Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 664 - 680

 

AUTHENTICATION OF CLOVE LEAF OIL IN PRODUCTS

(Syzygium aromaticum (L.) Merr. & L. M. Perry) USING GC-MS AND FTIR METHODS COMBINED WITH CHEMOMETRIC

 

Pengesahan Minyak Daun Cengkih (Syzygium aromaticum (L.) Merr. & L. M. Perry) dalam Produk Menggunakan Kaedah GC-MS dan FTIR Yang Digabungkan dengan Kemometri

 

Any Guntarti1, Laela Hayu Nurani1*, Putri Lestari1, Citra Ariani Edityaningrum1, Lalu Muhammad Irham1, 

and Abdul Rohman2,3

 

1Faculty of Pharmacy, Universitas Ahmad Dahlan Yogyakarta 55164, Indonesia

2Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

3Faculty of Pharmacy, Universitas Gajah Mada, Yogyakarta 55281, Indonesia

 

*Corresponding author: laela.farmasi@pharm.uad.ac.id

 

 

Received: 24 January 2024; Accepted: 26 March 2024; Published:  29 June 2024

 

 

Abstract

The production cost and market demand for clove oil are significantly high due to its great commercial value and benefits. However, the extraction yield of clove oil is very low at around 1%, causing the act of adulteration of essential oils to reduce production costs. Therefore, this study aims to determine the addition of adulterants in essential oils using the authentication technique. The samples used are clove oil from dry leaf distillation, products A, B, and C  on the market. The GC-MS and FTIR methods combined with PCA (Principal Component Analysis) and PLS (Partial Least Square) multivariate calibration analysis were selected in the authentication to detect clove oil adulteration. The constituent’s presence in distilled clove oil from GC-MS analysis was eugenol (49.63%), β-Caryophyllene (28.25%), alpha-Humulene (8.92%), alpha-Copaene (2.15%), delta-Cadinene (1.61%), and Caryophyllene oxide (1.50%). Six concentrations were prepared for FT-IR analysis of clove leaf oil and turpentine oil mixture, which was estimated by PLS and PCA chemometrics. Turpentine oil was used as counterfeit, which was usually added to clove oil products. The PLS analysis of FTIR obtained optimized wavenumbers, 2960-2860 cm-1. The equation y=0.9998x+0.0096 had an R2 value of 0.9998, as well as RMSEC, RMSECV, and RMSEP values of 0.22%, 0.76%, and 1.20%, respectively. The PCA analysis can categorize the oil based on the main component types of distilled clove leaf oil, turpentine oil, and market oil, namely products A, B, and C. The results showed that product A oil was in the same quadrant as distilled clove leaf oil. Moreover, no clove leaf oil product had similar physical and chemical characteristics to turpentine oil.

 

Keywords: authentication, clove leaf oil,  Fourier transform infrared, gas chromatography-mass spectrometry, turpentine oil

 

Abstrak

Minyak cengkih mempunyai nilai dan faedah komersial yang besar, pada masa ini permintaan untuk ketersediaan minyak cengkih di pasaran adalah sangat tinggi namun, hasil perahan minyak cengkih adalah sangat rendah, iaitu sekitar 1% dan mengakibatkan kos pengeluaran minyak cengkih yang agak tinggi. Ini menyebabkan pemalsuan minyak pati untuk mengurangkan kos pengeluaran dan mengekalkan jumlah minyak pati. Satu teknik yang boleh digunakan untuk mengesan kehadiran bahan tiruan dalam minyak pati adalah melalui pengesahan. Kaedah GC-MS dan FTIR digabungkan dengan analisis penentukuran multivariat PCA (analisis prinsip utama) dan PLS (partial least square) telah dipilih dengan tujuan untuk mengesan tindakan pemalsuan pada minyak cengkih. Kandungan minyak daun cengkih suling daripada hasil analisis GC-MS iaitu eugenol 49.63% β-Caryophyllene 28.25%, alpha-Humulene 8.92%, alpha-Copaene 2.15%, delta-Cadiene 1.61% dan Caryophyllene oksida 1.50%. Analisis FT-IR dijalankan dengan membuat 6 siri kepekatan campuran minyak daun cengkih dan minyak turpentin dan kemudiannya dianalisis dengan kemometrik PLS dan PCA. Keputusan analisis PLS daripada FTIR menunjukkan bahawa nombor gelombang yang dioptimumkan ialah 2960-2860 cm-1. Persamaan yang terhasil ialah y = 0.9998x + 0.0096 dengan nilai R2 0.9998; Nilai RMSEC (0.22%; nilai RMSECV 0.76%; dan nilai RMSEP 1.20%. Hasil analisis PCA mampu mengklasifikasikan minyak berdasarkan jenis komponen utama minyak suling daun cengkih, minyak turpentin, dan minyak daun di pasaran (A, B, dan C), di mana minyak produk A berada dalam kuadran yang sama dengan minyak daun cengkih suling dan tiada produk minyak daun cengkih yang mempunyai ciri fizikal dan kimia yang serupa dengan minyak turpentin.

