Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 530 - 542
INVESTIGATIONS ON THE INCLUSION OF
BETULINIC ACID INTO CD-MOF-1 PERFORMED BY QUANTUM MECHANICS CALCULATIONS AND
MOLECULAR DOCKING SIMULATION
(Kajian Kemasukan
Asid Betulinik ke dalam CD-MOF-1 Melalui Pengiraan Mekanik Kuantum dan Simulasi
Dok Molekul)
Saurelle Kenfack Tiofack1,2, Mostafa Yousefzadeh
Borzehandani1, Patrice Kenfack Tsobnang2,
Muhammad Alif Mohamad Latif1,3, Bimo Ario Tejo1,3,
Haslina Ahmad1,3, Jean Ngoune2,
and Mohd Basyaruddin Abdul Rahman1,3*
1Integrated Chemical
BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang
43400, Selangor, Malaysia.
2Department of
Chemistry, University of Dschang, P. O. Box 67, Dschang, Cameroon
3Foundry of
Reticular Materials for Sustainability, Institute of Nanoscience and
Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
*Corresponding author: basya@upm.edu.my
Received: 5 February 2024; Accepted: 16 April 2024; Published: 29 June 2024
In recent years,
CycloDextrin Metal-Organic Frameworks (CD-MOFs) have been investigated to
develop potential drug carriers and improve the solubility of some molecules by
their encapsulation. Betulinic acid (BA) or
3β-hydroxy-lup-20(29)-en-28-oic acid is a pentacyclic triterpene of the lupane
family which has a wide range of biological activities, and it is considered a
promising candidate for clinical application but, its high hydrophobicity and
limited aqueous solubility contribute to its poor bioavailability. In this
work, we show through computational studies that CD-MOF-1 can strongly
encapsulate betulinic acid molecules through hydrogen bond interactions. For
this purpose, the optimized geometry of BA was implemented by the Density
Functional Theory using the function of Becke, Lee, Yang, and Parr (DFT/B3LYP)
method with a 6-31+G(d) basis set using the Gaussian09 program and GaussView
5.0 for visualization. We noticed that BA has a lower energy gap (Egap = 6.1615
eV) indicating that it is soft, less stable, more reactive, and polarizable. According
to the map of electrostatic potential (MEP), the active site of betulinic acid
is the carboxylic group and the latter molecule preferred electrophilic
attacks. The molecular docking was performed using AutoDock Vina v1.1.2 program
and Discovery Studio Visualizer 16.1. The best binding affinities of BA and
CD-MOF-1 had the lowest values of -8.2 KCal/mol and -11.5 KCal/mol for the
simple and the packed CDMOF-1 structure respectively. The docking revealed that
BA bound in the hydrophobic cavities of CD-MOF-1 through hydrogen bonds
interactions which are [CD-MOF-1OH13···O28BA (2.95
Ĺ)], [CD-MOF-1O13···H30BA (2.54
Ĺ)], and [CD-MOF-1OH12···H30BA (2.12
Ĺ)] for the simplest
structure and [CD-MOF-1OH12A···O28BA (3.00
Ĺ)], [CD-MOF-1H13A···H30BA (2.72
Ĺ)] and [CD-MOF-1OH2A···H30BA (2.66
Ĺ)] for the packed structure
1×1×1. The packed CD-MOF-1 structure is the best with accurate results, this
may be the factor of enhancement of betulinic acid solubility and
bioavailability. The present theoretical results
indicate the possibility of forming the host-guest inclusion complex between BA
and CD-MOF-1 which may enhance the solubility of BA and then its efficiency for
drug delivery.
