Malaysian Journal of Analytical
Sciences, Vol 28
No 3 (2024): 512 -
521
SYNTHESIS AND
CHARACTERISATION OF REUSABLE PVA-SODIUM ALGINATE-Ni CATALYST IN HECK REACTION
(Sintesis dan Pencirian Pemangkin yang Boleh Digunakan Semula
dalam Tindak Balas Heck)
Norul Azilah
Abdul Rahman1,2, Nurul Afiqah Mohd Haris1, Karimah Kassim3,
Mazni Musa1,
and Nur
Rahimah Said1*
1School of Chemistry and Environment,
Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah,
72000 Kuala
Pilah, Negeri Sembilan, Malaysia
2School of Chemistry and Environment,
Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam,
Selangor, Malaysia
3Institute of
Science (IOS), Level 3, Block C, Kompleks Inspirasi, Universiti Teknologi MARA
(UiTM), 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: nurra1435@uitm.edu.my
Received: 15 September 2023;
Accepted: 18 April 2024; Published: 29 June
2024
Abstract
Heck reaction is a
carbon-carbon coupling reaction that essential for the development of natural
products, agrochemicals, optical devices and drugs. During the synthesised of
chemicals, the presence of catalysts is important. Normally, the reaction is
carried out with the presence of palladium metal as catalyst. However, it has
disadvantages such as high toxicity and considerably expensive. Compared to
palladium, nickel represent a low cost and environmental friendly type metal.
Therefore, nickel is effective to replace the palladium in their application as
catalyst in Heck reaction. This study produced a Polyvinyl alcohol-sodium
alginate-Nickel (PVA-SA-Ni) catalyst by using one pot synthesis method in the
ultrasound irradiation system. The benefits in producing a catalyst not only is
cost effective but also its reusability properties due to the presence of PVA-SA
as a support. The PVA-SA-Ni was successfully synthesised and characterised by
using FTIR, XRD, FESEM-EDX and AAS. The catalytic performance and reusability
of PVA-SA-Ni was investigated in Heck reaction between 1-bromo-4-nitrobenzene
and styrene. The percentage conversion rate of reactant to product was
determined by using GC-FID. The PVA-SA-Ni showed the best performance in Heck
reaction with 74 % conversion by using 1 mmol % in the presence of K2CO3
as a base at a temperature of 165 °C, and DMA as solvent within 4 h of reaction
time.
Keywords: polyvinyl alcohol, sodium alginate, nickel(II)
catalyst, Heck reaction, reusable catalyst
Abstrak
Tindak balas
heck ialah tindak balas gandingan karbon-karbon adalah penting untuk
pembangunan produk semula jadi, agrokimia, peranti optik dan ubat-ubatan.
Semasa bahan kimia disintesis, kehadiran pemangkin adalah penting. Biasanya,
tindak balas dilakukan dengan kehadiran logam paladium sebagai mangkin. Walau
bagaimanapun, ia mempunyai kelemahan seperti kadar toksik tinggi dan harga yang
agak mahal. Berbanding dengan paladium, nikel dilihat sebagai jenis logam kos
rendah dan mesra alam. Oleh itu, nikel berkesan untuk menggantikan paladium
dalam penggunaannya sebagai pemangkin dalam tindak balas Heck. Kajian ini
menghasilkan mangkin Polivinil Alkohol-natrium alginat-Nikel (PVA-SA-Ni)
menggunakan kaedah sintesis satu pot dalam sistem penyinaran ultrabunyi. Terdapat
banyak faedah dalam menghasilkan pemangkin ini bukan sahaja efektif dari segi
kos tetapi dilengkapi dengan sifat kebolehgunaan semula kerana kehadiran PVA
sebagai sokongan. PVA-SA-Ni yang telah berjaya disintesis dicirikan menggunakan
FTIR, XRD, FESEM-EDX dan AAS. Prestasi pemangkin dan kebolehgunaan semula
PVA-SA-Ni telah disiasat dalam tindak balas Heck antara 1-bromo-4-nitrobenzene
dengan stirena. Kadar penukaran peratus bahan tindak balas kepada produk
ditentukan dengan menggunakan GC-FID. PVA-SA-Ni menunjukkan prestasi yang baik
dalam tindak balas Heck dengan penukaran 74 % dengan menggunakan 1 mmol %
pemangkin, kehadiran K2CO3 sebagai bes pada suhu 165 °C,
dan DMA sebagai pelarut dalam masa 4 jam tindak balas.
