Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 522 - 529

 

METHANOGEN INHIBITOR EFFECT ON ANAEROBIC DEGRADATION OF 1,2-DICHLOROETHANE BY SUNGAI ULAR SEDIMENT

 

(Kesan Perencat Metanogen Terhadap Degradasi Anaerobik 1,2-Dikloroetana oleh Sedimen Sungai Ular)

 

Nur Intan Shaheera Nuralhuda, Muhammad Haikal Muhaimin Ariza Fattah, Nur Kholis Zulkifli,

and Siti Hatijah Mortan*

 

Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah,

Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia

 

*Corresponding author: hatijah@umpsa.edu.my

 

 

Received: 30 October 2023; Accepted: 16 April 2024; Published:  29 June 2024

 

 

Abstract

The toxicity of industrial organohalides such as 1,2-dichloroethane (1,2−DCA) and their longevity in the environment has piqued the public's interest. Anaerobic degradation by Organohalide-Respiring Bacteria (OHRB) has emerged as one of the effective techniques in the removal or degradation of toxic organohalides. Meanwhile, it is typical for methanogenesis to occur within OHRB-dechlorinating bacteria microcosms. These methanogens will compete with the OHRB in the cultures for nutrients and electron donors such as hydrogen, limiting the OHRB's development and dechlorination activity. Methanogen inhibitors are used to remove methanogens from enrichment cultures. The objective of this study is to investigate the effect of methanogen inhibitors on the degradation rate of 1,2-dichloroethane (1,2-DCA) by Sungai Ular sediments. The concentration of 2-Bromoethanesulfonate (BES) as a methanogen inhibitor was varied from 1−25 mM and its effects on the 1,2-DCA degradation were monitored using gas chromatography (GC). Methane which is the methanogenesis product, was also monitored to evaluate the effectiveness of the inhibitor. The results indicated the microcosm treated with 25 mM BES demonstrated the fastest 1,2-DCA degradation at 0.61 µM/day. The amount of methane produced showed a decline in all the BES concentrations, with 25 mM BES demonstrating the lowest methane production at 0.2 ppm. Metagenomic data after the BES treatment also revealed a decrease in the methanogen’s population from 42% to 0.007% and an increase in OHRBs population 5% to 69%. This study showed that the addition of a methanogen inhibitor can significantly increase the degradation rate of the chlorinated compound by inhibiting the growth of the methanogens.

 

Keywords: organohalide-respiring bacteria, methanogen inhibitors, dechlorination, methanogen, 1,2−dichloroethane

 

Abstrak

Ketoksikan organohalida industri seperti 1,2-dikloroetana (1,2−DCA) dan jangka hayatnya dalam alam sekitar telah menarik minat orang ramai. Degradasi anaerobik oleh bakteria pernafasan organohalida (OHRB) telah muncul sebagai salah satu teknik yang berkesan dalam penyingkiran atau degradasi organohalida toksik. Sementara itu, adalah tipikal untuk metanogenesis berlaku dalam mikrokosmos bakteria penyahklorinan OHRB. Metanogen ini akan bersaing dengan OHRB dalam kultur untuk nutrien dan penderma elektron seperti hidrogen, mengehadkan aktiviti pembangunan dan penyahklorinan OHRB. Perencat metanogen digunakan untuk mengeluarkan metanogen daripada kultur pengayaan. Objektif kajian ini adalah untuk menyiasat kesan perencat metanogen terhadap kadar degradasi 1,2-dikloroetana (1,2-DCA) oleh sedimen Sungai Ular. Kepekatan 2-Bromoetanasulfonat (BES) sebagai perencat metanogen telah diubah daripada 1−25 mM dan kesannya terhadap degradasi 1,2-DCA dipantau menggunakan kromatografi gas (GC). Metana yang merupakan produk metanogenesis, juga dipantau untuk menilai keberkesanan perencat. Keputusan menunjukkan mikrokosmos yang dirawat dengan 25 mM BES menunjukkan degradasi 1,2-DCA terpantas pada 0.61 µM/hari. Jumlah metana yang dihasilkan menunjukkan penurunan dalam semua kepekatan BES, dengan 25 mM BES menunjukkan pengeluaran metana terendah pada 0.2 ppm. Data metagenomik selepas rawatan BES juga mendedahkan penurunan populasi metanogen daripada 42% kepada 25% dan peningkatan populasi OHRB 5% hingga 30%. Kajian ini menunjukkan bahawa penambahan perencat metanogen boleh meningkatkan kadar degradasi sebatian berklorin dengan ketara dengan menghalang pertumbuhan metanogen.