Keywords: CD-MOF, betulinic
acid, quantum mechanics, molecular docking, solubility
Abstrak
Kebelakangan ini, pembangunan kerangka
kerja logam-organik siklodekstrin (CD-MOF) telah dikaji sebagai pembawa ubat
yang berpotensi dan meningkatkan keterlarutan beberapa molekul melalui
pengkapsulan mereka. Asid betulinik (BA) atau asid 3β-hidroksi-lup-20(29)-en-28-oik
ialah triterpena pentasiklik daripada keluarga lupana yang mempunyai pelbagai
aktiviti biologi, dan ia dianggap sebagai calon yang berpotensi untuk aplikasi
klinikal, namun hidrofobisitinya yang tinggi dan keterlarutan dalam air yang
terhad menyumbang kepada bioavailabilitinya yang lemah. Dalam kajian ini,
kajian pengiraan menunjukkan bahawa CD-MOF-1 boleh memerangkap molekul asid
betulinik dengan kuat melalui interaksi ikatan hidrogen. Untuk tujuan ini,
geometri BA yang optimum telah dilaksanakan melalui kaedah Teori fungsi
ketumpatan menggunakan fungsi Becke, Lee, Yang, dan Parr (DFT/B3LYP) dengan set
asas 6-31+G(d) menggunakan program Gaussian09 dan GaussView 5.0 untuk
visualisasi. Kami mendapati bahawa BA mempunyai jurang tenaga yang lebih rendah
(Egap = 6.1615 eV) menunjukkan bahawa ia lembut, kurang stabil, lebih reaktif
dan boleh dipolarisasi. Menurut peta potensi elektrostatik (MEP), tapak aktif
asid betulinik ialah kumpulan karboksilik dan molekul terakhir lebih cenderung
kepada serangan elektrofilik. Pendokkan molekul telah dilakukan menggunakan
program AutoDock Vina v1.1.2 dan Discovery Studio Visualizer 16.1. Perkaitan
pengikatan terbaik BA dan CD-MOF-1 mempunyai nilai terendah -8.2 KCal/mol dan
-11.5 KCal/mol untuk struktur CDMOF-1 yang ringkas dan padat. Pendokkan
mendedahkan bahawa BA terikat dalam rongga hidrofobik CD-MOF-1 melalui
interaksi ikatan hidrogen iaitu [CD-MOF-1OH13···O28BA (2.95 Ĺ)], [CD-MOF-1O13···H30BA (2.54 Ĺ)], and [CD-MOF-1OH12···H30BA (2.12 Ĺ)] untuk struktur paling ringkas dan [CD-MOF-1OH12A···O28BA (3.00 Ĺ)], [CD-MOF-1H13A···H30BA (2.72 Ĺ)] and [CD-MOF-1OH2A···H30BA (2.66 Ĺ)] untuk struktur tersusun 1×1×1. Struktur
CD-MOF-1 tersusun adalah yang terbaik dengan hasil yang tepat, yang
berkemungkinan faktor peningkatan keterlarutan asid betulinik dan
bioavailabiliti. Keputusan teori semasa menunjukkan kemungkinan pembentukan
kompleks kemasukan hos antara BA dan CD-MOF-1 yang boleh meningkatkan
keterlarutan BA dan kemudian kecekapannya untuk penghantaran ubat.
Kata kunci: CD-MOF, asid betulinik, mekanik kuantum, dok molekul, keterlarutan
References
1. Zhong, Y., Liang, N., Yang, L. and Cheng,
M.-S. (2021). Recent progress on betulinic acid and its derivatives as
antitumor agents: A mini-review. Chinese
Journal of Natural Medicines, 19(9):
641-647.
2. Zhao, P., Guan, M., Tang, W., Walayat, N.,
Ding, Y. and Liu, J. (2023). Structural diversity, fermentation production,
bioactivities and applications of triterpenoids from several common medicinal
fungi: Recent advances and future perspectives. Fitoterapia, 166 (1): 1-14.
3. Kozubek, M., Höhlich, L., Hoenke, S.,
Deigner, H.-P., Al-Harrasi, A. and Csuk, R. (2021). Apoptotic activity of
substituted 3-O-acetyl-betulinic acid benzylamides. European Journal of Medicinal Chemistry Reports, 3(1): 1-8.
4. Azenha, I., Aniceto, J., Sequeira, S.,
Mendes, A. and Silva, C. (2020). Chromatographic separation of betulinic and
oleanolic acids. Separation and
Purification Technology, 235(1):
1-11.
