Malaysian Journal of Analytical
Sciences, Vol 28
No 3 (2024): 694 -
710
(Pengekstrakan Fasa Pepejal Mikro
Yang Dilindungi oleh Membran
untuk Amin Aromatik Karsinogenik dalam Sampel Air dengan Analisis GC-FID)
Anjalee Pushpika Patabendi1, Mohamad Shariff Shahriman1, Hemavathy Surikumaran2, Nur Nadhirah
Mohamad Zain3, Noorfatimah Yahaya3, Faizah Mohammad Yunus1, Usman Abdullahi Usman4, Kavirajaa
Pandian Sambasevam5,6*, and Muggundha
Raoov1*
1Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
2Faculty of Bioeconomic, Food and Health
Sciences, Universiti Geomatika
Malaysia, 54200 Kuala Lumpur, Malaysia
3Department of Toxicology, Advanced Medical &
Dental Institute, Universiti Sains Malaysia, 13200
Pulau Pinang, Malaysia
4Department of Geology, Faculty of Science, University of Maiduguri, P.M.B 1069, Maiduguri, Borno State, Nigeria.
5Advanced Materials for Environmental Remediation
(AMER), Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus
Kuala Pilah, 72000 Kuala Pilah,
Negeri Sembilan, Malaysia
6Electrochemical Material and Sensor (EMaS) Group, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
*Corresponding author: kavirajaa@uitm.edu.my, muggundha@um.edu.my
Received: 17 February 2024; Accepted:
16 April 2024; Published: 29 June 2024
Abstract
A simple method to extract aromatic amines in environmental water
samples was developed using β-cyclodextrin-toluene
diisocyanate (β-CD-TDI) polymer
enclosed with tea bag filter paper fashioned as a micro-solid phase extraction
(µ-SPE) device combined with GC-FID. In this study, an efficient sorbent (β-CD-TDI polymer) was
successfully synthesised and characterizaed for the
microextraction of aromatic amines such as p-Toluidine,
4-chloroaniline, 2-naphthylamine, and 4-aminobiphenyl using FTIR, FESEM and
TGA. Under optimized conditions (40 mg of β-CD-TDI polymer in 5 mL sample volume
with 75 min extraction time and desorption with 300 µL of acetonitrile under
30s desorption time), β-CD-TDI polymer was proven to be an effective adsorbent for the extraction of aromatic amines in environmental water samples with a satisfactory percentage recovery achieved from 80 to 99%. All the
studied analytes showed good linearity in the range of 5 to 500 µg L-1
and the correlation of determination (R2) was from 0.9980 to 0.9990.
The LODs obtained were from 1.67 to 3.18 µg L-1, and LOQs were from
5.05 to 9.63 µg L-1. This method gives precision values for both
intra- and inter-day within accepted variable limits (<15% of RSD). The self-made cellulose-based μ-SPE device revealed that it can be
simply prepared, easy to operate, reusable, cost-effective, reduce chemical consumption during extraction, and additionally speed up
the extraction process, making it more efficient.
