.

29.   Bhadane, M. S., Dahiwale, S. S., Sature, K. R., Patil, B. J., Mandlik, N. T., Bhoraskar, V. N., and Dhole, S. D. (2017). Synthesis and TSL properties of SnO2: Eu nanophosphor for high gamma dosimetry. Journal of Alloys and Compounds, 695: 1918-1923.

30.   Künneth, C., Batra, R., Rossetti Jr, G. A., Ramprasad, R., and Kersch, A. (2019). Thermodynamics of phase stability and ferroelectricity from first principles. In Ferroelectricity in doped hafnium oxide: Materials, properties and devices.Woodhead Publishing: pp. 245-289.

31.   Emmerich, K. (2010). Thermal analysis in the characterization and processing of industrial minerals. In G. E. Christidis (Ed.), Advances in the characterization of industrial minerals. European Mineralogical Union.

32.   SciSpace - Question. (2023). Why does the intensity of the FTIR peak decrease due to the amount per unit volume? | 5 Answers from Research papers. https://typeset.io/questions/why-does-the-intensity-of-the-ftir-peak-decrease-due-to-the-26ei8ohjzr [Access online 6 January 2024]

33.   Mufrodi, Z., Rochmadi, S., and Budiman, A. (2012). Chemical kinetics for synthesis of triacetin from biodiesel byproduct. International Journal of Chemistry, 4(2): 101.

34.   Carr, R. T., Neurock, M., and Iglesia, E. (2011). Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether. Journal of Catalysis, 278(1): 78-93.

35.   Venkatesha, N. J., Bhat, Y. S., and Prakash, B. S. J. (2016). Volume accessibility of acid sites in modified montmorillonite and triacetin selectivity in acetylation of glycerol. RSC Advances, 6(51): 45819-45828.