5. Chen, C., Song, K., Zhang, Y., Chu, C., Fan,
B., Song, Y., Huang, H. and Chen, G. (2021). Biotransformation of betulinic
acid by Circinella muscae and Cunninghamella echinulata to discover
anti-inflammatory derivatives. Phytochemistry,
182(1): 1-7.
6. Bravo-Alfaro,
D. A., Ochoa-Rodríguez, L. R., Villaseńor-Ortega, F., Luna-Barcenas, G. and
García, H. S. (2022). Self-nano
emulsifying drug delivery system (SNEDDS) improves the oral bioavailability of
betulinic acid. Journal of Molecular
Liquids, 364(1): 1-12.
7. Pokornı, J., Olejníková, D., Frydrych,
I., Lišková, B., Gurská, S., Benická, S., Šarek, J., Kotulová, J., Hajdúch, M.,
& Džubák, P. (2021). Substituted dienes prepared from betulinic
acid–Synthesis, cytotoxicity, mechanism of action, and pharmacological
parameters. European Journal of Medicinal
Chemistry, 224(1): 1-18.
8. Pisha, E., Chai, H., Lee, I.-S., Chagwedera,
T. E., Farnsworth, N. R., Cordell, G. A., Beecher, C. W., Fong, H. H.,
Kinghorn, A. D. and Brown, D. M. (1995). Discovery of betulinic acid as a
selective inhibitor of human melanoma that functions by induction of apoptosis.
Nature medicine, 1(10): 1046-1051.
9. Jiang, W., Liu, H., Liao, Q., Tang, T., Liu,
J., Liu, Z., Xie, L. and Yan, J. (2021). Preparation of two metal-organic
frameworks (K-β-CD-MOFs and Cs-β-CD-MOFs) and the adsorption research
of myricetin. Polyhedron, 196(1): 1-9.
10. Nicolov, M., Ghiulai, R. M., Voicu, M., Mioc,
M., Duse, A. O., Roman, R., Ambrus, R., Zupko, I., Moaca, E. A. and Coricovac,
D. E. (2019). Cocrystal formation of betulinic acid and ascorbic acid:
Synthesis, physico-chemical assessment, antioxidant, and antiproliferative
activity. Frontiers in Chemistry, 7(92): 1-11.
11. Zheng, L.-y., Zou, X., Wang, Y.-l., Zou, M.,
Ma, F., Wang, N., Li, J.-w., Wang, M.-s., Hung, H.-Y. and Wang, Q. (2022).
Betulinic acid-nucleoside hybrid prevents acute alcohol-induced liver damage by
promoting anti-oxidative stress and autophagy. European Journal of Pharmacology, 914(1): 1-13.
12. Boryczka, S., Bebenek, E., Jastrzebska, M.,
Kusz, J. and Zubko, M. (2012). Crystal structure of betulinic acid-DMSO
solvate. Zeitschrift für
Kristallographie, 227(6):
379-384.
13. Kutkowska, J., Strzadala, L. and Rapak, A.
(2021). Hypoxia increases the apoptotic response to betulinic acid and betulin
in human non-small cell lung cancer cells. Chemico-Biological
Interactions, 333(1): 1-8.
14. Ghadi, R. and Dand, N. (2017). BCS class IV
drugs: Highly notorious candidates for formulation development. Journal of Controlled Release, 248(1): 71-95.
15. Suresh, K., & Matzger, A. J. (2019).
Enhanced drug delivery by the dissolution of amorphous drug encapsulated in a
water unstable metal-organic framework (MOF). Angewandte Chemie International Edition, 58(47): 16790-16794.
16. Cheng, Z., Li, Y., Wang, K., Zhu, X., Tharkar,
P., Shu, W., Zhang, T., Zeng, S., Zhu, L. and Murray, M. (2022). Compritol
solid lipid nanoparticle formulations enhance the protective effect of
betulinic acid derivatives in human Müller cells against oxidative injury. Experimental Eye Research, 215(1): 1-9.
