Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 489 - 499

 

SYNTHESIS AND MODELLING OF FUNCTIONALIZED UiO-66 METAL-ORGANIC FRAMEWORKS FOR GAS ADSORPTION

 

(Sintesis dan Pemodelan Rangkaian Organik-Logam UiO-66 Terfungsi bagi Penjerapan Gas)

 

Tuan Nurul Azura Tuan Kob@Yaakub1,2, Mohd Basyaruddin Abdul Rahman1,2, Felipe Gándara4,

and Muhammad Alif Mohammad Latif1,2,3*

 

1Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

4Department of New Architectures in Materials Chemistry, Materials Science Institute of Madrid – CSIC, Sor Juana Inés de la Cruz 3, Madrid, Spain

 

*Corresponding author: aliflatif@upm.edu.my

 

 

Received: 15 September 2023; Accepted: 25 April 2024; Published:  29 June 2024

 

 

Abstract

In this article, we present our experimental and computational findings on the adsorption of ethylene gas within variations of UiO-66 metal-organic frameworks (MOFs). UiO-66 MOF was functionalized with 2-vinylbenzoic acid (2VBA), 3-vinylbenzoic acid (3VBA), and 4-vinylbenzoic acid (4VBA) and characterized using powder X-ray diffraction techniques, FT-IR analysis and 1H NMR. Based on structural analysis, the functionalized UiO-66 MOFs were found to possess the same structural stability as the 3D porous crystalline lattices of UiO-66, with hexanuclear zirconium oxyhydroxide clusters (Zr6O4(OH)4(RCO2)12. Grand Canonical Monte Carlo simulation showed that the average loading of ethylene gas in UiO-66 and functionalized UiO-66 were relatively close. The adsorption was further investigated using radial distribution function analysis and it was found that the most favorable interactions were between the adsorbate and the carbon atom of the MOFs.  These interactions were crucial for ethylene stabilization inside UiO-66 pore channels. The results presented here supported the viability of ethylene adsorption in UiO-66's modified terephthalate linker by demonstrating that functionalized UiO-66 not only retain structural integrity, but also have comparable ethylene adsorption at different pressures with stronger interactions with ethylene gas.

.

Keywords: metal organic framework, gas adsorption, UiO-66, Grand Canonical Monte Carlo

 

Abstrak

Dalam artikel ini, kami melaporkan kerja eksperimen dan hasil pengiraan untuk penjerapan gas etilena dalam rangkaian logam organik (MOF) UiO-66. UiO-66 MOF difungsikan dengan asid 2-vinilbenzoik (2VBA), asid 3-vinilbenzoik (3VBA), dan asid 4-vinilbenzoik (4VBA) serta dicirikan menggunakan teknik pembelauan sinar-X serbuk, analisis FT-IR dan 1H NMR. Berdasarkan analisis struktur, UiO-66 MOF yang difungsikan didapati mempunyai kestabilan struktur yang sama seperti kekisi kristal berliang 3D UiO-66, dengan gugusan zirkonium oksihidroksida heksanuklear (Zr6O4(OH)4(RCO2)12. Grand Canonical Monte Carlo simulasi menunjukkan purata pemuatan gas etilena dalam UiO-66 dan UiO-66 yang difungsikan adalah agak hampir hasilnya. Penjerapan disiasat lebih lanjut menggunakan analisis fungsi taburan jejari dan didapati bahawa interaksi yang paling baik adalah antara penjerap dan atom karbon MOFs. Interaksi ini adalah penting untuk penstabilan etilena di dalam saluran liang UiO-66. Keputusan yang dibentangkan di sini menyokong daya maju penjerapan etilena dalam penyambung tereftalat yang diubah suai UiO-66 dengan menunjukkan bahawa UiO-66 yang difungsikan bukan sahaja dapat mengekalkan integriti struktur, tetapi juga mempunyai penjerapan etilena yang setanding pada tekanan yang berbeza dengan interaksi yang lebih kuat dengan gas etilena.

 

Kata kunci: rangkaian logam organik, penjerapan gas, UiO-66, Grand Canonical Monte Carlo

 


 

References

1.      Che Omar, S., Shaharudin, A., and Tumin, S.A. (2019). The status of the paddy and rice industry in Malaysia. In Khazanah Research Institute.

2.      Saltveit, M.E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15: 279-292.

3.      Sehaqui, H., Zhou, Q., and Berglund, L.A. (2011). High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Composites Science and Technology, 71: 1593-1599.

4.      Golipour, H., Mokhtarani, B., Mafi, M., Moradi, A.V., and Godini, H.R. (2020). Experimental measurement for adsorption of ethylene and ethane gases on copper-exchanged zeolites 13X and 5A. Journal of Chemical & Engineering Data, 65: 3920-3932.

