Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 522 - 529
METHANOGEN
INHIBITOR EFFECT ON ANAEROBIC DEGRADATION OF 1,2-DICHLOROETHANE BY SUNGAI ULAR
SEDIMENT
(Kesan Perencat Metanogen Terhadap Degradasi Anaerobik
1,2-Dikloroetana oleh Sedimen Sungai Ular)
Nur
Intan Shaheera Nuralhuda, Muhammad Haikal Muhaimin Ariza Fattah, Nur Kholis
Zulkifli,
and
Siti Hatijah Mortan*
Faculty of Chemical and Process Engineering Technology,
Universiti Malaysia Pahang Al-Sultan Abdullah,
Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang,
Malaysia
*Corresponding author: hatijah@umpsa.edu.my
Received: 30 October
2023; Accepted: 16 April 2024; Published:
29 June 2024
Abstract
The
toxicity of industrial organohalides such as 1,2-dichloroethane (1,2−DCA)
and their longevity in the environment has piqued the public's interest. Anaerobic
degradation by Organohalide-Respiring Bacteria (OHRB) has emerged as one of the
effective techniques in the removal or degradation of toxic organohalides. Meanwhile,
it is typical for methanogenesis to occur within OHRB-dechlorinating bacteria
microcosms. These methanogens will compete with the OHRB in the cultures for
nutrients and electron donors such as hydrogen, limiting the OHRB's development
and dechlorination activity. Methanogen inhibitors
are used to remove methanogens from enrichment cultures. The objective of this
study is to investigate the effect of methanogen inhibitors on the degradation
rate of 1,2-dichloroethane (1,2-DCA) by Sungai Ular sediments. The
concentration of 2-Bromoethanesulfonate (BES) as a methanogen inhibitor was
varied from 1−25 mM and its effects on the 1,2-DCA degradation were
monitored using gas chromatography (GC). Methane which
is the methanogenesis product, was also monitored to evaluate the effectiveness
of the inhibitor. The results indicated the microcosm treated with 25 mM BES
demonstrated the fastest 1,2-DCA degradation at 0.61 µM/day. The amount of
methane produced showed a decline in all the BES concentrations, with 25 mM BES
demonstrating the lowest methane production at 0.2 ppm. Metagenomic data after
the BES treatment also revealed a decrease in the methanogen’s population from
42% to 0.007% and an increase in OHRBs population 5%
to 69%. This study showed that the addition of a
methanogen inhibitor can significantly increase the degradation rate of the
chlorinated compound by inhibiting the growth of the methanogens.
Keywords: organohalide-respiring
bacteria, methanogen inhibitors, dechlorination,
methanogen, 1,2−dichloroethane
Abstrak
Ketoksikan organohalida industri seperti 1,2-dikloroetana
(1,2−DCA) dan jangka hayatnya dalam alam sekitar telah menarik minat
orang ramai. Degradasi anaerobik oleh bakteria pernafasan organohalida (OHRB)
telah muncul sebagai salah satu teknik yang berkesan dalam penyingkiran atau
degradasi organohalida toksik. Sementara itu, adalah tipikal untuk
metanogenesis berlaku dalam mikrokosmos bakteria penyahklorinan OHRB. Metanogen ini akan bersaing dengan OHRB
dalam kultur untuk nutrien dan penderma elektron seperti hidrogen, mengehadkan
aktiviti pembangunan dan penyahklorinan OHRB. Perencat metanogen digunakan
untuk mengeluarkan metanogen daripada kultur pengayaan. Objektif kajian ini
adalah untuk menyiasat kesan perencat metanogen terhadap kadar degradasi 1,2-dikloroetana
(1,2-DCA) oleh sedimen Sungai Ular. Kepekatan 2-Bromoetanasulfonat (BES)
sebagai perencat metanogen telah diubah daripada 1−25 mM dan kesannya
terhadap degradasi 1,2-DCA dipantau menggunakan kromatografi gas (GC). Metana
yang merupakan produk metanogenesis, juga dipantau untuk menilai keberkesanan
perencat. Keputusan menunjukkan mikrokosmos yang dirawat dengan 25 mM BES
menunjukkan degradasi 1,2-DCA terpantas pada 0.61 µM/hari. Jumlah metana yang
dihasilkan menunjukkan penurunan dalam semua kepekatan BES, dengan 25 mM BES
menunjukkan pengeluaran metana terendah pada 0.2 ppm. Data metagenomik selepas
rawatan BES juga mendedahkan penurunan populasi metanogen daripada 42% kepada
25% dan peningkatan populasi OHRB 5% hingga 30%. Kajian ini menunjukkan bahawa
penambahan perencat metanogen boleh meningkatkan kadar degradasi sebatian
berklorin dengan ketara dengan menghalang pertumbuhan metanogen.
