Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 645 – 663

 

EXPLORING DEEP EUTECTIC SOLVENTS AS A POTENTIAL SOLVENT FOR THE EXTRACTION OF FOOD ADDITIVE ALLURA RED IN FOOD TECHNOLOGY APPLICATION

 

(Mengeksplorasi Pelarut Eutektik Mendalam sebagai Pelarut Berpotensi untuk Pengekstrakan Pewarna Makanan Merah Allura dalam Aplikasi Teknologi Makanan)

 

Thanussha Elangovan1, Nor Munira Hashim1, Nurina Izzah Mohd Husani1, Noorfatimah Yahaya1,

Farhanini Yusoff 2, and Nur Nadhirah Mohamad Zain1*

 

1Department of Toxicology, Advanced Medical, and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia.

2Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.

 

*Corresponding author: nurnadhirah@usm.my

 

 

Received: 4 January 2024; Accepted: 16 Apr 2024; Published:  29 June 2024

 

 

Abstract

In recent years, synthetic food dyes have gained significant popularity as additives, replacing natural dyes, with azo dyes comprising approximately 65% of the commercial dye market. However, concerns regarding the toxic effects of azo dyes used in food colouring have prompted the development of advanced analytical methods to detect them in various food matrices. These methods typically involve intricate pre-concentration processes, time-consuming steps, and the use of expensive instruments, thus emphasising the need for highly sensitive and selective approaches. Hence, this study aims to explore the application of deep eutectic solvent (DES) as a potential solvent for the extraction of Allura Red AC (ARAC). First, the synthesised magnetic nanoparticles functionalised with DES (silicone surfactant: dodecanoic acid) (SS: DoAc@Fe3O4) adsorbent was successfully characterised using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for the identification of functional bonds. This adsorbent was subsequently applied in the magnetic solid phase extraction (MSPE) technique to extract ARAC in soft drink samples. In contrast to pure Fe3O4 particles, the targeted ARAC can be easily adsorbed onto the SS: DoAc@Fe3O4 surface due to the formation of strong hydrophobic interaction between ARAC and the adsorbents, thus amplifying the extraction efficiency. Further optimisation was done via one-variable-at-a-time (OVAT) and Taguchi experimental design to determine the optimised condition for ARAC extraction. The OVAT analysis identified that using methanol: acetonitrile (1:1) as the desorption solvent, incorporating Na2SO4 to boost extraction efficiency, employing salt volume of 200 μL, and utilising a sample volume of 20 mL produced the most favourable outcomes. Meanwhile, the Taguchi experiments pinpointed the optimum conditions as pH 2, an adsorbent dosage of 25 mg, an extraction duration of 2 minutes, a desorption period of 3 minutes, and a desorption solvent volume of 400 μL. Under the optimised conditions, the R2 value obtained was 0.999 while the limit of detection (LOD) and limit of quantification (LOQ) values were 0.1 mgL-1 and 0.4 mgL-1, respectively. The studied ARAC also obtained relative recovery values between 80% to 111%. Therefore, it is safe to conclude that the newly proposed SS: DoAc@Fe3O4-based MSPE is an environmentally friendly, simple, affordable, and effective technique for the extraction of ARAC in drink samples.

 

Keywords: Allura red AC, deep eutectic solvents, dodecanoic acid, magnetic solid phase extraction, silicone surfactant

 

