Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 543 - 554

 

UNVEILING THE IMPACT OF BACTERIAL CELLULOSE DERIVED FROM NATA DE COCO AND SORBITOL ON BIOCOMPOSITE FILM PROPERTIES FOR POTENTIAL FOOD PACKAGING

 

(Menyingkap Kesan Selulosa Bakteria Diperoleh daripada Nata De Coco dan Sorbitol Terhadap Sifat-Sifat Filem Biokomposit Sebagai Bahan Pembungkus Makanan Alternatif)

 

Sharifah Fathiyah Sy Mohamad*, Nur Fikriyah Yaacob, and Intan Anak Ekong

 

Faculty of Chemical and Proces Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah

Lebuh Persiaran Tun Khalil, Yaakob, 26300 Kuantan, Pahang, Malaysia

 

*Corresponding author: fathiyah@umpsa.edu.my

 

 

Received: 10 October 2023; Accepted: 31 March 2024; Published:  29 June 2024

 

 

Abstract

The surge in plastic production in recent years has demonstrated the urgent need for eco-friendly alternatives. Bacterial cellulose (BC) has emerged as a promising candidate for replacing petroleum-based materials. However, the inherent rigidity, fragility, and brittleness of BC have posed formidable challenges, particularly in food packaging. This study investigates the impact of combining BC (1.0g, 2.5g, 5.0g, 7.5g, 10.0g) derived from nata de coco and sorbitol (0.5g, 1.0g, 1.5g, 2.0g, 2.5g) on the physical, mechanical, chemical, and thermal properties, as well as the surface morphology of the biocomposite films. Films were produced by varying BC and sorbitol quantities via the solvent casting method. Evaluations encompassed film thickness, moisture content, water solubility, mechanical characteristics, FTIR, TGA, and FE-SEM. Tensile strength increased with BC content but decreased with added sorbitol. FTIR confirmed the consistency of functional groups in the BC/Chitosan/Sorbitol biocomposite film with those in BC. TGA indicated improved thermal stability with increased BC and decreased sorbitol content. FE-SEM images revealed a smoother biocomposite film surface with sorbitol. The optimal composition was determined to be 10.0BC and 0.5S due to its low moisture content, low water solubility, high tensile strength, and minimal TGA weight loss. Overall, this study highlights the potential of BC/Chitosan/Sorbitol films as environmentally friendly and sustainable alternatives to traditional synthetic food packaging materials.

 

Keywords: bacterial cellulose, nata de coco, chitosan, sorbitol, biocomposite film

 

Abstrak

Peningkatan pengeluaran plastik dalam beberapa tahun kebelakangan ini telah menghasilkan keperluan mendesak untuk pembangunan pengganti plastik yang mesra alam. Dalam konteks ini, selulosa bakteria (SB) mempunyai potensi yang memberangsangkan sebagai pengganti bahan berasaskan petroleum. Walau bagaimanapun, ketegaran dan kerapuhan SB telah menimbulkan pelbagai cabaran, terutamanya dalam konteks kegunaannya sebagai pembungkus makanan. Dalam kajian ini, kami mengkaji kesan gabungan BC dan sorbitol terhadap sifat fizikal, mekanikal, kimia, termal, dan morfologi permukaan filem biokomposit berdasarkan BC. Filem-filem ini dihasilkan dengan mengubah kuantiti BC (1.0g, 2.5g, 5.0g, 7.5g, 10.0g) dan sorbitol (0.5g, 1.0g, 1.5g, 2.0g, 2.5g) menggunakan kaedah pelarut. Sampel filem yang terhasil dinilai berdasarkan ketebalan filem, kandungan lembapan, kelarutan dalam air, sifat-sifat mekanik, FTIR, TGA, dan FE-SEM. Hasil kajian menunjukkan bahawa nilai kekuatan regangan meningkat seiring dengan peningkatan BC, tetapi berkurangan apabila kepekatan sorbitol bertambah. FTIR menunjukkan bahawa kumpulan berfungsi yang wujud dalam filem biokomposit BC/Chitosan/Sorbitol sepadan dengan kumpulan berfungsi BC. TGA pula mendedahkan bahawa kestabilan termal filem komposit meningkat dengan peningkatan BC dan penurunan sorbitol. Peningkatan kuantiti BC menyebabkan filem mengalami kehilangan berat yang minimum, tetapi apabila tahap sorbitol meningkat, filem mengalami kehilangan berat yang lebih besar FE-SEM menggambarkan bahawa permukaan filem komposit menjadi lebih licin dengan penambahan sorbitol. Komposisi optimum ditentukan sebagai 10.0BC dan 0.5S, disebabkan oleh kandungan lembapan yang rendah, kelarutan dalam air yang rendah, kekuatan regangan yang tinggi, dan kehilangan berat yang minima dalam TGA. Keseluruhannya, kajian ini membuktikan bahawa filem komposit berdasarkan BC mempunyai potensi untuk digunakan sebagai alternatif yang boleh dikompos secara biodegradasi dan mampan kepada bahan pembungkusan makanan sintetik tradisional.