Kata kunci: polivinil alkohol, natrium alginat, pemangkin nikel(II);
tindak balas Heck, pemangkin yang boleh digunakan semula
References
1.
Hajipour, A.
R., Khorsandi, Z., and Abeshtian, Z. (2019). Pd/Cu-free Heck and Sonogashira
reactions using cobalt immobilized on in situ magnetic cross-linked chitosan
fibers: A highly efficient and reusable catalyst. Inorganic Chemistry
Communications, 107:107470.
2.
Ghadiri, A. M., Farhang, M.,
Hassani, P., Salek, A., Ramezani, A. T., and Akbarzadeh, A. R. (2022). Recent
advancements review Suzuki and Heck reactions catalyzed by metalloporphyrins. Inorganic
Chemistry Communications, 149: 110359.
3.
Daryanavard, M., Ataei, A.,
Rafiee, E., and Joshaghani, M. (2020). Ni (acac) 2/2, 6-bis (diphenylphosphino)
pyridine/CuI: A highly efficient palladium-free homogeneous catalyst for the
Sonogashira cross-coupling reaction. Inorganic Chemistry Communications, 122:
108274.
4.
Bhakta, S., and Ghosh, T. (2021).
Nickel nanocatalysis: An efficient tool for Heck reaction. ChemCatChem, 13(3):
828-835.
5.
Hajipour, A. R., and Abolfathi, P.
(2018). Chitosan‐supported
Ni particles: an efficient nanocatalyst for direct amination of phenols. Applied
Organometallic Chemistry, 32(4): e4273.
6.
Lakhdari, D., Lakhdari, N.,
Laourari, I., Berchi, A., Park, Y., Vasseghian, Y., and Berkani, M. (2023). Bimetallic
composite catalyst based on NiCu alloy supported on PVA/PANI film polymer for
electrodegradation of methanol. Journal of Industrial and Engineering
Chemistry, 124: 422-430.
7.
Qiao, X., Niu, L., Zhang, H., Wen,
X., Cao, Y., and Bai, G. (2017). Controllable fabrication of a novel porous
Ni-alginate hybrid material for hydrogenation. Applied Catalysis B:
Environmental, 218: 721-730.
8.
Tang, S., Li, L., Cao, X., and
Yang, Q. (2023). Ni-chitosan/carbon nanotube: An efficient
biopolymer-inorganic catalyst for selective hydrogenation of acetylene. Heliyon, 9(2), e13523.
9.
Soliman, T.
S., Hessien, M. M., & Elkalashy, S. I. (2022). Structural,
thermal, and optical properties of polyvinyl alcohol films doped with La2ZnOx
nanoparticles. Journal of Non-Crystalline Solids, 580: 121405.
10.
Xu, M., Zhao, J., Luo, C., Liu,
Q., Zeng, M., Qi, C., Xia, R., Cao, X., and Wang, B. (2019). Catalysis
mechanism of Pd (II)@ PVA membrane catalyst studied from the aspect of
molecular level micro-defects by positron annihilation spectroscopy. Radiation
Physics and Chemistry, 156: 128-136.
11.
Medjili, C., Lakhdari, N.,
Lakhdari, D., Berchi, A., Osmani, N., Laourari, I., Vasseghian,Y., and Berkani,
M. (2023). Synthesis of novel PANI/PVA-NiCu composite material for efficient
removal of organic dyes. Chemosphere, 313: 137427.
12.
