Malaysian Journal of
Analytical Sciences, Vol 28 No 3 (2024): 543 - 554
UNVEILING
THE IMPACT OF BACTERIAL CELLULOSE DERIVED FROM NATA DE COCO AND SORBITOL
ON BIOCOMPOSITE FILM PROPERTIES FOR POTENTIAL FOOD PACKAGING
(Menyingkap Kesan Selulosa Bakteria Diperoleh daripada Nata De Coco dan Sorbitol Terhadap
Sifat-Sifat Filem Biokomposit
Sebagai Bahan Pembungkus Makanan Alternatif)
Sharifah Fathiyah
Sy Mohamad*, Nur Fikriyah Yaacob, and Intan
Anak Ekong
Faculty
of Chemical and Proces Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah
Lebuh Persiaran Tun Khalil, Yaakob, 26300 Kuantan, Pahang,
Malaysia
*Corresponding author: fathiyah@umpsa.edu.my
Received: 10 October
2023; Accepted: 31 March 2024; Published:
29 June 2024
Abstract
The
surge in plastic production in recent years has demonstrated the urgent need
for eco-friendly alternatives. Bacterial cellulose (BC) has emerged as a
promising candidate for replacing petroleum-based materials. However, the inherent
rigidity, fragility, and brittleness of BC have posed formidable challenges,
particularly in food packaging. This study investigates the impact of combining
BC (1.0g, 2.5g, 5.0g, 7.5g, 10.0g) derived from nata de coco and sorbitol (0.5g,
1.0g, 1.5g, 2.0g, 2.5g) on the physical, mechanical, chemical, and thermal properties,
as well as the surface morphology of the biocomposite
films. Films were produced by varying BC and sorbitol quantities via the solvent
casting method. Evaluations encompassed film thickness, moisture content, water
solubility, mechanical characteristics, FTIR, TGA, and FE-SEM. Tensile strength
increased with BC content but decreased with added sorbitol. FTIR confirmed the
consistency of functional groups in the BC/Chitosan/Sorbitol biocomposite film with those in BC. TGA indicated improved thermal
stability with increased BC and decreased sorbitol content. FE-SEM images revealed
a smoother biocomposite film surface with sorbitol.
The optimal composition was determined to be 10.0BC and 0.5S due to its low
moisture content, low water solubility, high tensile strength, and minimal TGA weight
loss. Overall, this study highlights the potential of BC/Chitosan/Sorbitol
films as environmentally friendly and sustainable alternatives to traditional
synthetic food packaging materials.
Keywords: bacterial cellulose, nata de coco, chitosan, sorbitol,
biocomposite film
Abstrak
Peningkatan pengeluaran plastik dalam beberapa tahun kebelakangan ini telah menghasilkan
keperluan mendesak untuk pembangunan pengganti plastik yang mesra alam. Dalam konteks ini, selulosa
bakteria (SB) mempunyai potensi yang memberangsangkan sebagai pengganti bahan berasaskan petroleum. Walau bagaimanapun, ketegaran dan kerapuhan SB telah menimbulkan pelbagai cabaran, terutamanya dalam konteks kegunaannya sebagai pembungkus makanan. Dalam kajian ini, kami mengkaji kesan gabungan BC dan sorbitol terhadap sifat fizikal, mekanikal, kimia, termal, dan morfologi permukaan filem biokomposit berdasarkan BC. Filem-filem ini dihasilkan dengan mengubah kuantiti BC (1.0g, 2.5g, 5.0g, 7.5g, 10.0g) dan sorbitol
(0.5g, 1.0g, 1.5g, 2.0g, 2.5g) menggunakan kaedah pelarut. Sampel filem yang terhasil dinilai berdasarkan ketebalan filem, kandungan lembapan, kelarutan dalam air, sifat-sifat mekanik, FTIR, TGA,
dan FE-SEM. Hasil kajian menunjukkan
bahawa nilai kekuatan regangan meningkat seiring dengan peningkatan BC, tetapi berkurangan apabila kepekatan sorbitol bertambah. FTIR menunjukkan bahawa kumpulan berfungsi yang wujud dalam filem biokomposit
BC/Chitosan/Sorbitol sepadan dengan
kumpulan berfungsi BC. TGA pula mendedahkan bahawa kestabilan termal filem
komposit meningkat dengan peningkatan BC dan penurunan sorbitol. Peningkatan
kuantiti BC menyebabkan filem mengalami kehilangan berat yang minimum, tetapi
apabila tahap sorbitol meningkat, filem mengalami kehilangan berat yang lebih
besar FE-SEM menggambarkan bahawa permukaan filem komposit menjadi lebih licin
dengan penambahan sorbitol. Komposisi optimum ditentukan sebagai 10.0BC dan
0.5S, disebabkan oleh kandungan lembapan yang rendah, kelarutan dalam air yang
rendah, kekuatan regangan yang tinggi, dan kehilangan berat yang minima dalam
TGA. Keseluruhannya, kajian ini membuktikan bahawa filem komposit berdasarkan
BC mempunyai potensi untuk digunakan sebagai alternatif yang boleh dikompos
secara biodegradasi dan mampan kepada bahan pembungkusan makanan sintetik
tradisional.
