Malaysian Journal of Analytical
Sciences, Vol 28
No 3 (2024): 664 - 680
AUTHENTICATION
OF CLOVE LEAF OIL IN PRODUCTS
(Syzygium
aromaticum (L.) Merr. & L. M. Perry) USING
GC-MS AND FTIR METHODS COMBINED WITH CHEMOMETRIC
Pengesahan Minyak Daun Cengkih (Syzygium aromaticum (L.) Merr. & L.
M. Perry) dalam Produk Menggunakan Kaedah GC-MS dan FTIR Yang Digabungkan
dengan Kemometri
Any Guntarti1, Laela Hayu
Nurani1*, Putri Lestari1, Citra Ariani Edityaningrum1,
Lalu Muhammad Irham1,
and Abdul Rohman2,3
1Faculty of Pharmacy, Universitas Ahmad Dahlan Yogyakarta
55164, Indonesia
2Center of Excellence, Institute for Halal Industry and
Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
3Faculty of Pharmacy, Universitas Gajah Mada, Yogyakarta
55281, Indonesia
*Corresponding author:
laela.farmasi@pharm.uad.ac.id
Received: 24 January 2024; Accepted: 26
March 2024; Published: 29 June 2024
Abstract
The production cost and market demand for clove oil
are significantly high due to its great commercial value and benefits. However,
the extraction yield of clove oil is very low at around 1%, causing the act of
adulteration of essential oils to reduce production costs. Therefore, this
study aims to determine the addition of adulterants in essential oils using the
authentication technique. The samples used are clove oil from dry leaf
distillation, products A, B, and C on
the market. The GC-MS and FTIR methods combined with PCA (Principal Component
Analysis) and PLS (Partial Least Square) multivariate calibration analysis were
selected in the authentication to detect clove oil adulteration. The
constituent’s presence in distilled clove oil from GC-MS analysis was eugenol
(49.63%), β-Caryophyllene (28.25%), alpha-Humulene (8.92%), alpha-Copaene
(2.15%), delta-Cadinene (1.61%), and Caryophyllene oxide (1.50%). Six
concentrations were prepared for FT-IR analysis of clove
leaf oil and turpentine oil mixture, which was estimated by PLS and PCA
chemometrics. Turpentine oil was used as counterfeit, which was usually added
to clove oil products. The PLS analysis of FTIR obtained optimized wavenumbers,
2960-2860 cm-1. The equation
y=0.9998x+0.0096 had an R2 value of 0.9998, as well as RMSEC,
RMSECV, and RMSEP values of 0.22%, 0.76%, and 1.20%, respectively. The PCA
analysis can categorize the oil based on the main component types of distilled clove leaf oil, turpentine oil, and market oil, namely
products A, B, and C. The results showed that product A oil was in the same
quadrant as distilled clove leaf oil. Moreover, no clove leaf oil product had similar physical and chemical
characteristics to turpentine oil.
Keywords: authentication,
clove leaf oil,
Fourier transform infrared, gas chromatography-mass spectrometry,
turpentine oil
Abstrak
Minyak cengkih mempunyai nilai dan faedah komersial yang
besar, pada masa ini permintaan untuk ketersediaan minyak cengkih di pasaran
adalah sangat tinggi namun, hasil perahan minyak cengkih adalah sangat rendah,
iaitu sekitar 1% dan mengakibatkan kos pengeluaran minyak cengkih yang agak
tinggi. Ini menyebabkan pemalsuan minyak pati untuk mengurangkan kos
pengeluaran dan mengekalkan jumlah minyak pati. Satu teknik yang boleh
digunakan untuk mengesan kehadiran bahan tiruan dalam minyak pati adalah melalui
pengesahan. Kaedah GC-MS dan FTIR digabungkan dengan analisis penentukuran
multivariat PCA (analisis prinsip utama) dan PLS (partial least square) telah dipilih dengan tujuan untuk mengesan
tindakan pemalsuan pada minyak cengkih. Kandungan minyak daun cengkih suling
daripada hasil analisis GC-MS iaitu eugenol 49.63% β-Caryophyllene 28.25%,
alpha-Humulene 8.92%, alpha-Copaene 2.15%, delta-Cadiene 1.61% dan
Caryophyllene oksida 1.50%. Analisis FT-IR dijalankan dengan membuat 6 siri
kepekatan campuran minyak daun cengkih dan minyak turpentin dan kemudiannya
dianalisis dengan kemometrik PLS dan PCA. Keputusan analisis PLS daripada FTIR
menunjukkan bahawa nombor gelombang yang dioptimumkan ialah 2960-2860 cm-1.
Persamaan yang terhasil ialah y = 0.9998x + 0.0096 dengan nilai R2
0.9998; Nilai RMSEC (0.22%; nilai RMSECV 0.76%; dan nilai RMSEP 1.20%. Hasil
analisis PCA mampu mengklasifikasikan minyak berdasarkan jenis komponen utama
minyak suling daun cengkih, minyak turpentin, dan minyak daun di pasaran (A, B,
dan C), di mana minyak produk A berada dalam kuadran yang sama dengan minyak
daun cengkih suling dan tiada produk minyak daun cengkih yang mempunyai ciri
fizikal dan kimia yang serupa dengan minyak turpentin.