Sami, N. M., Elsayed, A. A., Ali,
M. M. S., and Metwally, S. S. (2022). Ni-alginate hydrogel beads for
establishing breakthrough curves of lead ions removal from aqueous solutions. Environmental
Science and Pollution Research, 29(53): 80716-80726.
13.
Rahman, N. A. A., Musa, M.,
Kassim, K., and Said, N. R. (2023). A review of the synthesis and modification
of PVA-alginate as binder of metal atom. Malaysian Journal of Analytical
Sciences, 27(2): 314-328.
14.
Knijnenburg, J. T., Kasemsiri, P.,
Amornrantanaworn, K., Suwanree, S., Iamamornphan, W., Chindaprasirt, P., and
Jetsrisuparb, K. (2021). Entrapment of nano-ZnO into alginate/polyvinyl alcohol
beads with different crosslinking ions for fertilizer applications. International
Journal of Biological Macromolecules, 181: 349-356.
15.
Rahman, N. A. A., Shamsuddin, N.
A. M., Musa, M., Alias, Y., Sharif, I., Mohamed, A. H., Kassim, K., and Said,
N. R. (2023). One pot preparation of PVA-sodium alginate-PdCl2 with
excellent recyclability properties as a catalyst for Heck cross-coupling
reactions. Inorganic Chemistry Communications, 155: 111035.
16.
Isawi, H. (2020). Using
zeolite/polyvinyl alcohol/sodium alginate nanocomposite beads for removal of
some heavy metals from wastewater. Arabian Journal of Chemistry, 13(6):
5691-5716.
17.
Du, Z., Liu,
F., Xiao, C., Dan, Y., andJiang, L. (2021). Fabrication
of poly (vinyl alcohol)/sodium alginate hydrogel beads and its application in
photo-Fenton degradation of tetracycline. Journal of Materials Science, 56:
913-926.
18.
Lee, S. J., Lim, H. W., and Park,
S. H. (2021). Adsorptive seawater desalination using MOF-incorporated
Cu-alginate/PVA beads: Ion removal efficiency and durability. Chemosphere, 268: 128797.
19.
Bai, Z.,
Zhang, H., Zhu, H., Jiang, J., Zhang, D., Yu, Y., and Quan, F. (2023). PVA/sodium
alginate multi-network aerogel fibers, incorporated with PEG and ZnO, exhibit
enhanced temperature regulation, antibacterial, thermal conductivity, and
thermal stability. Carbohydrate
Polymers, 317: 121037.
20.
Zhou, W.,
Xin, H., Yang, H., Du, X., Yang, R., Li, D., and Hu, C. (2018). The
deoxygenation pathways of palmitic acid into hydrocarbons on silica-supported
Ni12P5 and Ni2P catalysts. Catalysts, 8(4):153.
21.
Soh, S. K. C., Jusoh, S. A.,
Yusof, M. S. M., Khairul, W. M., and Shamsuddin, M. (2018). The effect of
bases, catalyst loading and reaction temperature on the catalytic evaluation of
supported palladium(II) catalyst in the Mizoroki-Heck. International Journal
of Engineering and Technology, 7: 467-469.
22.
Argyle, M. D., and Bartholomew, C.
H. (2015). Heterogeneous catalyst deactivation and regeneration: a
review. Catalysts, 5(1): 145-269.
23.
Shamsuddin, N. A. M., Rahman, N.
A. A., Chandrasekaram, K., Alias, Y., and Said, N. R. (2021). Catalytic
activity study of synthesised polystyrene-supported palladium (II)-hydrazone
(CH3) as catalyst in Heck reaction. Malaysian Journal of
Analytical Sciences, 25(6): 987-997.
24. Shamsuddin,
N. A. M., Badri, N. N. H. S., Rahman, N. A. A., and Said, N. R. (2021).
Examining the effect of base, solvent and temperature in heck reaction with the
presence of palladium (II)-hydrazone complexes. In AIP Conference
Proceedings, 2332(1): 070002.