Abstrak

Kebelakangan ini, pewarna makanan sintetik semakin popular dan kerap digunakan sebagai bahan tambahan menggantikan pewarna semula jadi, dengan pewarna azo merangkumi kira-kira 65% daripada pasaran pewarna komersial. Walau bagaimanapun, kebimbangan mengenai kesan toksik pewarna azo yang digunakan dalam pewarna makanan telah mendorong pembangunan kaedah analisis lanjutan untuk mengesannya dalam pelbagai matriks makanan. Kaedah tersebut biasanya melibatkan proses pra-kepekatan yang rumit, prosedur yang memakan masa, dan penggunaan instrumen yang mahal, sekaligus menekankan keperluan untuk pendekatan yang sensitif dan terpilih. Oleh itu, kajian ini bertujuan untuk meneroka aplikasi pelarut eutektik mendalam (DES) untuk mengekstrak pewarna merah allura AC (ARAC). Pertama, penjerap zarah nano magnetik difungsikan dengan DES (surfaktan silikon:asid dodekanoik) (SS:DoAc@Fe3O4) telah berjaya disintesis dan dianalisis menggunakan spektroskopi transformasian Fourier inframerah dengan pantulan keseluruhan dikecilkan (ATR-FTIR) untuk mengenal pasti ikatan berfungsi. Bahan penjerap ini kemudiannya digunakan dalam teknik pengekstrakan fasa pepejal magnetik (MSPE) untuk mengekstrak ARAC dalam sampel minuman ringan. Berbeza dengan zarah Fe3O4 tulen, ARAC lebih mudah diserap ke permukaan SS:DoAc@Fe3O4 disebabkan oleh pembentukan interaksi hidrofobik yang kuat antara ARAC dan penjerap, sekaligus menguatkan kecekapan pengekstrakan. Pengoptimuman lanjut kemudiannya dilakukan melalui satu-pembolehubah-pada-satu-masa (OVAT) dan reka bentuk eksperimen Taguchi bagi menentukan keadaan optimum untuk pengekstrakan ARAC. Analisis OVAT mendapati bahawa penggunaan metanol:acetonitrile (1:1) sebagai pelarut penyahjerapan, penambahan garam untuk meningkatkan kecekapan pengekstrakan, penggunaan isipadu garam sebanyak 200 μL, dan penggunaan isipadu sampel 20 mL memberikan hasil yang paling baik. Sementara itu, eksperimen Taguchi menunjukkan keadaan optimum sebagai pH 2, dos penjerap sebanyak 25 mg, tempoh pengekstrakan selama 2 minit, tempoh penyahjerapan selama 3 minit, dan isipadu pelarut penyahjerapan sebanyak 400 μL. Dibawah keadaan yang dioptimumkan, nilai R2 yang diperolehi adalah 0.999 manakala nilai had pengesanan (LOD) dan had kuantifikasi (LOQ) masing-masing adalah 0.1 mgL-1 dan 0.4 mgL-1. ARAC yang dikaji juga memperoleh nilai pemulihan relatif antara 80% hingga 111%. Oleh itu, dapat disimpulkan bahawa MSPE berasaskan SS:DoAc@Fe3O4 yang dicadangkan adalah satu teknik mesra alam, mudah, berpatutan, dan berkesan untuk pengekstrakan ARAC dalam sampel minuman.

 

Kata kunci: Pewarna merah allura AC, pelarut eutektik mendalam, asid dodekanoik, pengekstrakan fasa pepejal magnetik, surfaktan silikon


References

1.      Vega, E. N., Ciudad-Mulero, M., Fernández-Ruiz, V., Barros, L., and Morales, P. (2023). Natural sources of food colorants as potential substitutes for artificial additives. Foods, 12(22): 4102.

2.      Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Yańez, J., Mojica, L., and Luna-Vital, D. A. (2021). Technological applications of natural colorants in food systems: A review. Foods, 10(3): 634.

3.      Dey, S., and Nagababu, B. H. (2022c). Applications of food color and bio-preservatives in the food and its effect on human health. Food Chemistry Advances, 1: 19.

4.      Nabi, B. G., Mukhtar, K., Ahmed, W., Manzoor, M. F., Ranjha, M. M. A. N., Kieliszek, M., Bhat, Z. F., and Aadil, R. M. (2023). Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as colorants in food products. Food Bioscience, 52: 102403.

5.      Castro, T. A., Leite, B. S., Assunçăo, L. S., de Jesus Freitas, T., Colauto, N. B., Linde, G. A., Otero, D. M., Machado, B. A. S., and Ferreira Ribeiro, C. D. (2021). Red tomato products as an alternative to reduce synthetic dyes in the food industry: A review. Molecules, 26(23): 7125.

6.      Dilrukshi, P. G. T., Munasinghe, H., Silva, A. B. G., and De Silva, P. G. S. M. (2019f). Identification of synthetic food colours in selected confectioneries and beverages in Jaffna District, Sri Lanka. Journal of Food Quality, 2019: 7453169.

7.      John, A., Yang, H. H., Muhammad, S., Khan, Z. I., Yu, H., Luqman, M., Tofail, M., Hussain, M. I., and Awan, M. U. F. (2022). Cross talk between synthetic food colors (azo dyes), oral flora, and cardiovascular disorders. Applied Sciences (Switzerland), 12(14): 7084.