Kata kunci: pengesahan, inframerah transformasi
Fourier, kromatografi gas-spektometri jisim, minyak daun cengkih, minyak terpentin
References
1.
Cortés-Rojas,
D. F., de Souza, C. R. F. and Oliveira, W. P. (2014). Clove (Syzygium aromaticum): A precious spice. Asian Pacific Journal of Tropical
Biomedicine, 4(2): 90–96.
2.
Neveu,
V., Perez-Jiménez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., Knox,
C., Eisner, R., Cruz, J., Wishart, D. and Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on
polyphenol contents in foods. Database:
The Journal of Biological Databases and Curation, 2010: 1-9.
3.
Gaylor,
R., Michel, J., Thierry, D., Panja, R., Fanja, F. and Pascal, D. (2014). Bud,
leaf and stem essential oil composition of Syzygium aromaticum from Madagascar,
Indonesia and Zanzibar. International
Journal of Basic and Applied Sciences, 3(3): 2473.
4.
Hasim,
F., Batubara, I. and Suparto, I. H. (2016). The potency of clove (Syzygium
aromaticum) essential oil as slimming aromatherapy by in vivo assay. International Journal of Pharma and Bio
Sciences, 7(1): 110-116.
5. Lutony, T. L. and Rahmayati, Y. (2002). Produksi dan perdagangan minyak atsiri. Penebar
Swadaya, Jakarta.
6.
Marincaş,
O. and Feher, I. (2018). A new cost-effective approach for lavender essential
oils quality assessment. Industrial Crops
and Products, 125(9): 241-247.
7.
Hong,
E., Lee, S. Y., Jeong, J. Y., Park, J. M., Kim, B. H., Kwon, K. and Chun, H. S.
(2017). Modern analytical methods for the detection of food fraud and
adulteration by food category. Journal of
the Science of Food and Agriculture, 97(12): 3877-3896.
8. Ma’mun. (2015). Identifikasi pemalsuan minyak nilam di
Rantai Tataniaga. Buletin Penelitian
Tanaman Rempah dan Obat, 14(2): 17-22.
9.
Kurniawan,
E., Sari, N. and Sulhatun, S. (2020). Ekstraksi sereh wangi menjadi minyak
atsiri. Jurnal Teknologi Kimia Unimal,
9(2): 43.
10. Rohman, A. (2017). Physico-chemical properties,
biological activities and authentication of cod liver oil. Journal of Food and Pharmaceutical Sciences, 5: 1-7.
11. Do, T. K. T., Hadji-Minaglou, F., Antoniotti, S. and
Fernandez, X. (2015). Authenticity of essential oils. TrAC - Trends in Analytical Chemistry, 66(December): 146-157.
12. Rohman, A., Windarsih, A., Riyanto, S., Sudjadi,
Shuhel Ahmad, S. A., Rosman, A. S. and Yusoff, F. M. (2016). Fourier transform
infrared spectroscopy combined with multivariate calibrations for the
authentication of avocado oil. International
Journal of Food Properties, 19(3): 680-687.
13. Jaswir, I., Mirghani, M. E. S., Hassan, T. H. and
Said, M. Z. M. (2003). Determination of lard in mixture of body fats of mutton
and cow by fourier transform infrared spectroscopy. Journal of Oleo Sciences, 52(12): 633-638.
14. De Silva, C. C., Beckman, S. P., Liu, S. and Bowler,
N. (2019). Principal component analysis (PCA) as a statistical tool for
identifying key indicators of nuclear power plant cable insulation degradation.
Minerals, Metals and Materials Series,
1227-1239.
15. Gontijo, L. C., Guimarães, E., Mitsutake, H., De
Santana, F. B., Santos, D. Q. and Neto, W. B. (2014). Development and
validation of PLS models for quantification of biodiesels content from waste
frying oil in diesel by HATR-MIR. Revista
Virtual de Quimica, 6(5): 1517-1528.
16. Guntarti, A., Rohman, A., Martono, S. and Yuswanto, D.
A. (2016). Autentikasi lemak celeng dengan kromatografi gasspektroskopi
gas-spektroskopi kemometrika pca (principle component analysis). Prosiding Rakernas dan Pertemuan Ilmiah
Tahunan Ikatan Apoteker Indonesia 2016:
2541-474.
17. Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan,
J. R. (2010). Introduction to
Spectroscopy. Brooks/Cole Cengage Learning, USA.
18. Wang, L. and Sung, W. (2011). Rapid evaluation and
quantitative analysis of eugenol derivatives in essential oils and cosmetic
formulations on human skin using attenuated total reflectance – infrared
spectroscopy, 26: 43-52.
19. Khalil, A. A., Rahman, U. U., Khan, M. R., Sahar, A.,
Mehmood, T. and Khan, M. (2017). Essential oil eugenol: Sources, extraction
techniques and nutraceutical perspectives. RSC
Advances, 7(52): 32669-32681.