 

Kata kunci: pengesahan, inframerah transformasi Fourier, kromatografi gas-spektometri jisim, minyak daun cengkih, minyak terpentin


 

References

1.      Cortés-Rojas, D. F., de Souza, C. R. F. and Oliveira, W. P. (2014). Clove (Syzygium aromaticum): A precious spice. Asian Pacific Journal of Tropical Biomedicine, 4(2): 90–96.

2.      Neveu, V., Perez-Jiménez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., Knox, C., Eisner, R., Cruz, J., Wishart, D. and Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database: The Journal of Biological Databases and Curation, 2010: 1-9.

3.      Gaylor, R., Michel, J., Thierry, D., Panja, R., Fanja, F. and Pascal, D. (2014). Bud, leaf and stem essential oil composition of Syzygium aromaticum from Madagascar, Indonesia and Zanzibar. International Journal of Basic and Applied Sciences, 3(3): 2473.

4.      Hasim, F., Batubara, I. and Suparto, I. H. (2016). The potency of clove (Syzygium aromaticum) essential oil as slimming aromatherapy by in vivo assay. International Journal of Pharma and Bio Sciences, 7(1): 110-116.

5.      Lutony, T. L. and Rahmayati, Y. (2002). Produksi dan perdagangan minyak atsiri. Penebar Swadaya, Jakarta.

6.      Marincaş, O. and Feher, I. (2018). A new cost-effective approach for lavender essential oils quality assessment. Industrial Crops and Products, 125(9): 241-247.

7.      Hong, E., Lee, S. Y., Jeong, J. Y., Park, J. M., Kim, B. H., Kwon, K. and Chun, H. S. (2017). Modern analytical methods for the detection of food fraud and adulteration by food category. Journal of the Science of Food and Agriculture, 97(12): 3877-3896.

8.      Ma’mun. (2015). Identifikasi pemalsuan minyak nilam di Rantai Tataniaga. Buletin Penelitian Tanaman Rempah dan Obat, 14(2): 17-22.

9.      Kurniawan, E., Sari, N. and Sulhatun, S. (2020). Ekstraksi sereh wangi menjadi minyak atsiri. Jurnal Teknologi Kimia Unimal, 9(2): 43.

10.   Rohman, A. (2017). Physico-chemical properties, biological activities and authentication of cod liver oil. Journal of Food and Pharmaceutical Sciences, 5: 1-7.

11.   Do, T. K. T., Hadji-Minaglou, F., Antoniotti, S. and Fernandez, X. (2015). Authenticity of essential oils. TrAC - Trends in Analytical Chemistry, 66(December): 146-157.

12.   Rohman, A., Windarsih, A., Riyanto, S., Sudjadi, Shuhel Ahmad, S. A., Rosman, A. S. and Yusoff, F. M. (2016). Fourier transform infrared spectroscopy combined with multivariate calibrations for the authentication of avocado oil. International Journal of Food Properties, 19(3): 680-687.

13.   Jaswir, I., Mirghani, M. E. S., Hassan, T. H. and Said, M. Z. M. (2003). Determination of lard in mixture of body fats of mutton and cow by fourier transform infrared spectroscopy. Journal of Oleo Sciences, 52(12): 633-638.

14.   De Silva, C. C., Beckman, S. P., Liu, S. and Bowler, N. (2019). Principal component analysis (PCA) as a statistical tool for identifying key indicators of nuclear power plant cable insulation degradation. Minerals, Metals and Materials Series, 1227-1239.

15.   Gontijo, L. C., Guimarães, E., Mitsutake, H., De Santana, F. B., Santos, D. Q. and Neto, W. B. (2014). Development and validation of PLS models for quantification of biodiesels content from waste frying oil in diesel by HATR-MIR. Revista Virtual de Quimica, 6(5): 1517-1528.

16.   Guntarti, A., Rohman, A., Martono, S. and Yuswanto, D. A. (2016). Autentikasi lemak celeng dengan kromatografi gasspektroskopi gas-spektroskopi kemometrika pca (principle component analysis). Prosiding Rakernas dan Pertemuan Ilmiah Tahunan Ikatan Apoteker Indonesia 2016: 2541-474.

17.   Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2010). Introduction to Spectroscopy. Brooks/Cole Cengage Learning, USA.

18.   Wang, L. and Sung, W. (2011). Rapid evaluation and quantitative analysis of eugenol derivatives in essential oils and cosmetic formulations on human skin using attenuated total reflectance – infrared spectroscopy, 26: 43-52.

19.   Khalil, A. A., Rahman, U. U., Khan, M. R., Sahar, A., Mehmood, T. and Khan, M. (2017). Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Advances, 7(52): 32669-32681.

