Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 694 - 710

 

MEMBRANE-PROTECTED MICRO-SOLID PHASE EXTRACTION OF CARCINOGENIC AROMATIC AMINES IN WATER SAMPLES PRIOR TO GC-FID ANALYSIS

 

(Pengekstrakan Fasa Pepejal Mikro Yang Dilindungi oleh Membran untuk Amin Aromatik Karsinogenik dalam Sampel Air dengan Analisis GC-FID)

 

Anjalee Pushpika Patabendi1, Mohamad Shariff Shahriman1, Hemavathy Surikumaran2, Nur Nadhirah Mohamad Zain3, Noorfatimah Yahaya3, Faizah Mohammad Yunus1, Usman Abdullahi Usman4, Kavirajaa Pandian Sambasevam5,6*, and Muggundha Raoov1*

 

1Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2Faculty of Bioeconomic, Food and Health Sciences, Universiti Geomatika Malaysia, 54200 Kuala Lumpur, Malaysia

3Department of Toxicology, Advanced Medical & Dental Institute, Universiti Sains Malaysia, 13200 Pulau Pinang, Malaysia

4Department of Geology, Faculty of Science, University of Maiduguri, P.M.B 1069, Maiduguri, Borno State, Nigeria.

5Advanced Materials for Environmental Remediation (AMER), Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

6Electrochemical Material and Sensor (EMaS) Group, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia

 

*Corresponding author: kavirajaa@uitm.edu.my, muggundha@um.edu.my

 

 

Received: 17 February 2024; Accepted: 16 April 2024; Published:  29 June 2024

 

 

Abstract

A simple method to extract aromatic amines in environmental water samples was developed using β-cyclodextrin-toluene diisocyanate (β-CD-TDI) polymer enclosed with tea bag filter paper fashioned as a micro-solid phase extraction (µ-SPE) device combined with GC-FID. In this study, an efficient sorbent (β-CD-TDI polymer) was successfully synthesised and characterizaed for the microextraction of aromatic amines such as p-Toluidine, 4-chloroaniline, 2-naphthylamine, and 4-aminobiphenyl using FTIR, FESEM and TGA. Under optimized conditions (40 mg of β-CD-TDI polymer in 5 mL sample volume with 75 min extraction time and desorption with 300 µL of acetonitrile under 30s desorption time), β-CD-TDI polymer was proven to be an effective adsorbent for the extraction of aromatic amines in environmental water samples with a satisfactory percentage recovery achieved from 80 to 99%. All the studied analytes showed good linearity in the range of 5 to 500 µg L-1 and the correlation of determination (R2) was from 0.9980 to 0.9990. The LODs obtained were from 1.67 to 3.18 µg L-1, and LOQs were from 5.05 to 9.63 µg L-1. This method gives precision values for both intra- and inter-day within accepted variable limits (<15% of RSD). The self-made cellulose-based μ-SPE device revealed that it can be simply prepared, easy to operate, reusable, cost-effective, reduce chemical consumption during extraction, and additionally speed up the extraction process, making it more efficient.

 

Keywords: µ-SPE, β-cyclodextrin-toluene diisocyanate, aromatic amines, GC-FID, environmental water

 

 

Abstrak

Satu kaedah mudah untuk mengekstrak amin aromatik dalam sampel air alam sekitar telah dibangunkan menggunakan polimer β-siklodextrin-toluen diisosiyanat (β-CD-TDI) yang dilingkungi dengan kertas penapis beg teh yang dihasilkan sebagai peranti pengekstrakan fasa pepejal mikro (µ-SPE) yang digabungkan dengan GC-FID. Dalam kajian ini, penyerap yang berkesan (polimer β-CD-TDI) berjaya disintesis dan dicirikan untuk pengeluaran mikro amin aromatik seperti p-Toluidin, 4-kloroanilin, 2-naftilamina, dan 4-aminobifenil menggunakan FTIR, FESEM, dan TGA. Di bawah syarat yang dioptimumkan (40 mg polimer β-CD-TDI dalam 5 mL isipadu sampel dengan masa pengekstrakan 75 minit dan desorpsi dengan 300 µL asetonitril dalam masa desorpsi 30 saat), polimer β-CD-TDI terbukti menjadi penjerap yang berkesan untuk pengekstrakan amin aromatik dalam sampel air alam sekitar dengan perolehan peratusan yang memuaskan mencapai dari 80 hingga 99 %. Semua analit yang dikaji menunjukkan lineariti yang baik dalam julat 5 hingga 500 µg L-1 dan korelasi penentuan (R2) adalah dari 0.9980 hingga 0.9990. LOD yang diperolehi adalah dari 1.67 hingga 3.18 µg L-1, dan LOQ adalah dari 5.05 hingga 9.63 µg L-1. Kaedah ini memberikan nilai ketepatan untuk kedua-dua intraday dan inter-day dalam had batas variabel yang diterima (<15 % daripada RSD). Peranti µ-SPE berbahan selulosa buatan sendiri menunjukkan bahawa ia boleh disiapkan dengan mudah, mudah beroperasi, boleh digunakan semula, berkos rendah, mengurangkan penggunaan bahan kimia semasa pengekstrakan, dan tambahan pula mempercepatkan proses pengekstrakan, menjadikannya lebih cekap.

