Malaysian Journal of Analytical Sciences,
Vol 28 No 3 (2024): 632 – 644
INNOVATOVE
ECO-FRIENDLY WOOD ADHESIVE FORMULATIONS: EXPLORING THE EFFICACY OF GELATINIZED
CASSAVA STARCH AND POLYVINYL ALCOHOL CROSSLINKED WITH CITRIC ACID
(Formulasi Pelekat Kayu Mesra Alam:
Inovatif Meneroka Keberkesanan Pati Ubi Kayu Bergelatin dan Alkohol Polivinil
Berpaut Silang dengan Asid Sitrik)
Bima Prasetya Pancasakti, Danang Tri Hartanto, Vincent
Sinarta, Masyta Dinda Riani, and Budhijanto*
Department of Chemical Engineering,
Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2,
Yogyakarta, Indonesia
*Corresponding author budhijanto@ugm.ac.id
Received: 10 November
2023; Accepted: 31 March 2024; Published:
29 June 2024
Abstract
In an effort to develop eco-friendly
bio-adhesives for wood applications, this study explores the effect of citric
acid as a new cross-linking agent on the properties of a cassava
starch/polyvinyl alcohol (PVA)-based wood bio-adhesive. The bio-adhesive was
synthesized in a three-step process: first, the hydrolysis of cassava starch
using hydrochloric acid, followed by the oxidation of cassava starch with
ammonium persulfate, and finally, the polymerization of starch and PVA with
citric acid. The reaction was conducted for 100 min in a three-neck flask,
using a mercury stirrer at 70°C under atmospheric pressure. The amount of
citric acid added to the adhesive was calculated based on the dry weight of the
cassava starch, with percentages ranging from 0%, 0.5%, 1%, 1.5%, to 2%. The
adhesive characteristics were then evaluated in line with the ASTM D906 wood
adhesive standard. Tests were conducted to measure adhesive viscosity, solid
content, dry and wet shear strengths, thermal stability, and surface morphology.
Molecular changes resulting from the addition of citric acid were analyzed
using Fourier transform infrared spectroscopy. This research demonstrated that
the addition of citric acid improved the adhesive properties. Specifically, the
addition of 2% citric acid (AD-CA2.0) produced optimal results across several
analyses. These included a high viscosity reading of 2910 cP, dry and wet shear
strengths of 1.21 MPa and 0.89 MPa, respectively, and high solid content of 36%.
Keywords:
bio-adhesive, cassava starch, polyvinyl alcohol, citric acid, polymerization
Abstrak
Sebagai pengiktirafan mendapatkan
bio-pelekat mesra alam untuk aplikasi kayu, kajian ini meneroka kesan asid
sitrik sebagai agen penghubung silang baharu ke atas sifat-sifat bio-pelekat
kayu berasaskan kanji ubi kayu/polivinil alkohol (PVA). Bio-pelekat disintesis
melalui tiga langkah: hidrolisis kanji ubi kayu dengan asid hidroklorik (HCl),
pengoksidaan kanji ubi kayu dengan ammonium persulfat ((NH4)2S2O8),
dan pempolimeran kanji dan PVA dengan asid sitrik. Tindak balas dijalankan
selama 100 minit dalam kelalang leher tiga dan pengacau merkuri pada suhu 70 °C
dan tekanan atmosfera. Berdasarkan berat kering kanji ubi kayu, peratusan asid sitrik yang
ditambahkan pada pelekat berbeza antara 0%, 0.5%, 1%, 1.5%, dan 2%. Selaras
dengan piawaian pelekat kayu ASTM D906, kelikatan pelekat, kandungan pepejal,
kekuatan ricih kering dan basah, kestabilan terma dan morfologi permukaan telah
diuji. Perubahan molekul telah dianalisis menggunakan spektroskopi Fourier
Transform Infrared (FTIR). Penyelidikan ini menunjukkan bahawa penambahan asid
sitrik meningkatkan ciri pelekat. Penambahan 2% asid sitrik (AD-CA2.0)
mempunyai hasil yang optimum untuk beberapa analisis seperti kelikatan tinggi
pada 2910 cP, kekuatan ricih kering dan basah pada 1.21 MPa dan 0.89 MPa, dan
kandungan pepejal tinggi pada 36%.
