Malaysian Journal of Analytical
Sciences, Vol 28
No 3 (2024): 489 -
499
SYNTHESIS AND MODELLING OF FUNCTIONALIZED UiO-66 METAL-ORGANIC
FRAMEWORKS FOR GAS ADSORPTION
(Sintesis dan Pemodelan Rangkaian Organik-Logam UiO-66
Terfungsi bagi Penjerapan Gas)
Tuan Nurul Azura Tuan Kob@Yaakub1,2,
Mohd Basyaruddin Abdul Rahman1,2, Felipe Gándara4,
and Muhammad Alif Mohammad Latif1,2,3*
1Integrated Chemical BioPhysics Research, Faculty of Science,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Department of Chemistry, Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Centre of Foundation Studies for Agricultural Science,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Department of New Architectures in Materials Chemistry,
Materials Science Institute of Madrid – CSIC, Sor Juana Inés de la Cruz 3,
Madrid, Spain
*Corresponding author: aliflatif@upm.edu.my
Received: 15 September 2023;
Accepted: 25 April 2024; Published: 29 June
2024
Abstract
In
this article, we present our experimental and computational findings on the
adsorption of ethylene gas within variations of UiO-66 metal-organic frameworks
(MOFs). UiO-66 MOF was functionalized with 2-vinylbenzoic acid (2VBA),
3-vinylbenzoic acid (3VBA), and 4-vinylbenzoic acid (4VBA) and
characterized using powder X-ray diffraction techniques, FT-IR analysis and 1H
NMR. Based on structural analysis, the functionalized UiO-66 MOFs were found to
possess the same structural stability as the 3D porous crystalline lattices of
UiO-66, with hexanuclear zirconium oxyhydroxide
clusters (Zr6O4(OH)4(RCO2)12.
Grand Canonical Monte Carlo simulation showed that the average loading of
ethylene gas in UiO-66 and functionalized UiO-66 were relatively close. The
adsorption was further investigated using radial distribution function analysis
and it was found that the most favorable interactions were between
the adsorbate and the carbon atom of the MOFs.
These interactions were crucial for ethylene stabilization inside UiO-66
pore channels. The results presented here supported the viability of ethylene
adsorption in UiO-66's modified terephthalate linker by demonstrating that
functionalized UiO-66 not only retain structural integrity, but also have
comparable ethylene adsorption at different pressures with stronger
interactions with ethylene gas.
.
Keywords:
metal
organic framework, gas adsorption, UiO-66, Grand Canonical Monte Carlo
Abstrak
Dalam artikel ini, kami melaporkan kerja eksperimen dan hasil
pengiraan untuk penjerapan gas etilena dalam rangkaian logam organik (MOF) UiO-66. UiO-66 MOF difungsikan
dengan asid 2-vinilbenzoik (2VBA), asid 3-vinilbenzoik (3VBA), dan asid
4-vinilbenzoik (4VBA) serta dicirikan menggunakan teknik pembelauan sinar-X
serbuk, analisis FT-IR dan 1H NMR. Berdasarkan analisis struktur,
UiO-66 MOF yang difungsikan didapati mempunyai kestabilan struktur yang sama
seperti kekisi kristal berliang 3D UiO-66, dengan gugusan zirkonium
oksihidroksida heksanuklear (Zr6O4(OH)4(RCO2)12.
Grand Canonical Monte Carlo simulasi menunjukkan purata pemuatan gas etilena
dalam UiO-66 dan UiO-66 yang difungsikan adalah agak hampir hasilnya.
Penjerapan disiasat lebih lanjut menggunakan analisis fungsi taburan jejari dan
didapati bahawa interaksi yang paling baik adalah antara penjerap dan atom
karbon MOFs. Interaksi ini adalah penting
untuk penstabilan etilena di dalam saluran liang UiO-66. Keputusan yang
dibentangkan di sini menyokong daya maju penjerapan etilena dalam penyambung
tereftalat yang diubah suai UiO-66 dengan menunjukkan bahawa UiO-66 yang difungsikan
bukan sahaja dapat mengekalkan integriti struktur, tetapi juga mempunyai
penjerapan etilena yang setanding pada tekanan yang berbeza dengan interaksi
yang lebih kuat dengan gas etilena.
Kata
kunci: rangkaian logam organik, penjerapan
gas, UiO-66, Grand Canonical Monte Carlo
References
1. Che Omar, S., Shaharudin, A., and Tumin, S.A. (2019). The status of the
paddy and rice industry in Malaysia. In Khazanah Research Institute.
2. Saltveit, M.E. (1999).
Effect of ethylene on quality of fresh fruits and
vegetables. Postharvest Biology and Technology, 15: 279-292.
3. Sehaqui, H., Zhou, Q., and
Berglund, L.A. (2011). High-porosity aerogels of high specific surface
area prepared from nanofibrillated cellulose
(NFC). Composites Science and Technology, 71: 1593-1599.
4. Golipour, H., Mokhtarani,
B., Mafi, M., Moradi, A.V., and Godini, H.R. (2020). Experimental
measurement for adsorption of ethylene and ethane gases on copper-exchanged
zeolites 13X and 5A. Journal of Chemical & Engineering Data, 65:
3920-3932.