17. Horvat, G., Pantić, M., Knez, Ž. and
Novak, Z. (2018). Encapsulation and drug release of poorly water-soluble
nifedipine from bio-carriers. Journal of
Non-Crystalline Solids, 481(1):
486-493.
18. Li, H., Eddaoudi, M., O'Keeffe, M. and Yaghi,
O. M. (1999). Design and synthesis of an exceptionally stable and highly porous
metal-organic framework. Nature, 402(6759): 276-279.
19. Han, Z., Fan, X., Yu, S., Li, X., Wang, S. and
Lu, L. (2022). Metal-organic frameworks (MOFs): A novel platform for laccase
immobilization and application. Journal
of Environmental Chemical Engineering, 10(1): 1-17.
20. Shan, Y., Zhang, G., Shi, Y. and Pang, H.
(2023). Synthesis and catalytic application of defective MOF materials. Cell Reports Physical Science, 4(1): 1-44.
21. Haslina, A., Nur, A. Y., Khairulazhar, J. and
Mohd, B. A. R. (2020). Ionothermal Synthesis of Zn-Based Metal-Organic
Frameworks in Pyridinium Ionic Liquid. Malaysian
Journal of Analytical Sciences, 24(2):
159-164.
22. Kamni, S. S., Kassim, K., Kassim, N. S. A. and
Abidin, N. A. Z. (2021). Metal-organic frameworks as sorbent-based extraction:
a review. Malaysian Journal of Analytical
Sciences, 25(5): 791-807.
23. Balestri, D., Capucci, D., Demitri, N.,
Bacchi, A. and Pelagatti, P. (2017). Coordination-driven capture of nicotine
inside a mesoporous MOF. Materials, 10(7): 1-12.
24. Hartlieb, K. J., Ferris, D. P., Holcroft, J.
M., Kandela, I., Stern, C. L., Nassar, M. S., Botros, Y. Y. and Stoddart, J. F.
(2017). Encapsulation of ibuprofen in CD-MOF and related bioavailability
studies. Molecular Pharmaceutics, 14(5): 1831-1839.
25. Shen, M., Zhou, J., Elhadidy, M., Xianyu, Y.,
Feng, J., Liu, D. and Ding, T. (2022). Cyclodextrin metal-organic framework by
ultrasound-assisted rapid synthesis for caffeic acid loading and antibacterial
application. Ultrasonics Sonochemistry, 86(1): 1-10.
26. He, Y., Zhang, W., Guo, T., Zhang, G., Qin,
W., Zhang, L., Wang, C., Zhu, W., Yang, M. and Hu, X. (2019). Drug nanoclusters
formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and
bioavailability of azilsartan. Acta
Pharmaceutica Sinica B, 9(1):
97-106.
27. Zhou, Y.,
Zhao, Y., Niu, B., Luo, Q., Zhang, Y., Quan, G., Pan, X. and Wu, C. (2020). Cyclodextrin-based metal-organic
frameworks for pulmonary delivery of curcumin with improved solubility and fine
aerodynamic performance. International
Journal of Pharmaceutics, 588(1):
1-8.
28. Mohammed, E.-R., EL FADILI, M., Mrabti, N. N.,
Zarougui, S. and Elhallaoui, M. (2022). QSAR, molecular docking, ADMET
properties in silico studies for a series of 7-propanamide benzoxaboroles as
potent anti-cancer agents. Chinese
Journal of Analytical Chemistry,
50(12): 1-11.
29. Badran, A.-S. and Ibrahim, M. A. (2023).
Synthesis, spectral characterization, DFT, and in silico ADME studies of the
novel pyrido [1, 2-a] benzimidazoles and pyrazolo [3, 4-b] pyridines. Journal of Molecular Structure, 1274(1): 1-14.
30. Ibrahim, M. and Uzairu, A. (2023). 2D-QSAR,
molecular docking, drug-likeness, and ADMET/pharmacokinetic predictions of some
non-small cell lung cancer therapeutic agents. Journal of Taibah University Medical Sciences, 18(2): 295-309.
