Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 512 - 521

 

SYNTHESIS AND CHARACTERISATION OF REUSABLE PVA-SODIUM ALGINATE-Ni CATALYST IN HECK REACTION

 

(Sintesis dan Pencirian Pemangkin yang Boleh Digunakan Semula dalam Tindak Balas Heck)

 

Norul Azilah Abdul Rahman1,2, Nurul Afiqah Mohd Haris1, Karimah Kassim3, Mazni Musa1,

and Nur Rahimah Said1*

 

1School of Chemistry and Environment, Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah,

72000 Kuala Pilah, Negeri Sembilan, Malaysia

2School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

3Institute of Science (IOS), Level 3, Block C, Kompleks Inspirasi, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: nurra1435@uitm.edu.my

 

 

Received: 15 September 2023; Accepted: 18 April 2024; Published:  29 June 2024

 

 

Abstract

Heck reaction is a carbon-carbon coupling reaction that essential for the development of natural products, agrochemicals, optical devices and drugs. During the synthesised of chemicals, the presence of catalysts is important. Normally, the reaction is carried out with the presence of palladium metal as catalyst. However, it has disadvantages such as high toxicity and considerably expensive. Compared to palladium, nickel represent a low cost and environmental friendly type metal. Therefore, nickel is effective to replace the palladium in their application as catalyst in Heck reaction. This study produced a Polyvinyl alcohol-sodium alginate-Nickel (PVA-SA-Ni) catalyst by using one pot synthesis method in the ultrasound irradiation system. The benefits in producing a catalyst not only is cost effective but also its reusability properties due to the presence of PVA-SA as a support. The PVA-SA-Ni was successfully synthesised and characterised by using FTIR, XRD, FESEM-EDX and AAS. The catalytic performance and reusability of PVA-SA-Ni was investigated in Heck reaction between 1-bromo-4-nitrobenzene and styrene. The percentage conversion rate of reactant to product was determined by using GC-FID. The PVA-SA-Ni showed the best performance in Heck reaction with 74 % conversion by using 1 mmol % in the presence of K2CO3 as a base at a temperature of 165 °C, and DMA as solvent within 4 h of reaction time.

 

Keywords: polyvinyl alcohol, sodium alginate, nickel(II) catalyst, Heck reaction, reusable catalyst

 

Abstrak

Tindak balas heck ialah tindak balas gandingan karbon-karbon adalah penting untuk pembangunan produk semula jadi, agrokimia, peranti optik dan ubat-ubatan. Semasa bahan kimia disintesis, kehadiran pemangkin adalah penting. Biasanya, tindak balas dilakukan dengan kehadiran logam paladium sebagai mangkin. Walau bagaimanapun, ia mempunyai kelemahan seperti kadar toksik tinggi dan harga yang agak mahal. Berbanding dengan paladium, nikel dilihat sebagai jenis logam kos rendah dan mesra alam. Oleh itu, nikel berkesan untuk menggantikan paladium dalam penggunaannya sebagai pemangkin dalam tindak balas Heck. Kajian ini menghasilkan mangkin Polivinil Alkohol-natrium alginat-Nikel (PVA-SA-Ni) menggunakan kaedah sintesis satu pot dalam sistem penyinaran ultrabunyi. Terdapat banyak faedah dalam menghasilkan pemangkin ini bukan sahaja efektif dari segi kos tetapi dilengkapi dengan sifat kebolehgunaan semula kerana kehadiran PVA sebagai sokongan. PVA-SA-Ni yang telah berjaya disintesis dicirikan menggunakan FTIR, XRD, FESEM-EDX dan AAS. Prestasi pemangkin dan kebolehgunaan semula PVA-SA-Ni telah disiasat dalam tindak balas Heck antara 1-bromo-4-nitrobenzene dengan stirena. Kadar penukaran peratus bahan tindak balas kepada produk ditentukan dengan menggunakan GC-FID. PVA-SA-Ni menunjukkan prestasi yang baik dalam tindak balas Heck dengan penukaran 74 % dengan menggunakan 1 mmol % pemangkin, kehadiran K2CO3 sebagai bes pada suhu 165 °C, dan DMA sebagai pelarut dalam masa 4 jam tindak balas.

 

Kata kunci: polivinil alkohol, natrium alginat, pemangkin nikel(II); tindak balas Heck, pemangkin yang boleh digunakan semula

 


 

References

1.      Hajipour, A. R., Khorsandi, Z., and Abeshtian, Z. (2019). Pd/Cu-free Heck and Sonogashira reactions using cobalt immobilized on in situ magnetic cross-linked chitosan fibers: A highly efficient and reusable catalyst. Inorganic Chemistry Communications, 107:107470.

2.      Ghadiri, A. M., Farhang, M., Hassani, P., Salek, A., Ramezani, A. T., and Akbarzadeh, A. R. (2022). Recent advancements review Suzuki and Heck reactions catalyzed by metalloporphyrins. Inorganic Chemistry Communications, 149: 110359.

3.      Daryanavard, M., Ataei, A., Rafiee, E., and Joshaghani, M. (2020). Ni (acac) 2/2, 6-bis (diphenylphosphino) pyridine/CuI: A highly efficient palladium-free homogeneous catalyst for the Sonogashira cross-coupling reaction. Inorganic Chemistry Communications, 122: 108274.

4.      Bhakta, S., and Ghosh, T. (2021). Nickel nanocatalysis: An efficient tool for Heck reaction. ChemCatChem, 13(3): 828-835.

5.      Hajipour, A. R., and Abolfathi, P. (2018). Chitosansupported Ni particles: an efficient nanocatalyst for direct amination of phenols. Applied Organometallic Chemistry, 32(4): e4273.