Kata
kunci: selulosa bakteria, nata de coco, kitosan, sorbitol, filem biokomposit
References
1. Bharimalla, A.K., Deshmukh, S.P., Vigneshwaran, N., Patil,
P.G. and Prasad, V. (2017). Nanocellulose-polymer composites for applications
in food packaging: Current status, future prospects and challenges. Polymer
- Plastics Technology and Engineering, 56: 805-23.
2. Moniri, M., Moghaddam, A.B., Azizi, S., Rahim, R.A., Ariff,
A. Bin, Saad, W.Z. et al. (2017) Production and status of bacterial cellulose
in biomedical engineering. Nanomaterials, 7: 1-26.
3. Nagtzaam, G., Geert, V.C., Steve, K. and Elena, K. (2023). Global
plastic pollution and its regulation: History, trends, perspectives. Edward
Elgar Publishing.
4. Gupta, I., Cherwoo, L., Bhatia, R. and Setia, H. (2022). Biopolymers:
Implications and application in the food industry. Biocatalysis and
Agricultural Biotechnology, 46: 102534.
5. Wang, H., Qian, J. and Ding, F. (2018). Emerging chitosan-based
films for food packaging applications. Journal Agriculture Food Chemistry, 2018:
395-413.
6. Athirah Raihana Nor Aziz Hashim, N., Zakaria, J., Mohamad,
S., Fathiyah Sy Mohamad, S. and Ab. Rahim, M.H. (2021) Effect of different
treatment methods on the purification of bacterial cellulose produced from OPF juice
by Acetobacter xylinum. IOP Conference Series: Materials Science and
Engineering, 1092: 012058.
7. Kongruang, S. (2008) Bacterial cellulose production by Acetobacter
xylinum strains from agricultural waste products. Applied Biochemistry
and Biotechnology, 148: 245-56.
8. Amr, A. and Ibrahim, H. (2023). Bacterial cellulose:
Biosynthesis and applications. IntechOpen, pp. 1-24.
9. Gan, M., Guo, C., Liao, W., Liu, X. and Wang, Q. (2023). Development
and characterization of chitosan/bacterial cellulose/pullulan bilayer film with
sustained release curcumin. International Journal of Biological
Macromolecules, 34: 301-11.
10. Mishra, S., Singh, P.K., Pattnaik, R., Kumar, S., Ojha, S.K.,
Srichandan, H. (2022). Biochemistry, synthesis, and applications of bacterial
cellulose: A review. Frontier Bioengineering Biotechnology, 2022: 780409
11. Vázquez, M., Velazquez, G. and Cazón,
P. (2021). UV-shielding films
of bacterial cellulose with glycerol and chitosan. Part 1: equilibrium moisture
content and mechanical properties. CYTA - Journal of Food, 19: 105-114.
12. Rahman, M.A.A.A., Mohamad, S.F.S. and Mohamad, S. (2023). Development
and characterization of bio-composite films made from bacterial cellulose
derived from oil palm frond juice fermentation, chitosan and glycerol. Trends
in Sciences, 20: 1-10.
13. Amorim, L.F.A., Mouro, C., Riool, M. and Gouveia, I.C. (2022).
Antimicrobial food packaging based on prodigiosin-incorporated double-layered
bacterial cellulose and chitosan composites. Polymers, 14: 20315.
14. Melro, E., Antunes, F.E., da Silva,
G.J., Cruz, I., Ramos, P.E., Carvalho, F. et al. (2021). Chitosan films in food applications. Tuning film
properties by changing acidic dissolution conditions. Polymers, 23: 1-12.
15. Mohammed, A.A.B.A., Hasan, Z., Omran, A.A.B., Elfaghi, A.M.,
Khattak, M.A., Ilyas, R.A. et al. (2023) Effect of various plasticizers in
different concentrations on physical, thermal, mechanical, and structural
properties of wheat starch-based films. Polymers, 15: 10063.
16. Maniglia, B.C., Tessaro, L., Ramos,
A.P. and Tapia-Blácido, D.R. (2019). Which
plasticizer is suitable for films based on babassu starch isolated by different
methods? Food Hydrocolloids, 89:143-52.
17. Shahrampour, D. and Razavi, S.M.A. (2022). Physicochemical
and structural properties of a bio-based antioxidant packaging film derived
from Eremurus luteus root gum. Materials Today Communications, 33:
104756.
18. Indriyati, Dara, F., Primadona, I.,
Srikandace, Y. and Karina, M. (2021). Development
of bacterial cellulose/chitosan films: structural, physicochemical and
antimicrobial properties. Journal of Polymer Research, 28: 02328
19. Xu, Y., Liu, X., Jiang, Q., Yu, D., Xu,
Y., Wang, B. et al. (2021). Development
and properties of bacterial cellulose, curcumin, and chitosan composite
biodegradable films for active packaging materials. Carbohydrate Polymers,
260: 117778.
