Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 632 – 644

 

INNOVATOVE ECO-FRIENDLY WOOD ADHESIVE FORMULATIONS: EXPLORING THE EFFICACY OF GELATINIZED CASSAVA STARCH AND POLYVINYL ALCOHOL CROSSLINKED WITH CITRIC ACID

 

(Formulasi Pelekat Kayu Mesra Alam: Inovatif Meneroka Keberkesanan Pati Ubi Kayu Bergelatin dan Alkohol Polivinil Berpaut Silang dengan Asid Sitrik)

 

Bima Prasetya Pancasakti, Danang Tri Hartanto, Vincent Sinarta, Masyta Dinda Riani, and Budhijanto*

 

Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta, Indonesia

 

*Corresponding author budhijanto@ugm.ac.id

 

 

Received: 10 November 2023; Accepted: 31 March 2024; Published:  29 June 2024

 

 

Abstract

In an effort to develop eco-friendly bio-adhesives for wood applications, this study explores the effect of citric acid as a new cross-linking agent on the properties of a cassava starch/polyvinyl alcohol (PVA)-based wood bio-adhesive. The bio-adhesive was synthesized in a three-step process: first, the hydrolysis of cassava starch using hydrochloric acid, followed by the oxidation of cassava starch with ammonium persulfate, and finally, the polymerization of starch and PVA with citric acid. The reaction was conducted for 100 min in a three-neck flask, using a mercury stirrer at 70°C under atmospheric pressure. The amount of citric acid added to the adhesive was calculated based on the dry weight of the cassava starch, with percentages ranging from 0%, 0.5%, 1%, 1.5%, to 2%. The adhesive characteristics were then evaluated in line with the ASTM D906 wood adhesive standard. Tests were conducted to measure adhesive viscosity, solid content, dry and wet shear strengths, thermal stability, and surface morphology. Molecular changes resulting from the addition of citric acid were analyzed using Fourier transform infrared spectroscopy. This research demonstrated that the addition of citric acid improved the adhesive properties. Specifically, the addition of 2% citric acid (AD-CA2.0) produced optimal results across several analyses. These included a high viscosity reading of 2910 cP, dry and wet shear strengths of 1.21 MPa and 0.89 MPa, respectively, and high solid content of 36%.

 

Keywords: bio-adhesive, cassava starch, polyvinyl alcohol, citric acid, polymerization

 

Abstrak

Sebagai pengiktirafan mendapatkan bio-pelekat mesra alam untuk aplikasi kayu, kajian ini meneroka kesan asid sitrik sebagai agen penghubung silang baharu ke atas sifat-sifat bio-pelekat kayu berasaskan kanji ubi kayu/polivinil alkohol (PVA). Bio-pelekat disintesis melalui tiga langkah: hidrolisis kanji ubi kayu dengan asid hidroklorik (HCl), pengoksidaan kanji ubi kayu dengan ammonium persulfat ((NH4)2S2O8), dan pempolimeran kanji dan PVA dengan asid sitrik. Tindak balas dijalankan selama 100 minit dalam kelalang leher tiga dan pengacau merkuri pada suhu 70 °C dan tekanan atmosfera. Berdasarkan berat kering kanji ubi kayu, peratusan asid sitrik yang ditambahkan pada pelekat berbeza antara 0%, 0.5%, 1%, 1.5%, dan 2%. Selaras dengan piawaian pelekat kayu ASTM D906, kelikatan pelekat, kandungan pepejal, kekuatan ricih kering dan basah, kestabilan terma dan morfologi permukaan telah diuji. Perubahan molekul telah dianalisis menggunakan spektroskopi Fourier Transform Infrared (FTIR). Penyelidikan ini menunjukkan bahawa penambahan asid sitrik meningkatkan ciri pelekat. Penambahan 2% asid sitrik (AD-CA2.0) mempunyai hasil yang optimum untuk beberapa analisis seperti kelikatan tinggi pada 2910 cP, kekuatan ricih kering dan basah pada 1.21 MPa dan 0.89 MPa, dan kandungan pepejal tinggi pada 36%.

 

Kata kunci: bio-pelekat, kanji ubi kayu, polivinil alkohol, asid sitrik, pempolimeran


References

1.      Kaboorani, A., and Riedl, B. (2011). Effects of adding nano-clay on performance of polyvinyl acetate (PVA) as a wood adhesive. Composites Part A: Applied Science and Manufacturing, 42(8): 1031-1039.

2.      Suci, N., and Arnellis, A. (2014). Model matematika kerusakan sumber daya hutan di Indonesia. Journal of Mathematics UNP, 2(1): 1-6.

3.      Xu, Q., Wen, J., and Wang, Z. (2016). Preparation and properties of cassava starch-based wood adhesives. BioResources, 11(3): 6756-6767.

4.      Jang, Y., Huang, J., and Li, K. (2011). A new formaldehyde-free wood adhesive from renewable materials. International Journal of Adhesion and Adhesives, 31(7): 754-759.