31. Sabu, V., Peter, J., Sasidharan Nair, A. I.
B., Krishnan, S., Sathyaseelan Suja, L. P., Helen, A. and Radhakrishna Pillai,
G. (2019). Combinatorial action of triterpenoid, flavonoid, and alkaloid on
inflammation. Natural Product
Communications, 14(8): 1-9.
32. Khan, M. F., Nahar, N., Rashid, R. B.,
Chowdhury, A. and Rashid, M. A. (2018). Computational investigations of
physicochemical, pharmacokinetic, toxicological properties and molecular
docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with
Phospholipase A2 (PLA2). BMC
complementary and alternative medicine, 18(1): 1-15.
33. Malleda, C., Ahalawat, N., Gokara, M. and
Subramanyam, R. (2012). Molecular dynamics simulation studies of betulinic acid
with human serum albumin. Journal of Molecular
Modeling, 18(1): 2589-2597.
34. Hohenberg, P. and Kohn, W. (1964).
Inhomogeneous electron gas. Physical
review, 136(3B): 1-8.
35. Kohn, W., and Sham, L. J. (1965).
Self-consistent equations including exchange and correlation effects. Physical review, 140(4A): 1-6.
36. Rajaraman, D., Anthony, L. A., Nethaji, P. and
Vallangi, R. (2023). One-pot synthesis, NMR, quantum chemical approach,
molecular docking studies, drug-likeness and in-silico ADMET prediction of
novel 1-(2, 3-dihydrobenzo [b][1, 4] dioxin-6-yl)-2-(furan-2-yl)-4,
5-diphenyl-1H-imidazole derivatives. Journal
of Molecular Structure, 1273(1):
1-11.
37. Agwupuye, J. A., Gber, T. E., Edet, H. O.,
Zeeshan, M., Batool, S., Duke, O. E., Adah, P. O., Odey, J. O. and Egbung, G.
E. (2023). Molecular modeling, DFT studies, and biological evaluation of methyl
2, 8-dichloro-1, 2-dihydroquinoline-3-carboxylate. Chemical Physics Impact, 6(1):
1-11.
38. O'Boyle, N. M., Banck, M., James, C. A.,
Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011). Open Babel: An open
chemical toolbox. Journal of Cheminformatics,
3(1): 1-14.
39. Yousefzadeh Borzehandani, M., Abdulmalek, E.,
Abdul Rahman, M. B. and Mohammad Latif, M. A. (2021). First-principles
investigation of dimethyl-functionalized MIL-53 (Al) metal-organic framework
for adsorption and separation of xylene isomers. Journal of Porous Materials,
28(2): 579-591.
40. Marenich, A. V., Cramer, C. J. and Truhlar, D.
G. (2009). Universal solvation model based on solute electron density and a
continuum model of the solvent defined by the bulk dielectric constant and
atomic surface tensions. The Journal of
Physical Chemistry B, 113(18):
6378-6396.
41. Muya, J. T., Mwanangombo, D. T., Tsalu, P. V.,
Mpiana, P. T., Tshibangu, D. S.-T., & Chung, H. (2019). Conceptual DFT
study of the chemical reactivity of four natural products with anti-sickling
activity. SN Applied Sciences, 1(1): 1-18.
42. Ayşen, I., Çevik, U. A., Çelik, I.,
Bostancı, H. E., Karayel, A., Gündoğdu, G., Ince, U., Koçak, A.,
Özkay, Y., & Kaplancıklı, Z. A. (2022). Benzimidazole-hydrazone
derivatives: Synthesis, in vitro anticancer, antimicrobial, antioxidant
activities, in silico DFT and ADMET studies. Journal of Molecular Structure, 1270(1): 1-10.
43.
Smaldone, R. A., Forgan, R. S., Furukawa, H., Gassensmith, J. J., Slawin, A. M.,
Yaghi O. M. and Fraser, J. S. (2010). Metal-organic frameworks from edible
natural products. Angewandte Chemie International Edition, 49(46):
8630-8634.