Malaysian Journal of
Analytical Sciences, Vol 28 No 3 (2024): 645 – 663
EXPLORING DEEP
EUTECTIC SOLVENTS AS A POTENTIAL SOLVENT FOR THE EXTRACTION OF FOOD ADDITIVE
ALLURA RED IN FOOD TECHNOLOGY APPLICATION
(Mengeksplorasi Pelarut Eutektik Mendalam
sebagai Pelarut Berpotensi untuk Pengekstrakan Pewarna Makanan Merah Allura dalam
Aplikasi Teknologi Makanan)
Thanussha Elangovan1, Nor
Munira Hashim1, Nurina Izzah Mohd Husani1, Noorfatimah
Yahaya1,
Farhanini Yusoff 2, and Nur
Nadhirah Mohamad Zain1*
1Department of Toxicology, Advanced Medical, and Dental
Institute, Universiti Sains Malaysia, 13200
Kepala Batas, Penang, Malaysia.
2Faculty of Science and Marine Environment, Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
*Corresponding author: nurnadhirah@usm.my
Received: 4 January 2024; Accepted:
16 Apr 2024; Published: 29 June 2024
Abstract
In recent years, synthetic food dyes have gained
significant popularity as additives, replacing natural dyes, with azo dyes
comprising approximately 65% of the commercial dye market. However, concerns
regarding the toxic effects of azo dyes used in food colouring have prompted
the development of advanced analytical methods to detect them in various food
matrices. These methods typically involve intricate pre-concentration
processes, time-consuming steps, and the use of expensive instruments, thus emphasising
the need for highly sensitive and selective approaches. Hence, this study aims
to explore the application of deep eutectic solvent (DES) as a potential
solvent for the extraction of Allura Red AC (ARAC). First, the synthesised
magnetic nanoparticles functionalised with DES (silicone surfactant: dodecanoic
acid) (SS: DoAc@Fe3O4) adsorbent was successfully
characterised using attenuated total reflectance-Fourier transform infrared
spectroscopy (ATR-FTIR) for the identification of functional bonds. This
adsorbent was subsequently applied in the magnetic solid phase extraction
(MSPE) technique to extract ARAC in soft drink samples. In contrast to pure Fe3O4
particles, the targeted ARAC can be easily adsorbed onto the SS: DoAc@Fe3O4
surface due to the formation of strong hydrophobic interaction between ARAC and
the adsorbents, thus amplifying the extraction efficiency. Further optimisation
was done via one-variable-at-a-time (OVAT) and Taguchi experimental design to determine
the optimised condition for ARAC extraction. The OVAT analysis identified that
using methanol: acetonitrile (1:1) as the desorption solvent, incorporating Na2SO4
to boost extraction efficiency, employing salt volume of 200 μL, and utilising a sample volume of 20 mL produced
the most favourable outcomes. Meanwhile, the Taguchi experiments pinpointed the
optimum conditions as pH 2, an adsorbent dosage of 25 mg, an extraction
duration of 2 minutes, a desorption period of 3 minutes, and a desorption
solvent volume of 400 μL. Under the optimised
conditions, the R2 value obtained was 0.999 while the limit of
detection (LOD) and limit of quantification (LOQ) values were 0.1 mgL-1
and 0.4 mgL-1, respectively. The studied ARAC also obtained relative
recovery values between 80% to 111%. Therefore, it is safe to conclude that the
newly proposed SS: DoAc@Fe3O4-based MSPE is an
environmentally friendly, simple, affordable, and effective technique for the
extraction of ARAC in drink samples.