 

Kata kunci: bakteria penafas organohalida, perencat metanogen, penyahklorinan, metanogen, 1,2−dikloroetan


References

1.      Renpenning, J. and Nijenhuis, I. (2016). Evaluation of the microbial reductive dehalogenation reaction using compound-specific stable isotope analysis (CSIA). Springer Berlin Heidelberg, Berlin, Heidelberg: pp. 429-453.

2.      Maillard, J., Schumacher, W., Vazquez, F., Regeard, C., Hagen, W.R. and Holliger, C. (2003). Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Applied Environmental Microbiology, 69(8):  4628-4638.

3.      Rosell, M., Palau, J., Mortan, S.H., Caminal, G., Soler, A., Shouakar-Stash, O. and Marco-Urrea, E. (2019). Dual carbon - chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp. Science Total Environment, 648: 422-429.

4.      Häggblom, M.M. and Bossert, I.D. (2004). Halogenated organic compounds - a global perspective dehalogenation microb. process. Environmental Applied, Kluwer Academic Publishers, Boston: pp. 3-29.

5.      Adrian, L. amd Löffler, F.E. (2016). Organohalide-respiring bacteria. Springer Berlin Heidelberg, Berlin, Heidelberg: pp. 3‒6.

6.      Maness, A.D., Bowman, K.S., Yan, J., Rainey, F.A. and Moe, W.M. (2012). Dehalogenimonas spp. can reductively dehalogenate high concentrations of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane. AMB Express, 2(1):  54.

7.      Ritalahti, K.M., Amos, B.K., Sung, Y., Wu, Q., Koenigsberg, S.S. and Loffler, F.E. (2006). Quantitative PCR Targeting 16S rRNA and Reductive Dehalogenase Genes Simultaneously Monitors Multiple Dehalococcoides Strains. Applied and Environmental Microbiology, 72 (4):  2765–2774.

8.      Jugder, B.E., Ertan, H., Bohl, S., Lee, M., Marquis, C.P. and Manefield, M. (2016). Organohalide respiring bacteria and reductive dehalogenases: Key tools in organohalide bioremediation. Frontiers in Microbiology, 7:  1-12.

9.      Lin, W.H., Chien, C.C., Lu, C.W., Hou, D., Sheu, Y.T., Chen, S.C. and Kao C.M. (2021). Growth inhibition of methanogens for the enhancement of TCE dechlorination. Science of the Total Environment, 787(2021): 147648.

10.   Hug, L.A. (2016). Diversity, evolution, and environmental distribution of reductive dehalogenase genes, in: organohalide-respiring bacteria. Springer Berlin Heidelberg, Berlin, Heidelberg: pp. 377-393.

11.   Adrian, L., Szewzyk, U., Wecke, J. and Görisch, H. (2000). Bacterial dehalorespiration with chlorinated benzenes. Nature, 408(6812):  580-583.

12.   Martín-González, L., Mortan, S.H., Rosell, M., Parladé, E., Martínez-Alonso, M., Gaju, N., Caminal, G., Adrian, L. and Marco-Urrea, E. (2015). Stable carbon isotope fractionation during 1,2-dichloropropane-to-propene transformation by an enrichment culture containing Dehalogenimonas strains and a dcpA gene. Environmental Science & Technology, 49(14):  8666-74.

13.   Yuan, J., Li, S., Cheng, J., Guo, C., Shen, C., He, J., Yang, Y.,  Hu, P., Xu, J. and He, Y. (2021). Potential Role of methanogens in microbial reductive dechlorination of organic chlorinated pollutants in situ, Environmental Science & Technology, 55(9): 5917-5928.

14.   Yu, Z. and Smith, G.B. (2000). Inhibition of methanogenesis by C1- and C2-polychlorinated aliphatic hydrocarbons. Environmental Toxicology and Chemistry, 19(9): 2212-2217.

15.   Zhu, M., Feng, X., Qiu, G., Feng, J., Zhang, L., Brookes, P.C., Xu, J. and He, Y. (2019). Synchronous response in methanogenesis and anaerobic degradation of pentachlorophenol in flooded soil. Journal of Hazardous Materials, 374(2019): 258-266.