Kata kunci: bio-pelekat, kanji ubi kayu, polivinil alkohol, asid sitrik,
pempolimeran
References
1. Kaboorani, A., and Riedl, B. (2011). Effects of adding
nano-clay on performance of polyvinyl acetate (PVA) as a wood adhesive. Composites
Part A: Applied Science and Manufacturing, 42(8): 1031-1039.
2. Suci, N., and Arnellis, A.
(2014). Model matematika kerusakan sumber daya hutan di Indonesia. Journal of Mathematics UNP, 2(1): 1-6.
3. Xu, Q., Wen, J., and Wang, Z. (2016). Preparation
and properties of cassava starch-based wood adhesives. BioResources,
11(3): 6756-6767.
4. Jang, Y., Huang, J., and Li,
K. (2011). A new
formaldehyde-free wood adhesive from renewable materials. International
Journal of Adhesion and Adhesives, 31(7): 754-759.
5. Buschow, K. J. (2001). Encyclopedia of materials:
science and technology. Available:
http://www.entwoodllc.com/PDF/wood adhesion mechanisms.pdf
6. Kumar, R. N., and Pizzi, A. (2019). Adhesives for
wood and lignocellulosic materials. John Wiley & Sons.
7. Frihart, C. R. (2015). Introduction to special
issue: wood adhesives: past, present, and future. Forest Products Journal,
65(1-2): 4-8.
8. Solt, P., Konnerth, J.,
Gindl-Altmutter, W., Kantner, W., Moser, J., Mitter, R., and van Herwijnen, H.
W. (2019). Technological
performance of formaldehyde-free adhesive alternatives for particleboard
industry. International Journal of Adhesion and Adhesives, 94: 99-131.
9. Böhm, M., Salem, M. Z., and Srba,
J. (2012). Formaldehyde emission monitoring from a variety of solid wood,
plywood, blockboard and flooring products manufactured for building and
furnishing materials. Journal of Hazardous Materials, 221: 68-79.
10. IARC (2006). Formaldehyde, 2-butoxyethanol and
1-tert-butoxypropan-2-ol. IARC Monograph Evaluation Carcinogen Risks Human,
88: 1-478.
11. Antov, P., Savov, V., and
Neykov, N. (2020). Sustainable
bio-based adhesives for eco-friendly wood composites. A review. Wood Research,
65(1): 51-62.
12. Li, K., Geng, X., Simonsen, J., and Karchesy, J. (2004). Novel wood adhesives from condensed
tannins and polyethylenimine. International
Journal of Adhesion And Adhesives, 24(4): 327-333.
13. Balgude, D., Sabnis, A., and Ghosh, S. K. (2017). Synthesis and characterization of cardanol based
reactive polyamide for epoxy coating application. Progress in Organic
Coatings, 104: 250-262.
14. Santosa, A. R. A., Zain, A. S., and Pancasakti, B. P. (2022). Analisis
kuat tarik dan umur perekat poliamida
berbasis gelatin dan asam adipat dengan variasi
jumlah minyak sawit sebagai pemlastis.
Jurnal Teknik Kimia USU, 11(2): 64-71.
15. Arias, A., Feijoo, G., and
Moreira, M. T. (2021). Evaluation
of starch as an environmental-friendly bioresource for the development of wood bioadhesives. Molecules, 26(15): 4526.
16. Graham, S., Craig, F., and Scott, S., (2011). Organic
Chemistry, 11th edition. Hoboken, NJ: Wiley.