 

Kata kunci: selulosa bakteria, nata de coco, kitosan, sorbitol, filem biokomposit



References

1.      Bharimalla, A.K., Deshmukh, S.P., Vigneshwaran, N., Patil, P.G. and Prasad, V. (2017). Nanocellulose-polymer composites for applications in food packaging: Current status, future prospects and challenges. Polymer - Plastics Technology and Engineering, 56: 805-23.

2.      Moniri, M., Moghaddam, A.B., Azizi, S., Rahim, R.A., Ariff, A. Bin, Saad, W.Z. et al. (2017) Production and status of bacterial cellulose in biomedical engineering. Nanomaterials, 7: 1-26.

3.      Nagtzaam, G., Geert, V.C., Steve, K. and Elena, K. (2023). Global plastic pollution and its regulation: History, trends, perspectives. Edward Elgar Publishing.

4.      Gupta, I., Cherwoo, L., Bhatia, R. and Setia, H. (2022). Biopolymers: Implications and application in the food industry. Biocatalysis and Agricultural Biotechnology, 46: 102534.

5.      Wang, H., Qian, J. and Ding, F. (2018). Emerging chitosan-based films for food packaging applications. Journal Agriculture Food Chemistry, 2018: 395-413.

6.      Athirah Raihana Nor Aziz Hashim, N., Zakaria, J., Mohamad, S., Fathiyah Sy Mohamad, S. and Ab. Rahim, M.H. (2021) Effect of different treatment methods on the purification of bacterial cellulose produced from OPF juice by Acetobacter xylinum. IOP Conference Series: Materials Science and Engineering, 1092: 012058.

7.      Kongruang, S. (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology, 148: 245-56.

8.      Amr, A. and Ibrahim, H. (2023). Bacterial cellulose: Biosynthesis and applications. IntechOpen, pp. 1-24.

9.      Gan, M., Guo, C., Liao, W., Liu, X. and Wang, Q. (2023). Development and characterization of chitosan/bacterial cellulose/pullulan bilayer film with sustained release curcumin. International Journal of Biological Macromolecules, 34: 301-11.

10.   Mishra, S., Singh, P.K., Pattnaik, R., Kumar, S., Ojha, S.K., Srichandan, H. (2022). Biochemistry, synthesis, and applications of bacterial cellulose: A review. Frontier Bioengineering Biotechnology, 2022: 780409

11.   Vázquez, M., Velazquez, G. and Cazón, P. (2021). UV-shielding films of bacterial cellulose with glycerol and chitosan. Part 1: equilibrium moisture content and mechanical properties. CYTA - Journal of Food, 19: 105-114.

12.   Rahman, M.A.A.A., Mohamad, S.F.S. and Mohamad, S. (2023). Development and characterization of bio-composite films made from bacterial cellulose derived from oil palm frond juice fermentation, chitosan and glycerol. Trends in Sciences, 20: 1-10.

13.   Amorim, L.F.A., Mouro, C., Riool, M. and Gouveia, I.C. (2022). Antimicrobial food packaging based on prodigiosin-incorporated double-layered bacterial cellulose and chitosan composites. Polymers, 14: 20315.

14.   Melro, E., Antunes, F.E., da Silva, G.J., Cruz, I., Ramos, P.E., Carvalho, F. et al. (2021). Chitosan films in food applications. Tuning film properties by changing acidic dissolution conditions. Polymers, 23: 1-12.

15.   Mohammed, A.A.B.A., Hasan, Z., Omran, A.A.B., Elfaghi, A.M., Khattak, M.A., Ilyas, R.A. et al. (2023) Effect of various plasticizers in different concentrations on physical, thermal, mechanical, and structural properties of wheat starch-based films. Polymers, 15: 10063.

16.   Maniglia, B.C., Tessaro, L., Ramos, A.P. and Tapia-Blácido, D.R. (2019). Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids, 89:143-52.

17.   Shahrampour, D. and Razavi, S.M.A. (2022). Physicochemical and structural properties of a bio-based antioxidant packaging film derived from Eremurus luteus root gum. Materials Today Communications, 33: 104756.