Keywords: Allura red AC, deep
eutectic solvents, dodecanoic acid, magnetic solid phase extraction, silicone
surfactant
Abstrak
Kebelakangan ini, pewarna makanan
sintetik semakin popular dan kerap digunakan sebagai bahan tambahan
menggantikan pewarna semula jadi, dengan pewarna azo merangkumi kira-kira 65%
daripada pasaran pewarna komersial. Walau bagaimanapun, kebimbangan mengenai
kesan toksik pewarna azo yang digunakan dalam pewarna makanan telah mendorong
pembangunan kaedah analisis lanjutan untuk mengesannya dalam pelbagai matriks
makanan. Kaedah tersebut biasanya melibatkan proses pra-kepekatan yang rumit,
prosedur yang memakan masa, dan penggunaan instrumen yang mahal, sekaligus
menekankan keperluan untuk pendekatan yang sensitif dan terpilih. Oleh itu,
kajian ini bertujuan untuk meneroka aplikasi pelarut eutektik mendalam (DES)
untuk mengekstrak pewarna merah allura AC (ARAC). Pertama, penjerap zarah nano
magnetik difungsikan dengan DES (surfaktan silikon:asid dodekanoik) (SS:DoAc@Fe3O4)
telah berjaya disintesis dan dianalisis menggunakan spektroskopi transformasian
Fourier inframerah dengan pantulan keseluruhan dikecilkan (ATR-FTIR) untuk
mengenal pasti ikatan berfungsi. Bahan penjerap ini kemudiannya digunakan dalam
teknik pengekstrakan fasa pepejal magnetik (MSPE) untuk mengekstrak ARAC dalam
sampel minuman ringan. Berbeza dengan zarah Fe3O4 tulen,
ARAC lebih mudah diserap ke permukaan SS:DoAc@Fe3O4 disebabkan
oleh pembentukan interaksi hidrofobik yang kuat antara ARAC dan penjerap,
sekaligus menguatkan kecekapan pengekstrakan. Pengoptimuman lanjut kemudiannya
dilakukan melalui satu-pembolehubah-pada-satu-masa (OVAT) dan reka bentuk
eksperimen Taguchi bagi menentukan keadaan optimum untuk pengekstrakan ARAC.
Analisis OVAT mendapati bahawa penggunaan metanol:acetonitrile (1:1) sebagai
pelarut penyahjerapan, penambahan garam untuk meningkatkan kecekapan
pengekstrakan, penggunaan isipadu garam sebanyak 200 μL, dan penggunaan isipadu
sampel 20 mL memberikan hasil yang paling baik. Sementara itu, eksperimen
Taguchi menunjukkan keadaan optimum sebagai pH 2, dos penjerap sebanyak 25 mg,
tempoh pengekstrakan selama 2 minit, tempoh penyahjerapan selama 3 minit, dan isipadu
pelarut penyahjerapan sebanyak 400 μL. Dibawah keadaan yang dioptimumkan,
nilai R2 yang diperolehi adalah 0.999 manakala nilai had pengesanan
(LOD) dan had kuantifikasi (LOQ) masing-masing adalah 0.1 mgL-1 dan
0.4 mgL-1. ARAC yang dikaji juga memperoleh nilai pemulihan relatif
antara 80% hingga 111%. Oleh itu, dapat disimpulkan bahawa MSPE berasaskan
SS:DoAc@Fe3O4 yang dicadangkan adalah satu teknik mesra
alam, mudah, berpatutan, dan berkesan untuk pengekstrakan ARAC dalam sampel
minuman.
Kata kunci: Pewarna merah allura AC, pelarut eutektik mendalam, asid dodekanoik, pengekstrakan fasa
pepejal magnetik, surfaktan silikon
References
1. Vega, E. N.,
Ciudad-Mulero, M., Fernández-Ruiz, V., Barros, L., and Morales, P. (2023). Natural sources of food colorants as
potential substitutes for artificial additives. Foods, 12(22): 4102.
2.
Luzardo-Ocampo, I., Ramírez-Jiménez,
A. K., Yańez, J., Mojica, L., and Luna-Vital, D. A. (2021). Technological applications of
natural colorants in food systems: A review. Foods, 10(3): 634.
3.
Dey, S., and Nagababu, B. H.
(2022c). Applications of food color and bio-preservatives in the
food and its effect on human health. Food Chemistry Advances, 1:
19.
4.
Nabi, B. G., Mukhtar, K., Ahmed, W., Manzoor, M. F., Ranjha,
M. M. A. N., Kieliszek, M., Bhat, Z. F., and Aadil,
R. M. (2023). Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as colorants in food products. Food Bioscience,
52: 102403.
5.
Castro, T. A., Leite, B. S.,
Assunçăo, L. S., de Jesus Freitas, T., Colauto, N. B., Linde, G. A., Otero, D.
M., Machado, B. A. S., and Ferreira Ribeiro, C. D. (2021). Red tomato products as an
alternative to reduce synthetic dyes in the food industry: A review. Molecules,
26(23): 7125.
6.
Dilrukshi, P. G. T., Munasinghe, H.,
Silva, A. B. G., and De Silva, P. G. S. M. (2019f). Identification of synthetic food colours in selected confectioneries and beverages in Jaffna
District, Sri Lanka. Journal of Food Quality, 2019: 7453169.
7.
John, A., Yang, H. H., Muhammad, S., Khan, Z. I., Yu, H.,
Luqman, M., Tofail, M., Hussain, M. I., and Awan, M.
U. F. (2022). Cross talk between synthetic food colors (azo dyes), oral flora,
and cardiovascular disorders. Applied Sciences (Switzerland), 12(14): 7084.
8.