Keywords: µ-SPE, β-cyclodextrin-toluene diisocyanate, aromatic amines, GC-FID, environmental water
Abstrak
Satu kaedah mudah untuk mengekstrak amin aromatik dalam sampel air alam sekitar telah dibangunkan
menggunakan polimer β-siklodextrin-toluen diisosiyanat
(β-CD-TDI) yang dilingkungi dengan
kertas penapis beg teh yang dihasilkan sebagai peranti pengekstrakan fasa pepejal mikro (µ-SPE) yang digabungkan dengan GC-FID. Dalam kajian ini, penyerap
yang berkesan (polimer
β-CD-TDI) berjaya disintesis
dan dicirikan untuk pengeluaran mikro amin aromatik seperti p-Toluidin, 4-kloroanilin, 2-naftilamina, dan 4-aminobifenil menggunakan FTIR, FESEM, dan TGA. Di bawah
syarat yang dioptimumkan
(40 mg polimer β-CD-TDI dalam
5 mL isipadu sampel dengan masa pengekstrakan 75 minit dan desorpsi dengan 300 µL asetonitril dalam masa desorpsi 30 saat), polimer β-CD-TDI terbukti menjadi penjerap yang berkesan untuk pengekstrakan amin aromatik dalam sampel air alam sekitar dengan perolehan peratusan yang memuaskan mencapai dari 80 hingga 99 %. Semua analit yang dikaji menunjukkan lineariti yang baik dalam julat 5 hingga
500 µg L-1 dan korelasi penentuan (R2) adalah dari 0.9980 hingga 0.9990. LOD
yang diperolehi adalah dari 1.67 hingga 3.18 µg L-1,
dan LOQ adalah dari 5.05 hingga 9.63 µg L-1. Kaedah
ini memberikan nilai ketepatan untuk kedua-dua intraday dan
inter-day dalam had batas variabel
yang diterima (<15 % daripada
RSD). Peranti µ-SPE berbahan
selulosa buatan sendiri menunjukkan bahawa ia boleh
disiapkan dengan mudah, mudah beroperasi,
boleh digunakan semula, berkos rendah, mengurangkan penggunaan bahan kimia semasa pengekstrakan,
dan tambahan pula mempercepatkan
proses pengekstrakan, menjadikannya
lebih cekap.
Kata Kunci: µ-SPE, β-siklodekstrin-toluena diisosiyanat,
amin aromatik, GC-FID, air persekitaran
Reference
1.
Silva, C., e Silva, R., Figueiredo, A. T. d., and
Alves, V. N. (2020). Magnetic solid-phase microextraction for lead detection in
aqueous samples using magnetite nanoparticles. Journal of the Brazilian Chemical Society, 2020: 134.
Zavareh, Siamak, Avanes, A., and Beiramyan, P. (2017).
Effective and selective removal of aromatic amines from water by Cu2+-treated
chitosan/alumina nanocomposite. Adsorption Science and Technology 35
(1–2): 218-240.
2.
Kim, Y. H., and Kim, K. H. (2013). An accurate and
reliable analysis of trimethylamine using thermal desorption and gas
chromatography–time of flight mass spectrometry. Analytica Chimica Acta,
780 (5): 46-54.
3.
Zhao, Dong, Zhao, L., Zhu, C. S., Shen, X., Zhang, X.,
and Sha B. (2009). Comparative study of polymer containing β-cyclodextrin
and –cooh for adsorption toward aniline, 1-naphthylamine and methylene blue. Journal
of Hazardous Materials, 171(1–3): 241-46.
4.
Sun, Yan, Liang, L., Zhao, X., Yu, L., Zhang, J., Shi,
G., and Zhou, T. (2009). Determination of aromatic amines in water samples by
capillary electrophoresis with amperometric detection. Water Research,
43 (1): 41-46.
5.
USEPA (1982). Results of the nationwide urban runoff
program, Water Planning Division, US Environmental Protection Agency 1982.
6.
Szejtli, József (1998). Introduction and general
overview of cyclodextrin chemistry. Chemical Reviews 98(5): 1743-1753.
7.
Biedermann, F., and Schneider, H. J. (2016).
Experimental binding energies in supramolecular complexes. Chemical Reviews,
116(9): 5216-5300.
8.
Werner, J. (2020). Novel deep eutectic solvent-based
ultrasounds-assisted dispersive liquid-liquid microextraction with
solidification of the aqueous phase for HPLC-UV determination of aromatic
amines in environmental samples. Microchemical Journal, 153: 104405.
9.
Pawliszyn, J., and Lord, H. L. (2011). Handbook of Sample Preparation. Handbook
of Sample Preparation, Wiley-Blackwell Publisher: 1-491.
10.