 

Kata Kunci: µ-SPE, β-siklodekstrin-toluena diisosiyanat, amin aromatik, GC-FID, air persekitaran

 


Reference

1.      Silva, C., e Silva, R., Figueiredo, A. T. d., and Alves, V. N. (2020). Magnetic solid-phase microextraction for lead detection in aqueous samples using magnetite nanoparticles. Journal of the Brazilian Chemical Society, 2020: 134.

Zavareh, Siamak, Avanes, A., and Beiramyan, P. (2017). Effective and selective removal of aromatic amines from water by Cu2+-treated chitosan/alumina nanocomposite. Adsorption Science and Technology 35 (1–2): 218-240.

2.      Kim, Y. H., and Kim, K. H. (2013). An accurate and reliable analysis of trimethylamine using thermal desorption and gas chromatography–time of flight mass spectrometry. Analytica Chimica Acta, 780 (5): 46-54.

3.      Zhao, Dong, Zhao, L., Zhu, C. S., Shen, X., Zhang, X., and Sha B. (2009). Comparative study of polymer containing β-cyclodextrin and –cooh for adsorption toward aniline, 1-naphthylamine and methylene blue. Journal of Hazardous Materials, 171(1–3): 241-46.

4.      Sun, Yan, Liang, L., Zhao, X., Yu, L., Zhang, J., Shi, G., and Zhou, T. (2009). Determination of aromatic amines in water samples by capillary electrophoresis with amperometric detection. Water Research, 43 (1): 41-46.

5.      USEPA (1982). Results of the nationwide urban runoff program, Water Planning Division, US Environmental Protection Agency 1982.

6.      Szejtli, József (1998). Introduction and general overview of cyclodextrin chemistry. Chemical Reviews 98(5): 1743-1753.

7.      Biedermann, F., and Schneider, H. J. (2016). Experimental binding energies in supramolecular complexes. Chemical Reviews, 116(9): 5216-5300.

8.      Werner, J. (2020). Novel deep eutectic solvent-based ultrasounds-assisted dispersive liquid-liquid microextraction with solidification of the aqueous phase for HPLC-UV determination of aromatic amines in environmental samples. Microchemical Journal, 153: 104405.

9.      Pawliszyn, J., and Lord, H. L.  (2011). Handbook of Sample Preparation. Handbook of Sample Preparation, Wiley-Blackwell Publisher: 1-491.

10.   Sajid, M. (2017). Porous membrane protected micro-solid-phase extraction: A review of features, advancements and applications. Analytica Chimica Acta 965 (5): 36-53.

11.   Basheer, C., Han, G. C., Toh, M. H., and Hian, K. L. (2007). Application of porous membrane-protected micro-solid-phase extraction combined with HPLC for the analysis of acidic drugs in wastewater. Analytical Chemistry 79(17): 6845-6850.

12.   Song, X., Li, J. Xu, S., Ying, R., Ma, J., Liao, C., Liu, D., Yu, J., and Chen, L. (2012). Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry. Talanta 99(9): 75-82.

13.   Nojavan,S., and Yazdanpanah, M. (2017). Micro-solid phase extraction of benzene, toluene, ethylbenzene and xylenes from aqueous solutions using water-insoluble β-cyclodextrin polymer as sorbent. Journal of Chromatography A, 1525: 51-59.

14.   Özkan, B. Ç., Merve F., Dotse S. C., and Sezgin B. (2019). Accurate and sensitive determination of harmful aromatic amine products of azo dyes in wastewater and textile samples by GC–MS after multivariate optimization of binary solvent dispersive liquid-liquid microextraction. Microchemical Journal 145(3): 84-89.

15.   Anne, J. M., Boon, Y. H., Saad, B., Miskam, M., Yusoff, M. M., Shahriman, M. S., Zain, N. N. M., Lim, V. and Raoov, M. (2018). β-cyclodextrin conjugated bifunctional isocyanate linker polymer for enhanced removal of 2,4-dinitrophenol from environmental waters. Royal Society Open Science 5(8): 180942.

16.   Sanagi, M. M., Susie L. L., Zalilah N., Dadan H., Wan Ibrahim, W. A., and Naim, A. A. (2009). Comparison of signal-to-noise, blank determination, and linear regression methods for the estimation of detection and quantification limits for volatile organic compounds by gas chromatography. Journal of AOAC International 92(6): 1833-1838.

17.   Mukhtar, N. H., and Hong H. S. (2016). Carbonaceous nanomaterials immobilised mixed matrix membrane microextraction for the determination of polycyclic aromatic hydrocarbons in sewage pond water samples. Analytica Chimica Acta 931 (8): 57-63.