Ntrallou, K., Gika, H., and Tsochatzis, E.
(2020). Analytical
and sample preparation techniques for the determination of food colorants in
food matrices. Foods, 9(1): 58.
9.
Silva, M. M., Reboredo, F. H., and
Lidon, F. C. (2022i). Food colour additives: A synoptical
overview on their chemical properties, applications in food products and health
side effects. Foods, 11(3): 379.
10.
Novais, C., Molina, A. K., Abreu, R.
M. V., Santo-Buelga, C., Ferreira, I. C. F. R., Pereira, C., and Barros, L.
(2022). Natural
food colorants and preservatives: A review, a demand, and a challenge. Journal
of Agricultural and Food Chemistry, 70(9): 7533.
11.
Slama, H. Ben, Bouket, A. C., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., Oszako, T., Luptakova, L.,
Golińska, P., and Belbahri, L. (2021k).
Diversity of synthetic dyes from textile industries, discharge impacts and
treatment methods. Applied Sciences (Switzerland), 11(14): 6255.
12.
Zafar, S., Bukhari, D. A., and Rehman, A. (2022l). Azo dyes
degradation by microorganisms – An efficient and sustainable approach. Saudi
Journal of Biological Sciences, 29(12): 103437.
13.
Kamali, M., Fazlpour, F., Karimi,
F., Rezaee, A., Sadri, F., and Hosseini, S. F. (2023). A review of cytotoxic
effects of azo dyes on brain-subregion. Middle East Journal of
Rehabilitation and Health Studies, 10(2): 130751.
14.
Barciela, P., Perez-Vazquez, A., and Prieto, M. A. (2023). Azo dyes in the food industry:
Features, classification, toxicity, alternatives, and regulation. Food and
Chemical Toxicology, 178: 113935.
15.
Badawy, M. E. I., El-Nouby, M. A.
M., Kimani, P. K., Lim, L. W., and Rabea, E. I. (2022). A review of the modern
principles and applications of solid-phase extraction techniques in
chromatographic analysis. Analytical Sciences, 38(12): 1457-1487.
16.
Shen, Z., Kuang, Y., Zhou, S., Zheng, J., and Ouyang, G.
(2023p). Preparation of magnetic adsorbent and its adsorption removal of
pollutants: An overview. TrAC - Trends in
Analytical Chemistry, 167: 117241.
17.
Hu, M., Butt, H. J., Landfester,
K., Bannwarth, M. B., Wooh,
S., and Thérien-Aubin, H. (2019q). Shaping the assembly
of superparamagnetic nanoparticles. ACS Nano, 13(3): 7783.
18.
Zhang, M., Huang, G., Huang, J., Zhong, L., and Chen, W.
(2017). Magnetic solid phase extraction with octahedral structured
Fe3O4@SiO2@polydimethylsiloxane magnetic nanoparticles as the sorbent for
determining benzene, toluene, ethylbenzene and xylenes in water samples. RSC
Advances, 7(66): 07733e.
19.
Rahnama, S., Shariati, S., and Divsar,
F. (2021). Selective aptamer conjugation to silver-coated magnetite
nanoparticles for magnetic solid-phase extraction of trace amounts of Pb2+ions.
RSC Advances, 11(9): 4791.
20.
Ibarra, I. S., Rodriguez, J. A.,
Galán-Vidal, C. A., Cepeda, A., and Miranda, J. M. (2015). Magnetic solid phase extraction
applied to food analysis. Journal of Chemistry, 2015: 919414
21.
de Jesus, S. S., and
Maciel Filho, R. (2022). Are ionic liquids eco-friendly? Renewable and Sustainable
Energy Reviews, 157: 112039.
22.
Saini, R., Kumar, S., Sharma, A., Kumar, V., Sharma, R., Janghu, S., and Suthar, P. (2022). Deep eutectic solvents:
The new generation sustainable and safe extraction systems for bioactive
compounds in agri food sector: An update. Journal
of Food Processing and Preservation, 46(10): 16250.
23.
Ünlü, A. E., Arlkaya, A., and Takaç, S. (2019). Use of deep eutectic solvents as
catalyst: A mini-review. Green Processing and Synthesis, 8(1): 355-372.
24.
Bianchi, F., Giannetto, M., and Careri, M. (2018).
Analytical systems and metrological traceability of measurement data in food
control assessment. TrAC Trends in
Analytical Chemistry, 107: 142-150.
25.
Pay, R., Sharrock, A. V., Elder, R., Maré, A., Bracegirdle,
J., Torres, D., Malone, N., Vorster, J., Kelly, L., Ryan, A., Josephy, P. D.,
Allen-Vercoe, E., Ackerley, D. F., Keyzers, R. A., and Harvey, J. E. (2023).