18.   Indriyati, Dara, F., Primadona, I., Srikandace, Y. and Karina, M. (2021). Development of bacterial cellulose/chitosan films: structural, physicochemical and antimicrobial properties. Journal of Polymer Research, 28: 02328

19.   Xu, Y., Liu, X., Jiang, Q., Yu, D., Xu, Y., Wang, B. et al. (2021). Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydrate Polymers, 260: 117778.

20.   Cazón, P., Velázquez, G. and Vázquez, M. (2019). Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydrate Polymers, 216, 72-85.

21.   Papadaki, A., Lappa, I.K., Manikas, A.C., Pastore Carbone, M.G., Natsia, A., Kachrimanidou, V. et al. (2024) Grafting bacterial cellulose nanowhiskers into whey protein/essential oil film composites: Effect on structure, essential oil release and antibacterial properties of films. Food Hydrocolloids, 147: 109374.

22.   Nguyen, T.A. and Nguyen, X.C. (2022). Bacterial cellulose-based biofilm forming agent extracted from vietnamese nata-de-coco tree by ultrasonic vibration method: Structure and properties. Journal of Chemistry, 2022: 7502796.

23.   Yanti, N.A., Ahmad, S.W., Ramadhan, L.O.A.N., Jamili, Muzuni, Walhidayah, T. et al. (2021). Properties and application of edible modified bacterial cellulose film based sago liquid waste as food packaging. Polymers, 13: 3570.

24.   Azaza, Y. Ben, Hamdi, M., Charmette, C., van der lee, A., Jridi, M., Li, S. et al. (2023). Development and characterization of composite films based on chitosan and collagenous proteins from bluefin tuna: application for peeled shrimp preservation. Cellulose, 30: 373-395.

25.   Lee, J.S., Lee, E. sil and Han, J. (2020). Enhancement of the water-resistance properties of an edible film prepared from mung bean starch via the incorporation of sunflower seed oil. Scientific Reports, 10: 1-15.

26.   Mohamad, S., Abdullah, L.C., Jamari, S.S., Al Edrus, S.S.O., Aung, M.M. and Mohamad, S.F.S. (2022). Influence of drying method on the crystal structure and thermal property of oil palm frond juice-based bacterial cellulose. Journal of Materials Science, 57: 1462-1473.

27.   Wang, X., Guo, C., Hao, W., Ullah, N., Chen, L., Li, Z. et al. (2018). Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. International Journal of Biological Macromolecules, 118: 722-730.

28.   Rahmawati, M., Arief, M. and Satyantini, W.H. (2019). The effect of sorbitol addition on the characteristic of carrageenan edible film. IOP Conference Series: Earth and Environmental Science, 236: 12129.

 

29.   Ghamari, M.A., Amiri, S., Rezazadeh-Bari, M. and Rezazad-Bari, L. (2022). Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polymer Bulletin, 79: 1097-1117.

30.   Janik, W., Ledniowska, K., Nowotarski, M., Kudła, S., Knapczyk-Korczak, J., Stachewicz, U. et al. (2023). Chitosan-based films with alternative eco-friendly plasticizers: Preparation, physicochemical properties and stability. Carbohydrate Polymers, 301: 120277.

31.   Pakoulev, A., Wang, Z. and Dlott, D.D. (2003). Vibrational relaxation and spectral evolution following ultrafast OH stretch excitation of water. Chemical Physics Letters, 371: 594-600.

32.   Jia, Y., Wang, X., Huo, M., Zhai, X., Li, F. and Zhong, C. (2017). Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomaterials and Nanotechnology, 7: 1-8.

33.   Hasan, N.S.A., Mohamad, S., Mohamad, S.F.S., Arzmi, M.H. and Supian, N.N.I. (2023). Ex-situ development and characterization of composite film based on bacterial cellulose derived from oil palm frond juice and chitosan as food packaging. Pertanika Journal of Science and Technology, 31: 1173-1187.

34.   Boey, J.Y., Lee, C.K. and Tay, G.S. (2022). Factors affecting mechanical properties of reinforced bioplastics: A review. Polymers, 14:183737.

35.   Wang, B., Yang, D., Zhang, H.R., Huang, C., Xiong, L., Luo, J. et al. (2016). Preparation of esterified bacterial cellulose for improved mechanical properties and the microstructure of isotactic polypropylene/bacterial cellulose composites. Polymers, 8: 1-11.

36.   Paudel, S., Regmi, S. and Janaswamy, S. (2023). Effect of glycerol and sorbitol on cellulose-based biodegradable films. Food Packaging and Shelf Life, 37: 101090.

37.   Arief, M.D., Mubarak, A.S. and Pujiastuti, D.Y. (2021). The concentration of sorbitol on bioplastic cellulose based carrageenan waste on biodegradability and mechanical properties bioplastic. IOP Conference Series: Earth and Environmental Science, 679: 12013.