Kata kunci: bakteria penafas organohalida, perencat metanogen, penyahklorinan,
metanogen, 1,2−dikloroetan
References
1. Renpenning, J. and Nijenhuis, I. (2016). Evaluation of the
microbial reductive dehalogenation reaction using compound-specific stable
isotope analysis (CSIA). Springer Berlin Heidelberg, Berlin, Heidelberg: pp.
429-453.
2. Maillard, J., Schumacher, W., Vazquez, F., Regeard, C.,
Hagen, W.R. and Holliger, C. (2003). Characterization of the corrinoid
iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter
restrictus. Applied Environmental Microbiology, 69(8): 4628-4638.
3. Rosell, M., Palau, J., Mortan, S.H., Caminal, G., Soler, A., Shouakar-Stash,
O. and Marco-Urrea, E. (2019). Dual carbon - chlorine isotope fractionation
during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture
containing Dehalogenimonas sp. Science Total Environment, 648: 422-429.
4. Häggblom, M.M. and Bossert, I.D. (2004). Halogenated organic
compounds - a global perspective dehalogenation microb. process. Environmental
Applied, Kluwer Academic Publishers, Boston: pp. 3-29.
5. Adrian, L. amd Löffler, F.E. (2016). Organohalide-respiring bacteria. Springer Berlin Heidelberg,
Berlin, Heidelberg: pp. 3‒6.
6. Maness, A.D., Bowman, K.S., Yan, J., Rainey, F.A. and Moe,
W.M. (2012). Dehalogenimonas spp. can reductively dehalogenate high
concentrations of 1,2-dichloroethane, 1,2-dichloropropane, and
1,1,2-trichloroethane. AMB Express, 2(1): 54.
7. Ritalahti, K.M., Amos, B.K., Sung, Y., Wu, Q., Koenigsberg,
S.S. and Loffler, F.E. (2006). Quantitative PCR Targeting 16S rRNA and
Reductive Dehalogenase Genes Simultaneously Monitors Multiple Dehalococcoides
Strains. Applied and Environmental Microbiology, 72 (4): 2765–2774.
8. Jugder, B.E., Ertan, H., Bohl, S., Lee, M., Marquis, C.P. and
Manefield, M. (2016). Organohalide respiring bacteria and reductive
dehalogenases: Key tools in organohalide bioremediation. Frontiers in
Microbiology, 7: 1-12.
9. Lin, W.H., Chien, C.C., Lu, C.W., Hou, D., Sheu, Y.T., Chen,
S.C. and Kao C.M. (2021). Growth inhibition of methanogens for the enhancement
of TCE dechlorination. Science of the Total Environment, 787(2021): 147648.
10. Hug, L.A. (2016). Diversity, evolution, and environmental
distribution of reductive dehalogenase genes, in: organohalide-respiring
bacteria. Springer Berlin Heidelberg, Berlin, Heidelberg: pp. 377-393.
11. Adrian, L., Szewzyk, U., Wecke, J. and Görisch, H. (2000). Bacterial
dehalorespiration with chlorinated benzenes. Nature, 408(6812): 580-583.
12. Martín-González, L., Mortan, S.H.,
Rosell, M., Parladé, E., Martínez-Alonso, M., Gaju, N., Caminal, G., Adrian, L.
and Marco-Urrea, E. (2015). Stable
carbon isotope fractionation during 1,2-dichloropropane-to-propene
transformation by an enrichment culture containing Dehalogenimonas strains
and a dcpA gene. Environmental Science & Technology, 49(14): 8666-74.
13. Yuan, J., Li, S., Cheng, J., Guo, C., Shen, C., He, J., Yang,
Y., Hu, P., Xu, J. and He, Y. (2021). Potential
Role of methanogens in microbial reductive dechlorination of organic
chlorinated pollutants in situ, Environmental Science &
Technology, 55(9): 5917-5928.
14. Yu, Z. and Smith, G.B. (2000). Inhibition of methanogenesis
by C1- and C2-polychlorinated aliphatic hydrocarbons. Environmental
Toxicology and Chemistry, 19(9): 2212-2217.
15. Zhu, M., Feng, X., Qiu, G., Feng, J., Zhang, L., Brookes,
P.C., Xu, J. and He, Y. (2019). Synchronous response in methanogenesis and
anaerobic degradation of pentachlorophenol in flooded soil. Journal of Hazardous
Materials, 374(2019): 258-266.