Preparation, analysis and toxicity characterisation
of the redox metabolites of the azo food dye tartrazine. Food and Chemical
Toxicology, 182: 114193.
26.
Emiroğlu, E., Yuvali, D., Sarp, G., Yilmaz, E., and Narin, İ.
(2021). Magnetic
solid phase extraction of erythrosine (E127) in pharmaceutical samples with Fe3O4/C-nanodots
hybrid material prior to spectrophotometric analysis. Microchemical Journal,
170: 106766.
27.
Liu, Q., Xu, Q., and Sun, W. (2021).
Facile
preparation of core-shell magnetic organic covalent framework via
self-polymerization of two-in-one strategy as a magnetic solid-phase extraction
adsorbent for determination of Rhodamine B in food samples. Journal of
Chromatography A, 1657: 462566.
28.
Reyes-Garcés, N., Gionfriddo, E.,
Gómez-Ríos, G. A., Alam, M. N., Boyacl, E., Bojko,
B., Singh, V., Grandy, J., and Pawliszyn, J. (2018).
Advances in solid phase microextraction and perspective on future directions. Analytical
Chemistry, 90(1): 4502.
29.
Elencovan, V., Yahaya, N., Raoov, M., and Zain, N. N. M.
(2022). Exploring a novel silicone surfactant-based deep eutectic solvent
functionalized magnetic iron particles for the extraction of organophosphorus
pesticides in vegetable samples. Food Chemistry, 396: 133670.
30.
Hashim, N. M., Mohamad, M., Kamal, N. N. S. N. M., Aziz, M.
Y., Mohamad, S., Yahaya, N., and Zain, N. N. M. (2023). Revolutionizing drug
removal: Green magnetic nanoparticles functionalized with hydrophobic deep
eutectic solvents for anti-inflammatory drug adsorption. Journal of
Molecular Liquids, 383: 122082.
31.
International Conference Harmonisation.
(1994). ICH guideline Q2(R2) on validation of analytical procedures. Quality
Guidelines, 50(4): 99-108.
32.
Shahriman, M. S., Ramachandran, M. R., Zain,
N. N. M., Mohamad, S., Manan, N. S. A., and Yaman, S. M. (2018). Polyaniline-dicationic ionic liquid coated with magnetic nanoparticles
composite for magnetic solid phase extraction of polycyclic aromatic
hydrocarbons in environmental samples. Talanta,
178: 211-221.
33.
Boon, Y. H., Mohamad Zain, N. N., Mohamad, S., Osman, H., and
Raoov, M. (2019). Magnetic poly(β-cyclodextrin-ionic
liquid) nanocomposites for micro-solid phase extraction of selected polycyclic
aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food
Chemistry, 278: 322-332.
34.
Mazdeh, F. Z., Khorrami, A. R., Moradi-Khatoonabadi, Z., Aftabdari, F.
E., Ardekani, M. R. S., Moghaddam, G., and Hajimahmoodi, M. (2016). Determination of 8 synthetic food
dyes by solid phase extraction and reversed-phase high performance liquid
chromatography. Tropical Journal of Pharmaceutical Research, 15(1):
173-181.
35.
Bişgin, A. T., Sürme, Y., Uçan, M., and Narin, İ. (2016). Solid‐phase extraction and
spectrophotometric determination of Allura Red (E129) in foodstuff, soft drink,
syrup and energy drink samples: a comparison study. International Journal of
Food Science & Technology, 51(11): 2367-2375.
36.
Tavakoli, M., Hajimahmoodi, M., and
Shemirani, F. (2014). Trace level monitoring of
pesticides in water samples using fatty acid coated magnetic nanoparticles
prior to GC-MS. Analytical Methods, 6(9): 2988-2997.
37.
Wang, J., Zhang, L., Xin, D., and
Yang, Y. (2015). Dispersive micro-solid-phase extraction based on decanoic
acid coated-Fe3O4 nanoparticles for HPLC analysis of
phthalate esters in liquor samples. Journal of Food Science, 80(11): 13101.
38.
Devi, M., Moral, R., Thakuria, S.,
Mitra, A., and Paul, S. (2023). Hydrophobic deep eutectic solvents as greener
substitutes for conventional extraction media: examples and techniques. ACS
Omega, 8(11): 7684.
39.
Makoś, P., Przyjazny,
A., and Boczkaj, G. (2018). Hydrophobic deep eutectic
solvents as “green” extraction media for polycyclic aromatic hydrocarbons in
aqueous samples. Journal of Chromatography A, 1570: 28-37.
40.