20. Cazón, P., Velázquez, G. and Vázquez, M. (2019). Characterization
of bacterial cellulose films combined with chitosan and polyvinyl alcohol:
Evaluation of mechanical and barrier properties. Carbohydrate Polymers,
216, 72-85.
21. Papadaki, A., Lappa, I.K., Manikas, A.C., Pastore Carbone,
M.G., Natsia, A., Kachrimanidou, V. et al. (2024) Grafting bacterial cellulose
nanowhiskers into whey protein/essential oil film composites: Effect on
structure, essential oil release and antibacterial properties of films. Food
Hydrocolloids, 147: 109374.
22. Nguyen, T.A. and Nguyen, X.C. (2022). Bacterial cellulose-based
biofilm forming agent extracted from vietnamese nata-de-coco tree by ultrasonic
vibration method: Structure and properties. Journal of Chemistry, 2022: 7502796.
23.
Yanti,
N.A., Ahmad, S.W., Ramadhan, L.O.A.N., Jamili, Muzuni, Walhidayah, T. et al.
(2021). Properties and application of edible modified bacterial cellulose film
based sago liquid waste as food packaging. Polymers, 13: 3570.
24. Azaza, Y. Ben, Hamdi, M., Charmette, C.,
van der lee, A., Jridi, M., Li, S. et al. (2023). Development and characterization of composite films
based on chitosan and collagenous proteins from bluefin tuna: application for
peeled shrimp preservation. Cellulose, 30: 373-395.
25. Lee, J.S., Lee, E. sil and Han, J. (2020). Enhancement of the
water-resistance properties of an edible film prepared from mung bean starch
via the incorporation of sunflower seed oil. Scientific Reports, 10: 1-15.
26. Mohamad, S., Abdullah, L.C., Jamari, S.S., Al Edrus, S.S.O.,
Aung, M.M. and Mohamad, S.F.S. (2022). Influence of drying method on the
crystal structure and thermal property of oil palm frond juice-based bacterial
cellulose. Journal of Materials Science, 57: 1462-1473.
27. Wang, X., Guo, C., Hao, W., Ullah, N.,
Chen, L., Li, Z. et al. (2018). Development
and characterization of agar-based edible films reinforced with nano-bacterial
cellulose. International Journal of Biological Macromolecules, 118: 722-730.
28. Rahmawati, M., Arief, M. and Satyantini, W.H. (2019). The effect
of sorbitol addition on the characteristic of carrageenan edible film. IOP
Conference Series: Earth and Environmental Science, 236: 12129.
29. Ghamari, M.A., Amiri, S., Rezazadeh-Bari, M. and
Rezazad-Bari, L. (2022). Physical, mechanical, and antimicrobial properties of
active edible film based on milk proteins incorporated with Nigella sativa
essential oil. Polymer Bulletin, 79: 1097-1117.
30. Janik, W., Ledniowska, K., Nowotarski, M., Kudła, S.,
Knapczyk-Korczak, J., Stachewicz, U. et al. (2023). Chitosan-based films with
alternative eco-friendly plasticizers: Preparation, physicochemical properties
and stability. Carbohydrate Polymers, 301: 120277.
31. Pakoulev, A., Wang, Z. and Dlott, D.D. (2003). Vibrational
relaxation and spectral evolution following ultrafast OH stretch excitation of
water. Chemical Physics Letters, 371: 594-600.
32. Jia, Y., Wang, X., Huo, M., Zhai, X., Li, F. and Zhong, C.
(2017). Preparation and characterization of a novel bacterial
cellulose/chitosan bio-hydrogel. Nanomaterials and Nanotechnology, 7: 1-8.
33. Hasan, N.S.A., Mohamad, S., Mohamad, S.F.S., Arzmi, M.H. and
Supian, N.N.I. (2023). Ex-situ development and characterization of composite
film based on bacterial cellulose derived from oil palm frond juice and
chitosan as food packaging. Pertanika Journal of Science and Technology,
31: 1173-1187.
34.
Boey,
J.Y., Lee, C.K. and Tay, G.S. (2022). Factors affecting mechanical properties
of reinforced bioplastics: A review. Polymers, 14:183737.
35. Wang, B., Yang, D., Zhang, H.R., Huang,
C., Xiong, L., Luo, J. et al. (2016).
Preparation of esterified bacterial cellulose for improved mechanical
properties and the microstructure of isotactic polypropylene/bacterial
cellulose composites. Polymers, 8: 1-11.
36. Paudel, S., Regmi, S. and Janaswamy, S. (2023). Effect of
glycerol and sorbitol on cellulose-based biodegradable films. Food Packaging
and Shelf Life, 37: 101090.
37. Arief, M.D., Mubarak, A.S. and Pujiastuti, D.Y. (2021). The
concentration of sorbitol on bioplastic cellulose based carrageenan waste on
biodegradability and mechanical properties bioplastic. IOP Conference
Series: Earth and Environmental Science, 679: 12013.