Malaysian Journal of Analytical
Sciences, Vol 28
No 3 (2024): 681 - 693
SYNTHESIS
OF TIN DOPED ZINC OXIDE (TZO) NANOWIRES: EFFECT ON DYE ADSORPTION
(Synthesis Zink Oksida
Nanodawai Terdop Timah: Kesan Kepada Penjerapan Pewarna)
Nur Fairuz Rostan1,2, Mohd Firdaus Malek1,2,*,
Maryam Mohammad1,2,3, Nurul Zulaikha Mohd Zambri1,2,
Nurfatini Atiqrah Khairul Azhar1,2, Zahidah Othman1,2,
Kevin Alvin Eswar1,2,4, Irmaizatussyehdany Buniyamin1,2,
Noor Asnida Asli1,2, Mohd Yusri Abdul Rahman5, Mohamad
Hafiz Mamat6 and
Mohamad Rusop Mahmood1,6
1NANO-SciTech Lab, Centre for
Functional Materials and Nanotechnology,
Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
2Faculty of Applied Sciences,
Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
3Department of Physics, Faculty of
Applied Sciences,
Universiti Teknologi MARA,
Perak Branch, Tapah Campus, Tapah Road, 35400 Perak, Malaysia
4Faculty of Applied Sciences,
Universiti Teknologi MARA,
Sabah Branch Tawau Campus, 91032 Tawau, Malaysia
5Institute of Microengineering and
Nanoelectronics,
Universiti Kebangsaan Malaysia,
43600, Bangi, Selangor, Malaysia
6NANO-ElecTronic
Centre, School of Electrical Engineering, College of Engineering,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
*Corresponding author:
mfmalek07@uitm.edu.my
Received: 19 September 2023;
Accepted: 21 April 2024; Published: 29 June
2024
Abstract
In this study, pristine zinc oxide (ZnO) and tin doped zinc oxide (TZO) nanowires (NWs) had
been synthesised on a fluorine doped tin oxide glass substrate via a
microwave-assisted ultrasonic irradiation technique. This is a facile and rapid
technique that combined ultrasonic irradiation technique during preparation of
precursor solution with microwave assisted hydrothermal technique during
synthesisation of nanowires. The ultrasonic irradiation technique helps to
breakdown the agglomerated and large molecules inside the precursor solution mixture
into smaller molecules. The microwave assisted technique helps to increase the
temperature of the precursor solution from internal to external in shorter time
through the increasing of interaction between molecules. It is important to
produce a wide surface area of this material in the photoanode of dye-sensitive
solar cells (DSSCs) configuration. Specifically, dye adsorption was an
important aspect to grasp, as it can be reflected in the performance of the
DSSC device. The concentrations of tin, Sn dopant were
varied between 0.3 and 1.8 at.%. As-prepared ZnO and
TZO NWs were analysed using field emission scanning electron microscopy and
X-ray diffraction. Then, the samples that were soaked in N719 were analysed
with ultraviolet-visible-near infrared spectroscopy. The (002) peak of pristine
ZnO was regressed, and the identified (100) and (101)
peaks of ZnO were slightly shifted towards higher
degrees after the addition of Sn dopants. The surface morphology of TZO NWs had
displayed a more uniform transformation, with the smallest crystallite size at
51 ± 11 nm (0.9 at.%) due to the enhanced surface area. Unfortunately, it
continued to degenerate for concentrations ranging from 1.2 to 1.8 at.%. Urbach
energy analysis also suggested that the lowest defect at 0.9 at.% TZO (76 meV) produced the highest crystallinity with a less
disorderly thin film. These properties had upheld the dye adsorption and
trapping in the ZnO-based thin film.
Thus, TZO NWs were the most promising candidates as photoanodes in DSSCs.
Keywords: crystallinity,
dye adsorption, microwave, zinc oxide, tin doped
Abstrak
Dalam kajian ini, zink oksida tulen dan zink oksida terdop
timah nanodawai telah disintesis ke atas substrat kaca timah oksida terdop
florin menggunakan teknik penyiaran ultrasonik bantuan mikrogelombang. Teknik
mudah dan pantas ini merupakan hasil gabungan teknik penyiaran ultrasonik yang
digunakan semasa proses penyediaan larutan prekursor dengan teknik hidroterma
bantuan mikrogelombang yang digunakan semasa proses pensintesisan nanodawai.
Teknik penyiaran ultrasonik dapat membantu penguraian molekul yang beraglomerat
dan besar dalam campuran larutan prekursor menjadi molekul yang lebih kecil.
Teknik bantuan mikrogelombang pula dapat meningkatkan suhu larutan prekursor
dari dalaman ke luaran dalam masa yang singkat melalui peningkatan interaksi
antara molekul. Penghasilan kawasan permukaan yang luas merupakan aspek yang
amat penting bagi bahan fotoanod dalam konfigurasi sel suria pekaan pewarna.
Secara khusus, penjerapan pewarna merupakan aspek penting kerana ia akan
mencerminkan prestasi peranti sel suria pekaan pewarna. Kepekatan dopan timah
telah divariasi dalam lingkungan 0.3 hingga 1.8 peratusan atom. Zink oksida
tulen dan zink oksida terdop timah nanodawai yang tersedia telah dianalisis
menggunakan mikroskopi elektron pengimbasan pancaran medan dan pembelauan
sinar-X. Kemudian, sampel yang telah direndam dalam pewarna N719 dianalisis
dengan spektroskopi ultralembayung-cahaya nampak-inframerah dekat. Puncak utama
(002) pada zink oksida tulen telah susut dan puncak-puncak identiti melibatkan
puncak (100), (002) dan (101) milik zink oksida telah beranjak ke arah yang
tinggi setelah penambahan dopan timah. Morfologi permukaan zink oksida terdop
timah nanodawai memperlihatkan perubahan ke arah keseragaman dengan saiz
kristal paling kecil pada 51 ± 11 nm (0.9 peratusan atom) disebabkan kawasan
permukaan dipertingkat, namun terus merosot pada julat kepekatan 1.2 – 1.8
peratusan atom. Analisis tenaga Urbach juga mencadangkan terdapat kecacatan
terendah pada 0.9 peratusan atom zink oksida terdop timah (76 meV) dengan
menghasilkan saput tipis yang berhabluran tertinggi dan kurang ketaktertiban.
Sifat-sifat tersebut telah menyumbang kepada penjerapan pewarna dan pemerangkapan
dalam saput nipis berasaskan zink oksida. Oleh itu, zink oksida terdop timah
nanodawai adalah calon berpotensi menjadi fotoanod dalam sel suria pekaan
pewarna.
Kata
kunci: habluran, penjerapan pewarna, gelombang mikro, zink oksida, terdop
timah
References
1. Green, M. A., Dunlop, E. D.,
Siefer, G., Yoshita, M., Kopidakis, N., Bothe, K., and Hao, X. (2023). Solar
cell efficiency tables (Version 61). Progress
in Photovoltaics: Research and Applications, 31(1): 3-16.
2. Mohammadian-Sarcheshmeh, H., Arazi, R., and
Mazloum-Ardakani, M. (2020). Application of bifunctional photoanode materials
in DSSCs: A review. Renewable and
Sustainable Energy Reviews, 134: 110249.
3. Bhatti, K. A., Khan, M. I., Saleem, M.,
Alvi, F., Raza, R., and Rehman, S. (2019). Analysis of multilayer based TiO2
and ZnO photoanodes for dye-sensitized solar cells. Materials Research Express, 6(7):
075902.
4. Ramya, M., Nideep, T. K., Nampoori, V. P.
N., and Kailasnath, M. (2021). Solvent assisted evolution and growth mechanism
of zero to three dimensional ZnO nanostructures for dye sensitized solar cell
applications. Scientific Reports, 11(1):
9.
5. Chen, H.-Y., Huang, B.-Y., Koo, H.-S., and
Huang, M.-T. (2020). Characterization of dye-sensitized solar cells based on
various CaCO3-doped ZnO photoanodes prepared using wet powder mixing
and grinding. Optik, 220:
164899.
6. Nikoobakht, B., Wang, X., Herzing, A., and
Shi, J. (2013). Scalable synthesis and device integration of self-registered
one-dimensional zinc oxide nanostructures and related materials. Chemical Society Reviews, 42(1):
342-365.
7. Fonseca, A. F. V. D., Siqueira, R. L.,
Landers, R., Ferrari, J. L., Marana, N. L., Sambrano, J. R., La Porta, F. D.
A., and Schiavon, M. A. (2018). A theoretical and experimental investigation of
Eu-doped ZnO nanorods and its application on dye sensitized solar cells. Journal of Alloys and Compounds, 739: 939-947.
8. Lin, C.-Y., Lai, Y.-H., Chen, H.-W., Chen,
J.-G., Kung, C.-W., Vittal, R., and Ho, K.-C. (2011). Highly efficient
dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy & Environmental Science, 4(9):
3448-3455.
9. Kołodziejczak-Radzimska, A., and
Jesionowski, T. (2014). Zinc oxide—from synthesis to application: A review. Materials, 7(4): 2833-2881.
10. Das, A., Wary, R. R., and Nair, R. G. (2020).
Cu modified ZnO nanoflakes: An efficient visible light-driven photocatalyst and
a promising photoanode for dye sensitized solar cell (DSSC). Solid State Sciences, 104:
106290.
11. Zhuang, S., Lu, M., Zhou, N., Zhou, L., Lin,
D., Peng, Z., and Wu, Q. (2019). Cu modified ZnO nanoflowers as photoanode
material for highly efficient dye sensitized solar cells. Electrochimica Acta, 294: 28-37.
12. Tayyaba, S., Ashraf, M. W., Tariq, M. I.,
Akhlaq, M., Balas, V. E., Wang, N., and Balas, M. M. (2020). Simulation,
analysis, and characterization of calcium-doped ZnO nanostructures for
dye-sensitized solar cells. Energies, 13(18):
4863.
13. Saboor, A., Shah, S. M., and Hussain, H.
(2019). Band gap tuning and applications of ZnO nanorods in hybrid solar cell:
Ag-doped verses Nd-doped ZnO nanorods. Materials
Science in Semiconductor Processing, 93: 215-225.
14. Giannouli, M., Govatsi, Κ., Syrrokostas,
G., Yannopoulos, S., and Leftheriotis, G. (2018). Factors Affecting the Power
Conversion Efficiency in ZnO DSSCs: Nanowire vs. Nanoparticles. Materials, 11(3): 411.
15. Angaiah, S., Arunachalam, S., Murugadoss, V.,
and Vijayakumar, G. (2019). A
Facile polyvinylpyrrolidone assisted solvothermal synthesis of zinc oxide
nanowires and nanoparticles and their influence on the photovoltaic performance
of dye sensitized solar cell. ES Energy
& Environment, 4: 59-65.
16. Saleem, M., Farooq, W. A., Khan, M. I.,
Akhtar, M. N., Rehman, S. U., Ahmad, N., Khalid, M., Atif, M., Almutairi, M.
A., and Irfan, M. (2019). Effect of ZnO Nanoparticles coating layers on top of
ZnO nanowires for morphological, optical, and photovoltaic properties of
dye-sensitized solar cells. Micromachines, 10(12):
819.
17. Dloo, A., Fazouan, N., and Atmani, E. H.
(2023). Investigation of hydrothermal growth time and temperature for optimized
ZnO nanowire arrays toward photovoltaics. Surfaces
and Interfaces, 40: 103123.
18. Syrrokostas, G., Govatsi, K., and Yannopoulos,
S. N. (2016). High-quality, reproducible ZnO
nanowire arrays obtained by a multiparameter optimization of chemical bath
deposition growth. Crystal Growth &
Design, 16(4): 2140-2150.
19. Guo, H., Ding, R., Li, N., Hong, K., Liu, L.,
and Zhang, H. (2018). Defects controllable ZnO nanowire arrays by a
hydrothermal growth method for dye-sensitized solar cells. Physica E: Low-dimensional Systems and Nanostructures, 2018: 105.
20. Zatirostami, A. (2021). Fabrication of
dye-sensitized solar cells based on the composite TiO2 nanoparticles/ZnO
nanorods: Investigating the role of photoanode porosity. Materials Today Communications,
26: 102033.
21. Choudhury, B. D., Lin, C., Shawon, S. M. A. Z., Soliz-Martinez, J.,
Huq, H., and Uddin, M. J. (2021). A photoanode with hierarchical nanoforest TiO2
structure and silver plasmonic nanoparticles for flexible dye sensitized solar
cell. Scientific Reports, 11(1)
22. Thirumoorthi, M., and Thomas Joseph Prakash, J. (2019). Doping
effects on physical properties of (101) oriented tin zinc oxide thin films
prepared by nebulizer spray pyrolysis method. Materials Science and Engineering: B, 248: 114402.
23. Nunes, V. F., Lima, F. M., Teixeira, E. S., Júnior, P. H. F. M.,
Almeida, A. F. L., and Freire, F. N. A. (2021). Effects of tin on the
performance of ZnO photoanode for DSSC. Matéria
(Rio de Janeiro), 26(4): 1312.
24. Khadtare, S., Pathan, H. M., Han, S.-H., and Park, J. (2021).
Facile synthesis of binder free ZnO and its Indium, Tin doped materials for
efficient dye sensitized solar cells. Journal
of Alloys and Compounds, 872: 159722.
25. Xu, L., Zheng, G., Xian, F., and Su, J. (2019). The morphological evolution of
ZnO thin films by Sn ions doping and its influence on the surface energy and
photocatalytic activity. Materials
Chemistry and Physics, 229: 215-225.
26. Saurdi, I., Mamat, M., Malek, M., and Rusop, M. (2014). Preparation of aligned ZnO
nanorod arrays on Sn-doped ZnO thin films by sonicated sol-gel immersion
fabricated for dye-sensitized solar cell. Advances
in Materials Science and Engineering, 2014: 636725.
27. Mamat, M. H., Sahdan, M. Z., Khusaimi, Z., Ahmed, A. Z., Abdullah,
S., and Rusop, M. (2010). Influence of doping concentrations on the aluminum
doped zinc oxide thin films properties for ultraviolet photoconductive sensor
applications. Optical Materials, 32(6):
696-699.
28. Magiswaran, K., Norizan, M. N., Mahmed, N., Mohamad, I. S., Idris,
S. N., Sabri, M. F., Amin, N., Sandu, A. V., Vizureanu, P., Nabiałek, M.,
and Salleh, M. A. (2023). Controlling the layer thickness of zinc oxide
photoanode and the dye-soaking time for an optimal-efficiency dye-sensitized
solar cell. Coatings, 13(1):
20.
29. Khan, M. I., Naeem, M., Mustafa, G., Abubshait, S., Mahmood, A.,
Al-Masry, W., Al-Garadi, N., and Ramay, S. (2020). Synthesis and
characterization of Co and Ga co-doped ZnO thin films as an electrode for dye
sensitized solar cells. Ceramics
International, 46: 127.
30. Bashir, M. B., Rajpar, A. H., Salih, E. Y., and Ahmed, E. M.
(2023). Preparation and photovoltaic evaluation of CuO@Zn(Al)O-mixed metal
oxides for dye sensitized solar cell. Nanomaterials, 13(5):
802.
31. Nanev, C. N. (2023). Thermodynamic and molecular-kinetic
considerations of the initial growth of newly born crystals; crystal size
distribution; dissolution of small crystals during ostwald ripening due to
temperature changes. Progress in Crystal
Growth and Characterization of Materials, 69(2): 100604.
32. Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy, N.,
Senthilarasu, S., and Prasanna, S. (2016). Status and outlook of
sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. International Journal of Energy Research, 40(10):
1303-1320.
33. Sekar, N., and Gehlot, V. Y. (2010). Metal complex dyes for
dye-sensitized solar cells: Recent developments. Resonance, 15(9): 819-831.
34. Tomar, N., Agrawal, A., Dhaka, V. S., and Surolia, P. K. (2020).
Ruthenium complexes based dye sensitized solar cells: Fundamentals and research
trends. Solar Energy, 207:
59-76.