Sajid, M. (2017). Porous membrane protected
micro-solid-phase extraction: A review of features, advancements and
applications. Analytica Chimica Acta 965 (5): 36-53.
11.
Basheer, C., Han, G. C., Toh, M. H., and Hian, K. L.
(2007). Application of porous membrane-protected micro-solid-phase extraction
combined with HPLC for the analysis of acidic drugs in wastewater. Analytical
Chemistry 79(17): 6845-6850.
12.
Song, X., Li, J. Xu, S., Ying, R., Ma, J., Liao, C.,
Liu, D., Yu, J., and Chen, L. (2012). Determination of 16 polycyclic aromatic
hydrocarbons in seawater using molecularly imprinted solid-phase extraction
coupled with gas chromatography-mass spectrometry. Talanta 99(9): 75-82.
13.
Nojavan,S., and Yazdanpanah, M. (2017). Micro-solid
phase extraction of benzene, toluene, ethylbenzene and xylenes from aqueous
solutions using water-insoluble β-cyclodextrin polymer as sorbent. Journal
of Chromatography A, 1525: 51-59.
14.
Özkan, B. Ç., Merve F., Dotse S. C., and Sezgin B.
(2019). Accurate and sensitive determination of harmful aromatic amine products
of azo dyes in wastewater and textile samples by GC–MS after multivariate
optimization of binary solvent dispersive liquid-liquid microextraction. Microchemical
Journal 145(3): 84-89.
15.
Anne, J. M., Boon, Y. H., Saad, B., Miskam, M., Yusoff,
M. M., Shahriman, M. S., Zain, N. N. M., Lim, V. and Raoov, M. (2018).
β-cyclodextrin conjugated bifunctional isocyanate linker polymer for
enhanced removal of 2,4-dinitrophenol from environmental waters. Royal
Society Open Science 5(8): 180942.
16.
Sanagi, M. M., Susie L. L., Zalilah N., Dadan H., Wan
Ibrahim, W. A., and Naim, A. A. (2009). Comparison of signal-to-noise, blank
determination, and linear regression methods for the estimation of detection
and quantification limits for volatile organic compounds by gas chromatography.
Journal of AOAC International 92(6): 1833-1838.
17.
Mukhtar, N. H., and Hong H. S. (2016). Carbonaceous
nanomaterials immobilised mixed matrix membrane microextraction for the
determination of polycyclic aromatic hydrocarbons in sewage pond water samples.
Analytica Chimica Acta 931 (8): 57-63.
18.
Peris-Vicente, J., Josep E. R., and Samuel C. B.
(2015). Validation of analytical methods based on chromatographic techniques:
An overview. Analytical Separation Science, 11: 1757-1808.
19.
Raoov, M., Mohamad, S. and Abas, M. R., (2013).
Synthesis and characterization of β-cyclodextrin functionalized ionic
liquid polymer as a macroporous material for the removal of phenols and As(V). International
Journal of Molecular Sciences, 15(1): 100-119.
20.
Kvien, I., Tanem, B. S., and Oksman, K. (2005).
Characterization of cellulose whiskers and their nanocomposites by atomic force
and electron microscopy. Biomacromolecules 6(6): 3160-3165.
21.
Bhaskar, M., Aruna, P., Ganeshjeevan, R. J., and
Radhakrishnan, G. (2004). β-cyclodextrin-polyurethane polymer as solid
phase extraction material for the analysis of carcinogenic aromatic amines. Analytica
Chimica Acta, 509(1): 39-45.
22.
Shahriman, Mohamad, Z. N. N., Mohamad, S., Abdul Manan,
N. S., Yaman, S. M., Asman, S., and Raoov, M. (2018). Polyaniline modified
magnetic nanoparticles coated with dicationic ionic liquid for effective
removal of rhodamine B (RB) from aqueous solution. RSC Advances, 8(58): 33180-33192.
23.
Pelden, T., Chongdee T., Panote T., and Proespichaya K.