6.      Lakhdari, D., Lakhdari, N., Laourari, I., Berchi, A., Park, Y., Vasseghian, Y., and Berkani, M. (2023). Bimetallic composite catalyst based on NiCu alloy supported on PVA/PANI film polymer for electrodegradation of methanol. Journal of Industrial and Engineering Chemistry, 124: 422-430.

7.      Qiao, X., Niu, L., Zhang, H., Wen, X., Cao, Y., and Bai, G. (2017). Controllable fabrication of a novel porous Ni-alginate hybrid material for hydrogenation. Applied Catalysis B: Environmental, 218: 721-730.

8.      Tang, S., Li, L., Cao, X., and Yang, Q. (2023). Ni-chitosan/carbon nanotube: An efficient biopolymer-inorganic catalyst for selective hydrogenation of acetylene. Heliyon, 9(2), e13523.

9.      Soliman, T. S., Hessien, M. M., & Elkalashy, S. I. (2022). Structural, thermal, and optical properties of polyvinyl alcohol films doped with La2ZnOx nanoparticles. Journal of Non-Crystalline Solids, 580: 121405.

10.   Xu, M., Zhao, J., Luo, C., Liu, Q., Zeng, M., Qi, C., Xia, R., Cao, X., and Wang, B. (2019). Catalysis mechanism of Pd (II)@ PVA membrane catalyst studied from the aspect of molecular level micro-defects by positron annihilation spectroscopy. Radiation Physics and Chemistry, 156: 128-136.

11.   Medjili, C., Lakhdari, N., Lakhdari, D., Berchi, A., Osmani, N., Laourari, I., Vasseghian,Y., and Berkani, M. (2023). Synthesis of novel PANI/PVA-NiCu composite material for efficient removal of organic dyes. Chemosphere, 313: 137427.

12.   Sami, N. M., Elsayed, A. A., Ali, M. M. S., and Metwally, S. S. (2022). Ni-alginate hydrogel beads for establishing breakthrough curves of lead ions removal from aqueous solutions. Environmental Science and Pollution Research, 29(53): 80716-80726.

13.   Rahman, N. A. A., Musa, M., Kassim, K., and Said, N. R. (2023). A review of the synthesis and modification of PVA-alginate as binder of metal atom. Malaysian Journal of Analytical Sciences, 27(2): 314-328.

14.   Knijnenburg, J. T., Kasemsiri, P., Amornrantanaworn, K., Suwanree, S., Iamamornphan, W., Chindaprasirt, P., and Jetsrisuparb, K. (2021). Entrapment of nano-ZnO into alginate/polyvinyl alcohol beads with different crosslinking ions for fertilizer applications. International Journal of Biological Macromolecules, 181: 349-356.

15.   Rahman, N. A. A., Shamsuddin, N. A. M., Musa, M., Alias, Y., Sharif, I., Mohamed, A. H., Kassim, K., and Said, N. R. (2023). One pot preparation of PVA-sodium alginate-PdCl2 with excellent recyclability properties as a catalyst for Heck cross-coupling reactions. Inorganic Chemistry Communications, 155: 111035.

16.   Isawi, H. (2020). Using zeolite/polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. Arabian Journal of Chemistry, 13(6): 5691-5716.

17.   Du, Z., Liu, F., Xiao, C., Dan, Y., andJiang, L. (2021). Fabrication of poly (vinyl alcohol)/sodium alginate hydrogel beads and its application in photo-Fenton degradation of tetracycline. Journal of Materials Science, 56: 913-926.

18.   Lee, S. J., Lim, H. W., and Park, S. H. (2021). Adsorptive seawater desalination using MOF-incorporated Cu-alginate/PVA beads: Ion removal efficiency and durability. Chemosphere, 268: 128797.

19.   Bai, Z., Zhang, H., Zhu, H., Jiang, J., Zhang, D., Yu, Y., and Quan, F. (2023). PVA/sodium alginate multi-network aerogel fibers, incorporated with PEG and ZnO, exhibit enhanced temperature regulation, antibacterial, thermal conductivity, and thermal stability. Carbohydrate Polymers, 317: 121037.

20.   Zhou, W., Xin, H., Yang, H., Du, X., Yang, R., Li, D., and Hu, C. (2018). The deoxygenation pathways of palmitic acid into hydrocarbons on silica-supported Ni12P5 and Ni2P catalysts. Catalysts, 8(4):153.

21.   Soh, S. K. C., Jusoh, S. A., Yusof, M. S. M., Khairul, W. M., and Shamsuddin, M. (2018). The effect of bases, catalyst loading and reaction temperature on the catalytic evaluation of supported palladium(II) catalyst in the Mizoroki-Heck. International Journal of Engineering and Technology, 7: 467-469.

22.   Argyle, M. D., and Bartholomew, C. H. (2015). Heterogeneous catalyst deactivation and regeneration: a review. Catalysts, 5(1): 145-269.

23.   Shamsuddin, N. A. M., Rahman, N. A. A., Chandrasekaram, K., Alias, Y., and Said, N. R. (2021). Catalytic activity study of synthesised polystyrene-supported palladium (II)-hydrazone (CH3) as catalyst in Heck reaction. Malaysian Journal of Analytical Sciences, 25(6): 987-997.

24.   Shamsuddin, N. A. M., Badri, N. N. H. S., Rahman, N. A. A., and Said, N. R. (2021). Examining the effect of base, solvent and temperature in heck reaction with the presence of palladium (II)-hydrazone complexes. In AIP Conference Proceedings, 2332(1): 070002.