20.   Bhuiyan, M. N. I., Begum, J., Nandi, N. C. and Akter, F. (2012). Constituents of the essential oil from leaves and buds of clove (Syzigium caryophyllatum (L.) Alston). African Journal of Plant Science, 4(11): 451-454.

21.   Oboh, G., Akinbola, I. A., Ademosun, A. O., Sanni, D. M., Odubanjo, O. V., Olasehinde, T. A. and Oyeleye, S. I. (2015). Essential oil from clove bud (Eugenia aromatica Kuntze) inhibit key enzymes relevant to the management of type-2 diabetes and some pro-oxidant induced lipid peroxidation in rats pancreas in vitro. Journal of Oleo Science, 64(7): 775-782.

22.   Miller, J. N. and Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry sixth edition. London: Pearson Education Limited.

23.   Rohman, A. (2014). Spektroskopi inframerah dan kemometrika untuk analisis farmasi. Pustaka pelajar, Yogyakarta.

24.   Yasin, H. and Asih Maruddani, D. I. (2016). Analisis faktor-faktor yang mempengaruhi persentase penduduk miskin di jawa tengah dengan metode geographically weighted principal components analysis (GWPCA) adaptive bandwidth. Jurnal Gaussian, 5(3): 487-496.

25.   Nugraha, I., Utami, P. I. and Rahayu, W. S. (2018). Analisis asam lemak daging anjing pada bakso sapi menggunakan gas chromatography mass spectrometry (GCMS) yang dikombinasikan dengan PCA (principal component analysis). Indonesian Journal of Halal, 1(2): 117-124.

26.   Yuliani, F., Riyanto, S. and Rohman, A. (2018). Application of ftir spectra combined with chemometrics for analysis of candlenut oil adulteration. International Journal of Applied Pharmaceutics, 10(5): 54-59.

27.   Agatonovic-Kustrin, S., Ristivojevic, P., Gegechkori, V., Litvinova, T. M. and Morton, D. W. (2020). Essential oil quality and purity evaluation via FT-IR spectroscopy and pattern recognition techniques. Applied Sciences (Switzerland), 10(20): 1-12.

28.   Rohman, A. and Che Man, Y. B. (2012). Analysis of pig derivatives for halal authentication studies. Food Reviews International, 28(1): 97-112.

29.   Guntarti, A. and Abidin, M. A. Z. (2018). Analisis lemak anjing dalam bakpao ayam menggunakan FTIR (Fourier Transform Infrared) dikombinasi kemometrika. Media Farmasi: Jurnal Ilmu Farmasi, 15(1): 34.

30.   Yang, Z., Chai, Y., Zhou, D., Yao, X. and Ji, H. (2020). Mechanism for efficient separation of eugenol and eugenol acetate with β-cyclodextrin as a selective solvent. Supramolecular Chemistry, 31(12): 767-775.

31.   de Oliveira, A. de N., Lima, E. T. L., de Oliveira, D. T., Angélica, R. S., Andrade, E. H. de A., Filho, G. N. da R. and do Nascimento, L. A. S. (2019). Acetylation of eugenol over 12-molybdophosphoric acid anchored in mesoporous silicate support synthesized from flint kaolin. Materials, 12(18): 2995.

32.   Pramod, K., Suneesh, C. V., Shanavas, S., Ansari, S. H. and Ali, J. (2015). Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. Journal of Analytical Science and Technology, 6: 34.

33.   Tarhan, İ. (2021). A robust method for simultaneous quantification of eugenol, eugenyl acetate, and β-caryophyllene in clove essential oil by vibrational spectroscopy. Phytochemistry, 191:112928.

34.   Wijayati, N. (2016). Biotransformasi alfa pinena dari minyak terpentin. Unnes Press, Semarang.

35.   Rohman, A., Irnawati and Riswanto, F. D. O. (2021). Kemometrika. Gadjah Mada University Press, Yogyakarta.

36.   Dzulfianto, A., Riswanto, F. D. O. and Rohman, A. (2017). The employment of UV-spectroscopy combined with multivariate calibration for analysis of paracetamol, propyphenazone and caffeine. Indonesian Journal of Pharmacy, 28(4): 191-197.

37.   Bingham, N.  and Fry, J. M. (2010). Regression Linear Models in Statistics. Springer Undergraduate Mathematics Series, London.

38.   Triyasmono, L., Riyanto, S. and Rohman, A. (2013). Determination of iodine value and acid value of red fruit oil by infrared spectroscopy and multivariate calibration. International Food Research Journal, 20(6): 3259-3263.

39.   Guntarti, A., Martono, S., Yuswanto, A. and Rohman, A. (2015). FTIR spectroscopy in combination with chemometrics for analysis of wild boar meat in meatball formulation. Asian Journal of Biochemistry, 10(4): 165-172.