5. Cao, Z., Anjikar, N.D., and Yang, S. (2022). Small-pore zeolite
membranes: A review of gas separation applications and membrane
preparation. Separations, 9: 47.
6. Li, B., Wen,
H.M., Zhou, W., and Chen, B. (2014). Porous metal-organic frameworks for gas
storage and separation: what, how, and why? The journal of physical
chemistry letters, 20: 3468-3479.
7. Zhang, B., Luo,
Y., Kanyuck, K.M., Bauchan, G.R., Mowery, J.D., and Zavalij, P.Y. (2016). Development of metal-organic
framework for gaseous plant hormone encapsulation to manage ripening of
climacteric produce. Journal of Agricultural and Food Chemistry, 23:
5164-5170.
8. Grissom, T.G.,
Driscoll, D.M., Troya, D., Sapienza, N.S., Usov, P.M., Morris, A.J., and
Morris, J.R. (2019). Molecular-level insight into CO2 adsorption on
the zirconium-based metal–organic framework, UiO-66: A combined spectroscopic
and computational approach. The Journal of Physical Chemistry C,
22: 13731-13738.
9. Ethiraj, J.,
Albanese, E., Civalleri, B., Vitillo,
J.G., Bonino, F., Chavan, S.M., Shearer, G.C., Lillerud,
K.P., and Bordiga, S. (2014). Carbon dioxide
adsorption in amine-functionalized mixed-ligand metal-organic frameworks of
UiO-66 topology. ChemSusChem, 12:
3382-3388.
10. Le, V.N., Vo, T.K., Yoo, K.S., and Kim, J. (2021). Enhanced CO2
adsorption performance on amino-defective UiO-66 with 4-amino benzoic acid as
the defective linker Separation and Purification Technology,
274: 119079.
11. Zhao, W.,
Zhang, C., Yan, Z., Zhou, Y., Li, J., Xie, Y., Bai, L., Jiang, L., and Li F.
(2017). Preparation, characterization, and performance evaluation of UiO-66
analogues as stationary phase in HPLC for the separation of substituted
benzenes and polycyclic aromatic hydrocarbons. PLoS
One.
12. Trousselet, F., Archereau, A.Y., Boutin, A., and Coudert, F. (2016).
Heterometallic metal–organic frameworks of MOF-5 and UiO-66 families: Insight
from computational chemistry. Journal of Physical Chemistry C, 120:
24885-24894.
13. Dassault Systèmes BIOVIA, B. W. Release 2017; BIOVIA
Pipeline Pilot, Release 2017; Dassault Systèmes, San
Diego, CA.
14. Rappe, A.
K., Casewit, C. J., Colwell, K.
S., Goddard, W. A., and Skiff, W. M. (1992). UFF, a full
periodic table force field for molecular mechanics and molecular dynamics
simulations. Journal American Chemical Society, 114: 10024,
15. Wilmer, C.
E., Kim, K. C., and Snurr, R. Q. (2012). an extended charge
equilibration method. Journal of Physical Chemistry, 3: 2506-2511.
16. Dubbeldam, D., Calero,
S., Ellis, D.E., and Snurr, R.Q. (2016). RASPA: Molecular simulation software
for adsorption and diffusion in flexible nanoporous materials. Journal
of Molecular Simulation, 42: 81-101.
17. Savage, M.,
Yang, S., Suyetin, M., Bichoutskaia,
E., Lewis, W., Blake, A.J., Barnett, S.A., and Schröder, M. A. (2014). Novel bismuth-based metal–organic framework
for high volumetric methane and carbon dioxide adsorption. Journal of
Chemical European, 20: 8024-8029.
18. Xia, X., Hu, G., Li, W., and Li, S. (2019). Understanding
reduced CO2 uptake of ionic liquid/metal organic framework (IL/MOF)
composites. Journal of Applied Nano Material, 2: 6022-6029.
19. Anderson, R.,
Schweitzer, B., Wu, T., Carreon, M.A., and Gómez-Gualdrón,
D.A. (2018). Molecular simulation insights on Xe/Kr separation in a set of
nanoporous crystalline membranes. Journal of Applied Material Interfaces,
10: 582-592.
20. Avci, G., Velioglu, S., and Keskin, S. (2018).
High-throughput screening of MOF adsorbents and membranes for H2
purification and CO2 capture. Journal of Applied Material
Interfaces, 10: 33693-33706.
21. Rahmawati, I., Ediati, R., and Prasetyoko, D.
(2014). Synthesis of UiO-66 using solvothermal method at high temperature. Journal
of Proceedings Series, 1: 2354-6026.
22. Vakili, R., Xu,
S., Al-Janabi, N., Gorgojo,
P., Holmes, S.M., and Fan, X. (2018). Microwave-assisted synthesis of
zirconium-based metal organic frameworks (MOFs): Optimization and gas
adsorption. Microporous and Mesoporous Materials. 260: 45-53.
23.
The Ky, V., Le, V. N.
N., Van, S., Mugeun, K., Daekeun,
Y., Kye, S., Park, B., and Kim, J. (2020). Microwave-assisted continuous-flow
synthesis of mixed-ligand UiO-66(Zr) frameworks and their application to
toluene adsorption. Journal of Industrial and Engineering Chemistry. 86:
178-185.