18.   Peris-Vicente, J., Josep E. R., and Samuel C. B. (2015). Validation of analytical methods based on chromatographic techniques: An overview. Analytical Separation Science, 11: 1757-1808.

19.   Raoov, M., Mohamad, S. and Abas, M. R., (2013). Synthesis and characterization of β-cyclodextrin functionalized ionic liquid polymer as a macroporous material for the removal of phenols and As(V). International Journal of Molecular Sciences, 15(1): 100-119.

20.   Kvien, I., Tanem, B. S., and Oksman, K. (2005). Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6): 3160-3165.

21.   Bhaskar, M., Aruna, P., Ganeshjeevan, R. J., and Radhakrishnan, G. (2004). β-cyclodextrin-polyurethane polymer as solid phase extraction material for the analysis of carcinogenic aromatic amines. Analytica Chimica Acta, 509(1): 39-45.

22.   Shahriman, Mohamad, Z. N. N., Mohamad, S., Abdul Manan, N. S., Yaman, S. M., Asman, S., and Raoov, M. (2018). Polyaniline modified magnetic nanoparticles coated with dicationic ionic liquid for effective removal of rhodamine B (RB) from aqueous solution. RSC Advances, 8(58): 33180-33192.

23.   Pelden, T., Chongdee T., Panote T., and Proespichaya K. (2014). Tea bag filter paper as a novel protective membrane for micro-solid phase extraction of butachlor in aqueous samples. Journal of Environmental Sciences and Health, Part B, 49(7): 480-490.

24.   Saraji, M., Boroujeni, M. K. and Bidgoli, A. A. H. (2011). Comparison of dispersive liquid-liquid microextraction and hollow fiber liquid-liquid-liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography. Analytical and Bioanalytical Chemistry, 400(7): 2149-2158.

25.   Premakumari, J. G., Allan G. R., A. Antony Muthu Prabhu, G. Venkatesh, V. K. Subramanian, and N. Rajendiran. (2011). Effect of solvents and pH on β-cyclodextrin inclusion complexation of 2,4-dihydroxyazobenzene and 4-hydroxyazobenzene. Journal of Solution Chemistry, 40(2): 327-347.

26.   Leyva, E., Moctezuma, E., Strouse, J., and García-Garibay, M. A. (2001). Spectrometric and 2D NMR studies on the complexation of chlorophenols with cyclodextrins. Journal of Inclusion Phenomena And Macrocyclic Chemistry, 39(1-2): 41-46.

27.   Yue, Mei E., Li, Q., Xu, J., and Jiang, T. F. (2016). Salt de-emulsification dispersive liquid-liquid microextraction and back-extraction combined with sweeping micellar electrokinetic capillary chromatography for detection of triazine herbicides in honey. Food Analytical Methods, 9(3): 699-705.

28.   Pohanish, R. P. (2017). Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens: pp. 1696-1717.

29.   English, J. C., Virunya S. B., Gwendolyn L. B., and Clifton J. M. (2012). Establishing a total allowable concentration of o-toluidine in drinking water incorporating early lifestage exposure and susceptibility. Regulatory Toxicology and Pharmacology 64(2): 269-284.

30.      Reddy-Noone, K., Archana J., and Krishna K. V. (2007). Liquid-phase microextraction and GC for the determination of primary, secondary and tertiary aromatic amines as their iodo-derivatives. Talanta, 73 (4): 684-691.

31.      Jiangning, C., Hongxia, Y., Ying, L., Wei, J., Jie, J., Junfeng, Z., and Zichun, H. (2004). Ecotoxicological evaluation of 4-aminobiphenyl using a test battery. Ecotoxicology and Environmental Safety, 58(1): 104-109.

32.      Krause, R., Mamba, B., Bambo, M., and Malefetse, T. J. (2011). Cyclodextrin polymers: Synthesis and application in water treatment. Cyclodextrin Chemistry and Physics, 2011: 185-210.

33.      Rozaini, M. N. H., Semail, N. F., Saad, B., Kamaruzaman, S., Abdullah, W. N., Rahim, N. A., Miskam, M., Loh, S. H., and Yahaya, N. (2019). Molecularly imprinted silica gel incorporated with agarose polymer matrix as mixed matrix membrane for separation and preconcentration of sulfonamide antibiotics in water samples. Talanta, 199: 522-531.

34.      Amiri, A., Baghayeri, M., and Nori, S. (2015). Magnetic solid-phase extraction using poly (para-phenylenediamine) modified with magnetic nanoparticles as adsorbent for analysis of monocyclic aromatic amines in water and urine samples. Journal of Chromatography A, 1415: 20-26.

35.      Noormohammadi, F., Faraji, M., and Pourmohammad, M. (2022). Determination of aromatic amines in environmental water samples by deep eutectic solvent-based dispersive liquid-liquid microextraction followed by HPLC-UV. Arabian Journal of Chemistry, 15(6): 103783