5.      Cao, Z., Anjikar, N.D., and Yang, S. (2022). Small-pore zeolite membranes: A review of gas separation applications and membrane preparation. Separations, 9: 47.

6.      Li, B., Wen, H.M., Zhou, W., and Chen, B. (2014). Porous metal-organic frameworks for gas storage and separation: what, how, and why? The journal of physical chemistry letters, 20: 3468-3479.

7.      Zhang, B., Luo, Y., Kanyuck, K.M., Bauchan, G.R., Mowery, J.D., and Zavalij, P.Y. (2016). Development of metal-organic framework for gaseous plant hormone encapsulation to manage ripening of climacteric produce. Journal of Agricultural and Food Chemistry, 23: 5164-5170.

8.      Grissom, T.G., Driscoll, D.M., Troya, D., Sapienza, N.S., Usov, P.M., Morris, A.J., and Morris, J.R. (2019). Molecular-level insight into CO2 adsorption on the zirconium-based metal–organic framework, UiO-66: A combined spectroscopic and computational approach. The Journal of Physical Chemistry C, 22: 13731-13738.

9.      Ethiraj, J., Albanese, E., Civalleri, B., Vitillo, J.G., Bonino, F., Chavan, S.M., Shearer, G.C., Lillerud, K.P., and Bordiga, S. (2014). Carbon dioxide adsorption in amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology. ChemSusChem, 12: 3382-3388.

10.   Le, V.N., Vo, T.K., Yoo, K.S., and Kim, J. (2021). Enhanced CO2 adsorption performance on amino-defective UiO-66 with 4-amino benzoic acid as the defective linker Separation and Purification Technology, 274: 119079.

11.   Zhao, W., Zhang, C., Yan, Z., Zhou, Y., Li, J., Xie, Y., Bai, L., Jiang, L., and Li F. (2017). Preparation, characterization, and performance evaluation of UiO-66 analogues as stationary phase in HPLC for the separation of substituted benzenes and polycyclic aromatic hydrocarbons. PLoS One.

12.   Trousselet, F., Archereau, A.Y., Boutin, A., and Coudert, F. (2016). Heterometallic metal–organic frameworks of MOF-5 and UiO-66 families: Insight from computational chemistry. Journal of Physical Chemistry C, 120: 24885-24894.

13.   Dassault Systèmes BIOVIA, B. W. Release 2017; BIOVIA Pipeline Pilot, Release 2017; Dassault Systèmes, San Diego, CA.

14.   Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., and Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal American Chemical Society, 114: 10024,

15.   Wilmer, C. E., Kim, K. C., and Snurr, R. Q. (2012). an extended charge equilibration method. Journal of Physical Chemistry, 3: 2506-2511.

16.   Dubbeldam, D., Calero, S., Ellis, D.E., and Snurr, R.Q. (2016). RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Journal of Molecular Simulation, 42: 81-101.

17.   Savage, M., Yang, S., Suyetin, M., Bichoutskaia, E., Lewis, W., Blake, A.J., Barnett, S.A., and Schröder, M. A. (2014).  Novel bismuth-based metal–organic framework for high volumetric methane and carbon dioxide adsorption. Journal of Chemical European, 20: 8024-8029.

18.   Xia, X., Hu, G., Li, W., and Li, S. (2019). Understanding reduced CO2 uptake of ionic liquid/metal organic framework (IL/MOF) composites. Journal of Applied Nano Material, 2: 6022-6029.

19.   Anderson, R., Schweitzer, B., Wu, T., Carreon, M.A., and Gómez-Gualdrón, D.A. (2018). Molecular simulation insights on Xe/Kr separation in a set of nanoporous crystalline membranes. Journal of Applied Material Interfaces, 10: 582-592.

20.   Avci, G., Velioglu, S., and Keskin, S. (2018). High-throughput screening of MOF adsorbents and membranes for H2 purification and CO2 capture. Journal of Applied Material Interfaces, 10: 33693-33706.

21.   Rahmawati, I., Ediati, R., and Prasetyoko, D. (2014). Synthesis of UiO-66 using solvothermal method at high temperature. Journal of Proceedings Series, 1: 2354-6026.

22.   Vakili, R., Xu, S., Al-Janabi, N., Gorgojo, P., Holmes, S.M., and Fan, X. (2018). Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption. Microporous and Mesoporous Materials. 260: 45-53.

23.   The Ky, V., Le, V. N. N., Van, S., Mugeun, K., Daekeun, Y., Kye, S., Park, B., and Kim, J. (2020). Microwave-assisted continuous-flow synthesis of mixed-ligand UiO-66(Zr) frameworks and their application to toluene adsorption. Journal of Industrial and Engineering Chemistry. 86: 178-185.