20. Bhuiyan, M. N. I., Begum, J., Nandi, N. C. and Akter,
F. (2012). Constituents of the essential oil from leaves and buds of clove
(Syzigium caryophyllatum (L.) Alston). African
Journal of Plant Science, 4(11): 451-454.
21. Oboh, G., Akinbola, I. A., Ademosun, A. O., Sanni, D.
M., Odubanjo, O. V., Olasehinde, T. A. and Oyeleye, S. I. (2015). Essential oil
from clove bud (Eugenia aromatica Kuntze) inhibit key enzymes relevant
to the management of type-2 diabetes and some pro-oxidant induced lipid
peroxidation in rats pancreas in vitro. Journal
of Oleo Science, 64(7): 775-782.
22. Miller, J. N. and Miller, J. C. (2010). Statistics and chemometrics for analytical
chemistry sixth edition. London: Pearson Education Limited.
23. Rohman, A. (2014). Spektroskopi
inframerah dan kemometrika untuk analisis farmasi. Pustaka pelajar,
Yogyakarta.
24. Yasin, H. and Asih Maruddani, D. I. (2016). Analisis
faktor-faktor yang mempengaruhi persentase penduduk miskin di jawa tengah
dengan metode geographically weighted principal components analysis (GWPCA)
adaptive bandwidth. Jurnal Gaussian,
5(3): 487-496.
25. Nugraha, I., Utami, P. I. and Rahayu, W. S. (2018).
Analisis asam lemak daging anjing pada bakso sapi menggunakan gas
chromatography mass spectrometry (GCMS) yang dikombinasikan dengan PCA
(principal component analysis). Indonesian
Journal of Halal, 1(2): 117-124.
26. Yuliani, F., Riyanto, S. and Rohman, A. (2018).
Application of ftir spectra combined with chemometrics for analysis of
candlenut oil adulteration. International
Journal of Applied Pharmaceutics, 10(5): 54-59.
27. Agatonovic-Kustrin, S., Ristivojevic, P., Gegechkori,
V., Litvinova, T. M. and Morton, D. W. (2020). Essential oil quality and purity
evaluation via FT-IR spectroscopy and pattern recognition techniques. Applied Sciences (Switzerland), 10(20):
1-12.
28. Rohman, A. and Che Man, Y. B. (2012). Analysis of pig
derivatives for halal authentication studies. Food Reviews International, 28(1): 97-112.
29. Guntarti, A. and Abidin, M. A. Z. (2018). Analisis
lemak anjing dalam bakpao ayam menggunakan FTIR (Fourier Transform Infrared)
dikombinasi kemometrika. Media Farmasi:
Jurnal Ilmu Farmasi, 15(1): 34.
30. Yang, Z., Chai, Y., Zhou, D., Yao, X. and Ji, H.
(2020). Mechanism for efficient separation of eugenol and eugenol acetate with
β-cyclodextrin as a selective solvent. Supramolecular
Chemistry, 31(12): 767-775.
31. de Oliveira, A. de N., Lima, E. T. L., de Oliveira, D.
T., Angélica, R. S., Andrade, E. H. de A., Filho, G. N. da R. and do
Nascimento, L. A. S. (2019). Acetylation
of eugenol over 12-molybdophosphoric acid anchored in mesoporous silicate
support synthesized from flint kaolin. Materials,
12(18): 2995.
32. Pramod, K., Suneesh, C. V., Shanavas, S., Ansari, S.
H. and Ali, J. (2015). Unveiling the compatibility of eugenol with formulation
excipients by systematic drug-excipient compatibility studies. Journal of Analytical Science and Technology,
6: 34.
33. Tarhan, İ. (2021). A robust method for
simultaneous quantification of eugenol, eugenyl acetate, and
β-caryophyllene in clove essential oil by vibrational spectroscopy. Phytochemistry, 191:112928.
34. Wijayati, N. (2016). Biotransformasi alfa pinena dari minyak terpentin. Unnes Press, Semarang.
35. Rohman, A., Irnawati and Riswanto, F. D. O. (2021). Kemometrika. Gadjah Mada University
Press, Yogyakarta.
36. Dzulfianto, A., Riswanto, F. D. O. and Rohman, A.
(2017). The employment of UV-spectroscopy combined with multivariate
calibration for analysis of paracetamol, propyphenazone and caffeine. Indonesian Journal of Pharmacy, 28(4):
191-197.
37. Bingham, N. and
Fry, J. M. (2010). Regression Linear
Models in Statistics. Springer Undergraduate Mathematics Series, London.
38. Triyasmono, L., Riyanto, S. and Rohman, A. (2013).
Determination of iodine value and acid value of red fruit oil by infrared
spectroscopy and multivariate calibration. International
Food Research Journal, 20(6): 3259-3263.
39. Guntarti, A., Martono, S., Yuswanto, A. and Rohman, A.
(2015). FTIR spectroscopy in combination with chemometrics for analysis of wild
boar meat in meatball formulation. Asian
Journal of Biochemistry, 10(4): 165-172.