5.      Buschow, K. J. (2001). Encyclopedia of materials: science and technology. Available: http://www.entwoodllc.com/PDF/wood adhesion mechanisms.pdf

6.      Kumar, R. N., and Pizzi, A. (2019). Adhesives for wood and lignocellulosic materials. John Wiley & Sons.

7.      Frihart, C. R. (2015). Introduction to special issue: wood adhesives: past, present, and future. Forest Products Journal, 65(1-2): 4-8.

8.      Solt, P., Konnerth, J., Gindl-Altmutter, W., Kantner, W., Moser, J., Mitter, R., and van Herwijnen, H. W. (2019). Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. International Journal of Adhesion and Adhesives, 94: 99-131.

9.      Böhm, M., Salem, M. Z., and Srba, J. (2012). Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials. Journal of Hazardous Materials, 221: 68-79.

10.   IARC (2006). Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monograph Evaluation Carcinogen Risks Human, 88: 1-478.

11.   Antov, P., Savov, V., and Neykov, N. (2020). Sustainable bio-based adhesives for eco-friendly wood composites. A review. Wood Research, 65(1): 51-62.

12.   Li, K., Geng, X., Simonsen, J., and Karchesy, J. (2004). Novel wood adhesives from condensed tannins and polyethylenimine. International Journal of Adhesion And Adhesives, 24(4): 327-333.

13.   Balgude, D., Sabnis, A., and Ghosh, S. K. (2017). Synthesis and characterization of cardanol based reactive polyamide for epoxy coating application. Progress in Organic Coatings, 104: 250-262.

14.   Santosa, A. R. A., Zain, A. S., and Pancasakti, B. P. (2022). Analisis kuat tarik dan umur perekat poliamida berbasis gelatin dan asam adipat dengan variasi jumlah minyak sawit sebagai pemlastis. Jurnal Teknik Kimia USU, 11(2): 64-71.

15.   Arias, A., Feijoo, G., and Moreira, M. T. (2021). Evaluation of starch as an environmental-friendly bioresource for the development of wood bioadhesives. Molecules, 26(15): 4526.

16.   Graham, S., Craig, F., and Scott, S., (2011). Organic Chemistry, 11th edition. Hoboken, NJ: Wiley.

17.   Lamaming, J., Heng, N. B., Owodunni, A. A., Lamaming, S. Z., Abd Khadir, N. K., Hashim, R., ... and Hiziroglu, S. (2020). Characterization of rubberwood particleboard made using carboxymethyl starch mixed with polyvinyl alcohol as adhesive. Composites Part B: Engineering, 183: 107731.

18.   Garcia-Perez, M., Chaala, A., Pakdel, H., Kretschmer, D., Rodrigue, D., and Roy, C. (2006). Multiphase structure of bio-oils. Energy & Fuels, 20(1): 364-375.

19.   Li, Z., Wang, J., Cheng, L., Gu, Z., Hong, Y., and Kowalczyk, A. (2014). Improving the performance of starch-based wood adhesive by using sodium dodecyl sulfate. Carbohydrate Polymers, 99: 579-583.

20.   Haifa, M. H., Pancasakti, B. P., Budhijanto, B., Vincent, V., and Riani, M. D. (2022). Efek penambahan asam p-toluensulfonat (PTSA) dalam produksi perekat poliamida dari kitosan dan asam adipat. Jurnal Sains dan Teknologi: Jurnal Keilmuan dan Aplikasi Teknologi Industri, 22(1), 39-45.

21.   Sun, J., Li, L., Cheng, H., and Huang, W. (2018). Preparation, characterization and properties of an organic siloxane-modified cassava starch-based wood adhesive. The Journal of Adhesion, 94(4): 278-293.

22.   ASTM D1084 (2005). Standard test methods for viscosity of adhesives.

23.   ASTM D906-98 (2010). Standard test method for strength properties of adhesives in two-ply wood construction in shear by tension loading.

24.   ASTM D1183 (2011). Standard practices for resistance of adhesives to cyclic laboratory aging conditions (metal bonding committee).

25.   ASTM D2369-20 (2020). Standard test method for volatile content of coatings.

26.   Bird, R. B. (1993). The basic concepts in transport phenomena. Chemical Engineering Education, 27(2): 102-109.

27.   Tam, K. C., Wu, X. Y., and Pelton, R. H. (1992). Viscometry—a useful tool for studying conformational changes of poly (N-isopropylacrylamide) in solutions. Polymer, 33(2): 436-438.

28.   Kang, W., Zhang, H., Lu, Y., Yang, H., Zhu, T., Zhang, X., ... and Besembaevna, O. Z. (2019). Study on the enhanced viscosity mechanism of the cyclodextrin polymer and betaine-type amphiphilic polymer inclusion complex. Journal of Molecular Liquids, 296: 111792.

29.   Wang, Z., Li, Z., Gu, Z., Hong, Y., & Cheng, L. (2012). Preparation, characterization and properties of starch-based wood adhesive. Carbohydrate Polymers, 88(2): 699-706.

30.   Zhao, Z., Umemura, K., and Kanayama, K. (2016). