Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 681 - 693

 

SYNTHESIS OF TIN DOPED ZINC OXIDE (TZO) NANOWIRES: EFFECT ON DYE ADSORPTION

 

(Synthesis Zink Oksida Nanodawai Terdop Timah: Kesan Kepada Penjerapan Pewarna)

 

Nur Fairuz Rostan1,2, Mohd Firdaus Malek1,2,*, Maryam Mohammad1,2,3, Nurul Zulaikha Mohd Zambri1,2, Nurfatini Atiqrah Khairul Azhar1,2, Zahidah Othman1,2, Kevin Alvin Eswar1,2,4, Irmaizatussyehdany Buniyamin1,2, Noor Asnida Asli1,2, Mohd Yusri Abdul Rahman5, Mohamad Hafiz Mamat6 and

Mohamad Rusop Mahmood1,6

 

1NANO-SciTech Lab, Centre for Functional Materials and Nanotechnology,

Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Department of Physics, Faculty of Applied Sciences,

Universiti Teknologi MARA, Perak Branch, Tapah Campus, Tapah Road, 35400 Perak, Malaysia

4Faculty of Applied Sciences,

Universiti Teknologi MARA, Sabah Branch Tawau Campus, 91032 Tawau, Malaysia

5Institute of Microengineering and Nanoelectronics,

Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

6NANO-ElecTronic Centre, School of Electrical Engineering, College of Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: mfmalek07@uitm.edu.my

 

 

Received: 19 September 2023; Accepted: 21 April 2024; Published:  29 June 2024

 

 

Abstract

In this study, pristine zinc oxide (ZnO) and tin doped zinc oxide (TZO) nanowires (NWs) had been synthesised on a fluorine doped tin oxide glass substrate via a microwave-assisted ultrasonic irradiation technique. This is a facile and rapid technique that combined ultrasonic irradiation technique during preparation of precursor solution with microwave assisted hydrothermal technique during synthesisation of nanowires. The ultrasonic irradiation technique helps to breakdown the agglomerated and large molecules inside the precursor solution mixture into smaller molecules. The microwave assisted technique helps to increase the temperature of the precursor solution from internal to external in shorter time through the increasing of interaction between molecules. It is important to produce a wide surface area of this material in the photoanode of dye-sensitive solar cells (DSSCs) configuration. Specifically, dye adsorption was an important aspect to grasp, as it can be reflected in the performance of the DSSC device. The concentrations of tin, Sn dopant were varied between 0.3 and 1.8 at.%. As-prepared ZnO and TZO NWs were analysed using field emission scanning electron microscopy and X-ray diffraction. Then, the samples that were soaked in N719 were analysed with ultraviolet-visible-near infrared spectroscopy. The (002) peak of pristine ZnO was regressed, and the identified (100) and (101) peaks of ZnO were slightly shifted towards higher degrees after the addition of Sn dopants. The surface morphology of TZO NWs had displayed a more uniform transformation, with the smallest crystallite size at 51 ± 11 nm (0.9 at.%) due to the enhanced surface area. Unfortunately, it continued to degenerate for concentrations ranging from 1.2 to 1.8 at.%. Urbach energy analysis also suggested that the lowest defect at 0.9 at.% TZO (76 meV) produced the highest crystallinity with a less disorderly thin film. These properties had upheld the dye adsorption and trapping in the ZnO-based thin film. Thus, TZO NWs were the most promising candidates as photoanodes in DSSCs.

 

Keywords: crystallinity, dye adsorption, microwave, zinc oxide, tin doped

 

Abstrak

Dalam kajian ini, zink oksida tulen dan zink oksida terdop timah nanodawai telah disintesis ke atas substrat kaca timah oksida terdop florin menggunakan teknik penyiaran ultrasonik bantuan mikrogelombang. Teknik mudah dan pantas ini merupakan hasil gabungan teknik penyiaran ultrasonik yang digunakan semasa proses penyediaan larutan prekursor dengan teknik hidroterma bantuan mikrogelombang yang digunakan semasa proses pensintesisan nanodawai. Teknik penyiaran ultrasonik dapat membantu penguraian molekul yang beraglomerat dan besar dalam campuran larutan prekursor menjadi molekul yang lebih kecil. Teknik bantuan mikrogelombang pula dapat meningkatkan suhu larutan prekursor dari dalaman ke luaran dalam masa yang singkat melalui peningkatan interaksi antara molekul. Penghasilan kawasan permukaan yang luas merupakan aspek yang amat penting bagi bahan fotoanod dalam konfigurasi sel suria pekaan pewarna. Secara khusus, penjerapan pewarna merupakan aspek penting kerana ia akan mencerminkan prestasi peranti sel suria pekaan pewarna. Kepekatan dopan timah telah divariasi dalam lingkungan 0.3 hingga 1.8 peratusan atom. Zink oksida tulen dan zink oksida terdop timah nanodawai yang tersedia telah dianalisis menggunakan mikroskopi elektron pengimbasan pancaran medan dan pembelauan sinar-X. Kemudian, sampel yang telah direndam dalam pewarna N719 dianalisis dengan spektroskopi ultralembayung-cahaya nampak-inframerah dekat. Puncak utama (002) pada zink oksida tulen telah susut dan puncak-puncak identiti melibatkan puncak (100), (002) dan (101) milik zink oksida telah beranjak ke arah yang tinggi setelah penambahan dopan timah. Morfologi permukaan zink oksida terdop timah nanodawai memperlihatkan perubahan ke arah keseragaman dengan saiz kristal paling kecil pada 51 ± 11 nm (0.9 peratusan atom) disebabkan kawasan permukaan dipertingkat, namun terus merosot pada julat kepekatan 1.2 – 1.8 peratusan atom. Analisis tenaga Urbach juga mencadangkan terdapat kecacatan terendah pada 0.9 peratusan atom zink oksida terdop timah (76 meV) dengan menghasilkan saput tipis yang berhabluran tertinggi dan kurang ketaktertiban. Sifat-sifat tersebut telah menyumbang kepada penjerapan pewarna dan pemerangkapan dalam saput nipis berasaskan zink oksida. Oleh itu, zink oksida terdop timah nanodawai adalah calon berpotensi menjadi fotoanod dalam sel suria pekaan pewarna.

 

Kata kunci: habluran, penjerapan pewarna, gelombang mikro, zink oksida, terdop timah

 


References

1.   Green, M. A., Dunlop, E. D., Siefer, G., Yoshita, M., Kopidakis, N., Bothe, K., and Hao, X. (2023). Solar cell efficiency tables (Version 61). Progress in Photovoltaics: Research and Applications, 31(1): 3-16.

2.    Mohammadian-Sarcheshmeh, H., Arazi, R., and Mazloum-Ardakani, M. (2020). Application of bifunctional photoanode materials in DSSCs: A review. Renewable and Sustainable Energy Reviews, 134: 110249.

3.    Bhatti, K. A., Khan, M. I., Saleem, M., Alvi, F., Raza, R., and Rehman, S. (2019). Analysis of multilayer based TiO2 and ZnO photoanodes for dye-sensitized solar cells. Materials Research Express, 6(7): 075902.

4.    Ramya, M., Nideep, T. K., Nampoori, V. P. N., and Kailasnath, M. (2021). Solvent assisted evolution and growth mechanism of zero to three dimensional ZnO nanostructures for dye sensitized solar cell applications. Scientific Reports, 11(1): 9.

5.    Chen, H.-Y., Huang, B.-Y., Koo, H.-S., and Huang, M.-T. (2020). Characterization of dye-sensitized solar cells based on various CaCO3-doped ZnO photoanodes prepared using wet powder mixing and grinding. Optik, 220: 164899.

6.    Nikoobakht, B., Wang, X., Herzing, A., and Shi, J. (2013). Scalable synthesis and device integration of self-registered one-dimensional zinc oxide nanostructures and related materials. Chemical Society Reviews, 42(1): 342-365.

7.    Fonseca, A. F. V. D., Siqueira, R. L., Landers, R., Ferrari, J. L., Marana, N. L., Sambrano, J. R., La Porta, F. D. A., and Schiavon, M. A. (2018). A theoretical and experimental investigation of Eu-doped ZnO nanorods and its application on dye sensitized solar cells. Journal of Alloys and Compounds, 739: 939-947.

8.    Lin, C.-Y., Lai, Y.-H., Chen, H.-W., Chen, J.-G., Kung, C.-W., Vittal, R., and Ho, K.-C. (2011). Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy & Environmental Science, 4(9): 3448-3455.

9.    Kołodziejczak-Radzimska, A., and Jesionowski, T. (2014). Zinc oxide—from synthesis to application: A review. Materials, 7(4): 2833-2881.

10.  Das, A., Wary, R. R., and Nair, R. G. (2020). Cu modified ZnO nanoflakes: An efficient visible light-driven photocatalyst and a promising photoanode for dye sensitized solar cell (DSSC). Solid State Sciences, 104: 106290.

11.  Zhuang, S., Lu, M., Zhou, N., Zhou, L., Lin, D., Peng, Z., and Wu, Q. (2019). Cu modified ZnO nanoflowers as photoanode material for highly efficient dye sensitized solar cells. Electrochimica Acta, 294: 28-37.

12.  Tayyaba, S., Ashraf, M. W., Tariq, M. I., Akhlaq, M., Balas, V. E., Wang, N., and Balas, M. M. (2020). Simulation, analysis, and characterization of calcium-doped ZnO nanostructures for dye-sensitized solar cells. Energies, 13(18): 4863.

13.  Saboor, A., Shah, S. M., and Hussain, H. (2019). Band gap tuning and applications of ZnO nanorods in hybrid solar cell: Ag-doped verses Nd-doped ZnO nanorods. Materials Science in Semiconductor Processing, 93: 215-225.

14.  Giannouli, M., Govatsi, Κ., Syrrokostas, G., Yannopoulos, S., and Leftheriotis, G. (2018). Factors Affecting the Power Conversion Efficiency in ZnO DSSCs: Nanowire vs. Nanoparticles. Materials, 11(3): 411.

15.  Angaiah, S., Arunachalam, S., Murugadoss, V., and Vijayakumar, G. (2019). A Facile polyvinylpyrrolidone assisted solvothermal synthesis of zinc oxide nanowires and nanoparticles and their influence on the photovoltaic performance of dye sensitized solar cell. ES Energy & Environment, 4: 59-65.

16.  Saleem, M., Farooq, W. A., Khan, M. I., Akhtar, M. N., Rehman, S. U., Ahmad, N., Khalid, M., Atif, M., Almutairi, M. A., and Irfan, M. (2019). Effect of ZnO Nanoparticles coating layers on top of ZnO nanowires for morphological, optical, and photovoltaic properties of dye-sensitized solar cells. Micromachines, 10(12): 819.

17.  Dloo, A., Fazouan, N., and Atmani, E. H. (2023). Investigation of hydrothermal growth time and temperature for optimized ZnO nanowire arrays toward photovoltaics. Surfaces and Interfaces, 40: 103123.

18.  Syrrokostas, G., Govatsi, K., and Yannopoulos, S. N. (2016). High-quality, reproducible ZnO nanowire arrays obtained by a multiparameter optimization of chemical bath deposition growth. Crystal Growth & Design, 16(4): 2140-2150.

19.  Guo, H., Ding, R., Li, N., Hong, K., Liu, L., and Zhang, H. (2018). Defects controllable ZnO nanowire arrays by a hydrothermal growth method for dye-sensitized solar cells. Physica E: Low-dimensional Systems and Nanostructures, 2018: 105.

20.  Zatirostami, A. (2021). Fabrication of dye-sensitized solar cells based on the composite TiO2 nanoparticles/ZnO nanorods: Investigating the role of photoanode porosity. Materials Today Communications, 26: 102033.

21.  Choudhury, B. D., Lin, C., Shawon, S. M. A. Z., Soliz-Martinez, J., Huq, H., and Uddin, M. J. (2021). A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanoparticles for flexible dye sensitized solar cell. Scientific Reports, 11(1)

22.  Thirumoorthi, M., and Thomas Joseph Prakash, J. (2019). Doping effects on physical properties of (101) oriented tin zinc oxide thin films prepared by nebulizer spray pyrolysis method. Materials Science and Engineering: B, 248: 114402.

23.  Nunes, V. F., Lima, F. M., Teixeira, E. S., Júnior, P. H. F. M., Almeida, A. F. L., and Freire, F. N. A. (2021). Effects of tin on the performance of ZnO photoanode for DSSC. Matéria (Rio de Janeiro), 26(4): 1312.

24.  Khadtare, S., Pathan, H. M., Han, S.-H., and Park, J. (2021). Facile synthesis of binder free ZnO and its Indium, Tin doped materials for efficient dye sensitized solar cells. Journal of Alloys and Compounds, 872: 159722.

25.  Xu, L., Zheng, G., Xian, F., and Su, J. (2019). The morphological evolution of ZnO thin films by Sn ions doping and its influence on the surface energy and photocatalytic activity. Materials Chemistry and Physics, 229: 215-225.

26.  Saurdi, I., Mamat, M., Malek, M., and Rusop, M. (2014). Preparation of aligned ZnO nanorod arrays on Sn-doped ZnO thin films by sonicated sol-gel immersion fabricated for dye-sensitized solar cell. Advances in Materials Science and Engineering, 2014: 636725.

27.  Mamat, M. H., Sahdan, M. Z., Khusaimi, Z., Ahmed, A. Z., Abdullah, S., and Rusop, M. (2010). Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications. Optical Materials, 32(6): 696-699.

28.  Magiswaran, K., Norizan, M. N., Mahmed, N., Mohamad, I. S., Idris, S. N., Sabri, M. F., Amin, N., Sandu, A. V., Vizureanu, P., Nabiałek, M., and Salleh, M. A. (2023). Controlling the layer thickness of zinc oxide photoanode and the dye-soaking time for an optimal-efficiency dye-sensitized solar cell. Coatings, 13(1): 20.

29.  Khan, M. I., Naeem, M., Mustafa, G., Abubshait, S., Mahmood, A., Al-Masry, W., Al-Garadi, N., and Ramay, S. (2020). Synthesis and characterization of Co and Ga co-doped ZnO thin films as an electrode for dye sensitized solar cells. Ceramics International, 46: 127.

30.  Bashir, M. B., Rajpar, A. H., Salih, E. Y., and Ahmed, E. M. (2023). Preparation and photovoltaic evaluation of CuO@Zn(Al)O-mixed metal oxides for dye sensitized solar cell. Nanomaterials, 13(5): 802.

31.  Nanev, C. N. (2023). Thermodynamic and molecular-kinetic considerations of the initial growth of newly born crystals; crystal size distribution; dissolution of small crystals during ostwald ripening due to temperature changes. Progress in Crystal Growth and Characterization of Materials, 69(2): 100604.

32.  Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy, N., Senthilarasu, S., and Prasanna, S. (2016). Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. International Journal of Energy Research, 40(10): 1303-1320.

33.  Sekar, N., and Gehlot, V. Y. (2010). Metal complex dyes for dye-sensitized solar cells: Recent developments. Resonance, 15(9): 819-831.

34.  Tomar, N., Agrawal, A., Dhaka, V. S., and Surolia, P. K. (2020). Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends. Solar Energy, 207: 59-76.