(2014). Tea bag filter paper as a novel protective membrane for micro-solid
phase extraction of butachlor in aqueous samples. Journal of Environmental
Sciences and Health, Part B, 49(7): 480-490.
24.
Saraji, M., Boroujeni, M. K. and Bidgoli, A. A. H.
(2011). Comparison of dispersive liquid-liquid microextraction and hollow fiber
liquid-liquid-liquid microextraction for the determination of fentanyl,
alfentanil, and sufentanil in water and biological fluids by high-performance
liquid chromatography. Analytical and Bioanalytical Chemistry, 400(7):
2149-2158.
25.
Premakumari, J. G., Allan G. R., A. Antony Muthu
Prabhu, G. Venkatesh, V. K. Subramanian, and N. Rajendiran. (2011). Effect of
solvents and pH on β-cyclodextrin inclusion complexation of
2,4-dihydroxyazobenzene and 4-hydroxyazobenzene. Journal of Solution
Chemistry, 40(2): 327-347.
26.
Leyva, E., Moctezuma, E., Strouse, J., and
García-Garibay, M. A. (2001). Spectrometric and 2D NMR studies on the
complexation of chlorophenols with cyclodextrins. Journal of Inclusion
Phenomena And Macrocyclic Chemistry, 39(1-2): 41-46.
27.
Yue, Mei E., Li, Q., Xu, J., and Jiang, T. F. (2016). Salt de-emulsification
dispersive liquid-liquid microextraction and back-extraction combined with
sweeping micellar electrokinetic capillary chromatography for detection of
triazine herbicides in honey. Food Analytical Methods, 9(3): 699-705.
28.
Pohanish, R. P. (2017). Sittig’s Handbook of Toxic
and Hazardous Chemicals and Carcinogens: pp. 1696-1717.
29.
English, J. C., Virunya S. B., Gwendolyn L. B., and
Clifton J. M. (2012). Establishing a total allowable concentration of
o-toluidine in drinking water incorporating early lifestage exposure and
susceptibility. Regulatory Toxicology and Pharmacology 64(2): 269-284.
30.
Reddy-Noone, K., Archana J., and Krishna K. V. (2007).
Liquid-phase microextraction and GC for the determination of primary, secondary
and tertiary aromatic amines as their iodo-derivatives. Talanta, 73 (4):
684-691.
31.
Jiangning, C., Hongxia, Y., Ying, L., Wei, J., Jie, J.,
Junfeng, Z., and Zichun, H. (2004). Ecotoxicological evaluation of
4-aminobiphenyl using a test battery. Ecotoxicology and Environmental
Safety, 58(1): 104-109.
32.
Krause, R., Mamba, B., Bambo, M., and Malefetse, T. J.
(2011). Cyclodextrin polymers: Synthesis and application in water treatment. Cyclodextrin
Chemistry and Physics, 2011: 185-210.
33.
Rozaini, M. N. H., Semail, N. F., Saad, B.,
Kamaruzaman, S., Abdullah, W. N., Rahim, N. A., Miskam, M., Loh, S. H., and
Yahaya, N. (2019). Molecularly imprinted silica gel incorporated with agarose
polymer matrix as mixed matrix membrane for separation and preconcentration of
sulfonamide antibiotics in water samples. Talanta, 199: 522-531.
34.
Amiri, A., Baghayeri, M., and Nori, S. (2015). Magnetic solid-phase extraction
using poly (para-phenylenediamine) modified with magnetic nanoparticles as
adsorbent for analysis of monocyclic aromatic amines in water and urine
samples. Journal of Chromatography A, 1415: 20-26.
35.
Noormohammadi, F., Faraji, M., and Pourmohammad, M. (2022). Determination of aromatic amines in environmental water
samples by deep eutectic solvent-based dispersive liquid-liquid microextraction
followed by HPLC-UV. Arabian Journal of
Chemistry, 15(6): 103783