17. Lamaming, J., Heng, N. B., Owodunni, A. A., Lamaming, S. Z., Abd Khadir, N. K., Hashim, R., ... and Hiziroglu, S. (2020). Characterization of rubberwood
particleboard made using carboxymethyl starch mixed with polyvinyl alcohol as
adhesive. Composites Part B: Engineering, 183: 107731.
18. Garcia-Perez, M., Chaala,
A., Pakdel, H., Kretschmer, D., Rodrigue, D., and Roy, C. (2006). Multiphase structure of bio-oils. Energy &
Fuels, 20(1): 364-375.
19. Li, Z., Wang, J., Cheng, L., Gu, Z., Hong, Y., and
Kowalczyk, A. (2014). Improving the performance of starch-based wood adhesive
by using sodium dodecyl sulfate. Carbohydrate Polymers, 99: 579-583.
20.
Haifa,
M. H., Pancasakti, B. P., Budhijanto,
B., Vincent, V., and Riani, M. D. (2022). Efek penambahan asam p-toluensulfonat (PTSA) dalam produksi perekat poliamida dari kitosan dan asam adipat. Jurnal Sains dan Teknologi: Jurnal Keilmuan dan Aplikasi Teknologi Industri, 22(1), 39-45.
21.
Sun, J., Li, L., Cheng, H., and Huang, W. (2018).
Preparation, characterization and properties of an organic siloxane-modified
cassava starch-based wood adhesive. The Journal of Adhesion, 94(4):
278-293.
22.
ASTM D1084 (2005). Standard test
methods for viscosity of adhesives.
23.
ASTM D906-98 (2010). Standard test
method for strength properties of adhesives in two-ply wood
construction in shear by tension loading.
24.
ASTM D1183 (2011). Standard
practices for resistance of adhesives to cyclic laboratory aging conditions
(metal bonding committee).
25.
ASTM D2369-20 (2020). Standard test
method for volatile content of coatings.
26.
Bird, R. B. (1993). The basic concepts in transport
phenomena. Chemical Engineering Education, 27(2): 102-109.
27.
Tam, K. C., Wu, X. Y., and Pelton, R. H. (1992).
Viscometry—a useful tool for studying conformational changes of poly
(N-isopropylacrylamide) in solutions. Polymer, 33(2): 436-438.
28.
Kang, W., Zhang, H., Lu, Y., Yang, H., Zhu, T.,
Zhang, X., ... and Besembaevna, O. Z. (2019). Study
on the enhanced viscosity mechanism of the cyclodextrin polymer and
betaine-type amphiphilic polymer inclusion complex. Journal of Molecular
Liquids, 296: 111792.
29.
Wang, Z., Li, Z., Gu, Z., Hong, Y., & Cheng, L.
(2012). Preparation, characterization and properties of starch-based wood
adhesive. Carbohydrate Polymers, 88(2): 699-706.
30.
Zhao, Z., Umemura, K., and Kanayama, K. (2016).
Effects of the addition of citric acid on tannin-sucrose adhesive and physical
properties of the particleboard. BioResources,
11(1): 1319-1333.
31.
Widyorini, R., Umemura, K., Septiano,
A., Soraya, D. K., Dewi, G. K., and Nugroho, W. D. (2018). Manufacture and
properties of citric acid-bonded composite board made from salacca
frond: Effects of maltodextrin addition, pressing temperature, and pressing
method. BioResources, 13(4): 8662-8676.
32.
Edalat, H., Faezipour, M., Thole, V., and Kamke, F.
A. (2014). A new quantitative method for evaluation of adhesive penetration
pattern in particulate wood-based composites: Elemental counting method. Wood
Science and Technology, 48: 703-712.
33.
Márquez, I., Paredes, N., Alarcia, F., and Velasco,
J. I. (2022). Influence of acrylonitrile content on the adhesive properties of
water-based acrylic pressure-sensitive adhesives. Polymers, 14(5): 909.