8.      Ntrallou, K., Gika, H., and Tsochatzis, E. (2020). Analytical and sample preparation techniques for the determination of food colorants in food matrices. Foods, 9(1): 58.

9.      Silva, M. M., Reboredo, F. H., and Lidon, F. C. (2022i). Food colour additives: A synoptical overview on their chemical properties, applications in food products and health side effects. Foods, 11(3): 379.

10.   Novais, C., Molina, A. K., Abreu, R. M. V., Santo-Buelga, C., Ferreira, I. C. F. R., Pereira, C., and Barros, L. (2022). Natural food colorants and preservatives: A review, a demand, and a challenge. Journal of Agricultural and Food Chemistry, 70(9): 7533.

11.   Slama, H. Ben, Bouket, A. C., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., Oszako, T., Luptakova, L., Golińska, P., and Belbahri, L. (2021k). Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Applied Sciences (Switzerland), 11(14): 6255.

12.   Zafar, S., Bukhari, D. A., and Rehman, A. (2022l). Azo dyes degradation by microorganisms – An efficient and sustainable approach. Saudi Journal of Biological Sciences, 29(12): 103437.

13.   Kamali, M., Fazlpour, F., Karimi, F., Rezaee, A., Sadri, F., and Hosseini, S. F. (2023). A review of cytotoxic effects of azo dyes on brain-subregion. Middle East Journal of Rehabilitation and Health Studies, 10(2): 130751.

14.   Barciela, P., Perez-Vazquez, A., and Prieto, M. A. (2023). Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation. Food and Chemical Toxicology, 178: 113935.

15.   Badawy, M. E. I., El-Nouby, M. A. M., Kimani, P. K., Lim, L. W., and Rabea, E. I. (2022). A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Analytical Sciences, 38(12): 1457-1487.

16.   Shen, Z., Kuang, Y., Zhou, S., Zheng, J., and Ouyang, G. (2023p). Preparation of magnetic adsorbent and its adsorption removal of pollutants: An overview. TrAC - Trends in Analytical Chemistry, 167: 117241.

17.   Hu, M., Butt, H. J., Landfester, K., Bannwarth, M. B., Wooh, S., and Thérien-Aubin, H. (2019q). Shaping the assembly of superparamagnetic nanoparticles. ACS Nano, 13(3): 7783.

18.   Zhang, M., Huang, G., Huang, J., Zhong, L., and Chen, W. (2017). Magnetic solid phase extraction with octahedral structured Fe3O4@SiO2@polydimethylsiloxane magnetic nanoparticles as the sorbent for determining benzene, toluene, ethylbenzene and xylenes in water samples. RSC Advances, 7(66): 07733e.

19.   Rahnama, S., Shariati, S., and Divsar, F. (2021). Selective aptamer conjugation to silver-coated magnetite nanoparticles for magnetic solid-phase extraction of trace amounts of Pb2+ions. RSC Advances, 11(9): 4791.

20.   Ibarra, I. S., Rodriguez, J. A., Galán-Vidal, C. A., Cepeda, A., and Miranda, J. M. (2015). Magnetic solid phase extraction applied to food analysis. Journal of Chemistry, 2015: 919414

21.   de Jesus, S. S., and Maciel Filho, R. (2022). Are ionic liquids eco-friendly? Renewable and Sustainable Energy Reviews, 157: 112039.

22.   Saini, R., Kumar, S., Sharma, A., Kumar, V., Sharma, R., Janghu, S., and Suthar, P. (2022). Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. Journal of Food Processing and Preservation, 46(10): 16250.

23.   Ünlü, A. E., Arlkaya, A., and Takaç, S. (2019). Use of deep eutectic solvents as catalyst: A mini-review. Green Processing and Synthesis, 8(1): 355-372.

24.   Bianchi, F., Giannetto, M., and Careri, M. (2018). Analytical systems and metrological traceability of measurement data in food control assessment. TrAC Trends in Analytical Chemistry, 107: 142-150.

25.   Pay, R., Sharrock, A. V., Elder, R., Maré, A., Bracegirdle, J., Torres, D., Malone, N., Vorster, J., Kelly, L., Ryan, A., Josephy, P. D., Allen-Vercoe, E., Ackerley, D. F., Keyzers, R. A., and Harvey, J. E. (2023). Preparation, analysis and toxicity characterisation of the redox metabolites of the azo food dye tartrazine. Food and Chemical Toxicology, 182: 114193.

26.   Emiroğlu, E., Yuvali, D., Sarp, G., Yilmaz, E., and Narin, İ. (2021). Magnetic solid phase extraction of erythrosine (E127) in pharmaceutical samples with Fe3O4/C-nanodots hybrid material prior to spectrophotometric analysis. Microchemical Journal, 170: 106766.

27.   Liu, Q., Xu, Q., and Sun, W. (2021). Facile preparation of core-shell magnetic organic covalent framework via self-polymerization of two-in-one strategy as a magnetic solid-phase extraction adsorbent for determination of Rhodamine B in food samples. Journal of Chromatography A, 1657: 462566.

28.   Reyes-Garcés, N., Gionfriddo, E., Gómez-Ríos, G. A., Alam, M. N., Boyacl, E., Bojko, B., Singh, V., Grandy, J., and Pawliszyn, J. (2018). Advances in solid phase microextraction and perspective on future directions. Analytical Chemistry, 90(1): 4502.

29.   Elencovan, V., Yahaya, N., Raoov, M., and Zain, N. N. M. (2022). Exploring a novel silicone surfactant-based deep eutectic solvent functionalized magnetic iron particles for the extraction of organophosphorus pesticides in vegetable samples. Food Chemistry, 396: 133670.

30.   Hashim, N. M., Mohamad, M., Kamal, N. N. S. N. M., Aziz, M. Y., Mohamad, S., Yahaya, N., and Zain, N. N. M. (2023). Revolutionizing drug removal: Green magnetic nanoparticles functionalized with hydrophobic deep eutectic solvents for anti-inflammatory drug adsorption. Journal of Molecular Liquids, 383: 122082.

31.   International Conference Harmonisation. (1994). ICH guideline Q2(R2) on validation of analytical procedures. Quality Guidelines, 50(4): 99-108.

32.   Shahriman, M. S., Ramachandran, M. R., Zain, N. N. M., Mohamad, S., Manan, N. S. A., and Yaman, S. M. (2018). Polyaniline-dicationic ionic liquid coated with magnetic nanoparticles composite for magnetic solid phase extraction of polycyclic aromatic hydrocarbons in environmental samples. Talanta, 178: 211-221.

33.   Boon, Y. H., Mohamad Zain, N. N., Mohamad, S., Osman, H., and Raoov, M. (2019). Magnetic poly(β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chemistry, 278: 322-332.

34.   Mazdeh, F. Z., Khorrami, A. R., Moradi-Khatoonabadi, Z., Aftabdari, F. E., Ardekani, M. R. S., Moghaddam, G., and Hajimahmoodi, M. (2016). Determination of 8 synthetic food dyes by solid phase extraction and reversed-phase high performance liquid chromatography. Tropical Journal of Pharmaceutical Research, 15(1): 173-181.

35.   Bişgin, A. T., Sürme, Y., Uçan, M., and Narin, İ. (2016). Solid‐phase extraction and spectrophotometric determination of Allura Red (E129) in foodstuff, soft drink, syrup and energy drink samples: a comparison study. International Journal of Food Science & Technology, 51(11): 2367-2375.

36.   Tavakoli, M., Hajimahmoodi, M., and Shemirani, F. (2014). Trace level monitoring of pesticides in water samples using fatty acid coated magnetic nanoparticles prior to GC-MS. Analytical Methods, 6(9): 2988-2997.

37.   Wang, J., Zhang, L., Xin, D., and Yang, Y. (2015). Dispersive micro-solid-phase extraction based on decanoic acid coated-Fe3O4 nanoparticles for HPLC analysis of phthalate esters in liquor samples. Journal of Food Science, 80(11): 13101.

38.   Devi, M., Moral, R., Thakuria, S., Mitra, A., and Paul, S. (2023). Hydrophobic deep eutectic solvents as greener substitutes for conventional extraction media: examples and techniques. ACS Omega, 8(11): 7684.

39.   Makoś, P., Przyjazny, A., and Boczkaj, G. (2018). Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. Journal of Chromatography A, 1570: 28-37.

40.   Lawal, I. A., Klink, M., and Ndungu, P. (2019). Deep eutectic solvent as an efficient modifier of low-cost adsorbent for the removal of pharmaceuticals and dye. Environmental Research, 179: 108837.

41.   Doppler, M., Kluger, B., Bueschl, C., Schneider, C., Krska, R., Delcambre, S., Hiller, K., Lemmens, M., and Schuhmacher, R. (2016). Stable isotope-assisted evaluation of different extraction solvents for untargeted metabolomics of plants. International Journal of Molecular Sciences, 17(7): 1017.

42.   Moldoveanu, S., and David, V. (2022). Reversed-phase HPLC. Essentials in Modern HPLC Separations (pp. 341–419). Elsevier.

43.   Bişgin, A. T. (2018). Cloud point extraction and spectrophotometric determination of Allura Red (E129) in foodstuffs. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(4): 397479.

44.   Zhou, Q., Lei, M., Wu, Y., and Yuan, Y. (2017). Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles. Journal of Chromatography A, 1487: 22-29.

45.   Pourreza, N., Rastegarzadeh, S., and Larki, A. (2011). Determination of Allura red in food samples after cloud point extraction using mixed micelles. Food Chemistry, 126(3): 158.

46.   Yu, Y., and Fan, Z. (2016). Magnetic solid-phase extraction coupled with HPLC for the determination of Allura Red in food and beverage samples. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 33(10): 1231937.

47.   Fiol, N., and Villaescusa, I. (2009). Determination of sorbent point zero charge: usefulness in sorption studies. Environmental Chemistry Letters, 7(1): 79-84.

48.   Oymak, T., and Dural, E. (2022). Determination of Sunset Yellow, Allura Red, and Fast Green using a novel magnetic nanoadsorbent modified with Elaeagnus angustifolia based on magnetic solid-phase extraction by HPLC. Brazilian Journal of Pharmaceutical Sciences, 58: 20884.

49.   Hamidi, S., Nemati, M., and Lotfipour, F. (2021). Simultaneous determination of synthetic dyes in gummy candy using novel mesoporous magnetic graphene oxide@zein aerogel followed by a high performance liquid chromatography-diode array detector. Journal of Microbiology, Biotechnology and Food Sciences, 11(3): 3785.

50.   Piton, G. R., Augusto, K. K. L., Santos, D. A., and Fatibello-Filho, O. (2021). Spectrophotometric determination of Allura Red AC and tartrazine in food products using hydrophobic deep eutectic solvents as an environmentally sustainable micro-extractor. Journal of the Brazilian Chemical Society, 32(3): 1-8.

51.   Saha, T. K., Bishwas, R. K., Karmaker, S., and Islam, Z. (2020). Adsorption characteristics of Allura Red AC onto sawdust and hexadecylpyridinium bromide-treated sawdust in aqueous solution. ACS Omega, 5(22): 1493.

52.   Naing, N. N., Li, S. F. Y., and Lee, H. K. (2016). Micro-solid phase extraction followed by thermal extraction coupled with gas chromatography-mass selective detector for the determination of polybrominated diphenyl ethers in water. Journal of Chromatography A, 1458: 25-34.

53.   Scientific Opinion on the re-evaluation of Allura Red AC (E 129) as a food additive. (2009). EFSA Journal, 7(11): 1327.

54.   dos Reis, M. F., Silva, F. A., Madureira, F., Vargas, E., Oliveira, L. M. F., and Lopes, R. P. (2021). Development and validation of a method for ionic dyes determination in guava fibrous matrix using reverse phase chromatography. Journal of the Brazilian Chemical Society, 32(11): 1-8.

55.   Bişgin, A. T. (2024). Selective separation and determination strategy for monitoring E100, E127, E129 and E133 in foodstuffs: Vortex assisted sequential-simultaneous liquid phase micro-extraction. Microchemical Journal, 196: 109716.

56.   Palianskikh, A. I., Sychik, S. I., Leschev, S. M., Pliashak, Y. M., Fiodarava, T. A., and Belyshava, L. L. (2022). Development and validation of the HPLC-DAD method for the quantification of 16 synthetic dyes in various foods and the use of liquid anion exchange extraction for qualitative expression determination. Food Chemistry, 369: 130947.