Lawal, I. A., Klink, M., and Ndungu, P. (2019). Deep
eutectic solvent as an efficient modifier of low-cost adsorbent for the removal
of pharmaceuticals and dye. Environmental Research, 179: 108837.
41.
Doppler, M., Kluger, B., Bueschl, C.,
Schneider, C., Krska, R., Delcambre, S., Hiller, K., Lemmens, M., and
Schuhmacher, R. (2016). Stable isotope-assisted evaluation of different extraction
solvents for untargeted metabolomics of plants. International Journal of
Molecular Sciences, 17(7): 1017.
42.
Moldoveanu, S., and David, V. (2022). Reversed-phase HPLC. Essentials
in Modern HPLC Separations (pp. 341–419). Elsevier.
43. Bişgin, A. T. (2018). Cloud point
extraction and spectrophotometric determination of Allura Red (E129) in foodstuffs.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(4):
397479.
44.
Zhou, Q., Lei, M., Wu, Y., and Yuan, Y. (2017). Magnetic
solid phase extraction of typical polycyclic aromatic hydrocarbons from
environmental water samples with metal organic framework MIL-101 (Cr) modified
zero valent iron nano-particles. Journal of Chromatography A, 1487: 22-29.
45.
Pourreza, N., Rastegarzadeh,
S., and Larki, A. (2011). Determination of Allura red in food samples after
cloud point extraction using mixed micelles. Food Chemistry, 126(3): 158.
46.
Yu, Y., and Fan, Z. (2016). Magnetic solid-phase extraction
coupled with HPLC for the determination of Allura Red in food and beverage
samples. Food Additives and Contaminants - Part A Chemistry, Analysis,
Control, Exposure and Risk Assessment, 33(10): 1231937.
47.
Fiol, N., and Villaescusa, I.
(2009). Determination
of sorbent point zero charge: usefulness in sorption studies. Environmental
Chemistry Letters, 7(1): 79-84.
48.
Oymak, T., and Dural, E. (2022).
Determination of Sunset Yellow, Allura Red, and Fast Green using a novel
magnetic nanoadsorbent modified with Elaeagnus
angustifolia based on magnetic solid-phase extraction by HPLC. Brazilian
Journal of Pharmaceutical Sciences, 58: 20884.
49.
Hamidi, S., Nemati, M., and Lotfipour, F. (2021). Simultaneous determination of
synthetic dyes in gummy candy using novel mesoporous magnetic graphene oxide@zein aerogel followed by a high performance liquid
chromatography-diode array detector. Journal of Microbiology, Biotechnology
and Food Sciences, 11(3): 3785.
50.
Piton, G. R., Augusto, K. K. L., Santos, D. A., and Fatibello-Filho, O. (2021). Spectrophotometric
determination of Allura Red AC and tartrazine in food products using
hydrophobic deep eutectic solvents as an environmentally sustainable
micro-extractor. Journal of the Brazilian Chemical Society, 32(3):
1-8.
51.
Saha, T. K., Bishwas, R. K., Karmaker,
S., and Islam, Z. (2020). Adsorption characteristics of Allura Red AC onto
sawdust and hexadecylpyridinium bromide-treated
sawdust in aqueous solution. ACS Omega, 5(22): 1493.
52.
Naing, N. N., Li, S. F. Y., and Lee, H. K. (2016).
Micro-solid phase extraction followed by thermal extraction coupled with gas
chromatography-mass selective detector for the determination of polybrominated
diphenyl ethers in water. Journal of Chromatography A, 1458: 25-34.
53.
Scientific Opinion on the re-evaluation of Allura Red AC (E
129) as a food additive. (2009). EFSA Journal, 7(11): 1327.
54.
dos Reis, M. F., Silva, F. A.,
Madureira, F., Vargas, E., Oliveira, L. M. F., and Lopes, R. P. (2021). Development and validation of a
method for ionic dyes determination in guava fibrous matrix using reverse phase
chromatography. Journal of the Brazilian Chemical Society, 32(11): 1-8.
55.
Bişgin, A. T. (2024). Selective separation
and determination strategy for monitoring E100, E127, E129 and E133 in
foodstuffs: Vortex assisted sequential-simultaneous liquid phase
micro-extraction. Microchemical Journal, 196: 109716.
56.
Palianskikh, A. I., Sychik,
S. I., Leschev, S. M., Pliashak,
Y. M., Fiodarava, T. A., and Belyshava,
L. L. (2022). Development and validation of the HPLC-DAD method for the
quantification of 16 synthetic dyes in various foods and the use of liquid
anion exchange extraction for qualitative expression determination. Food
Chemistry, 369: 130947.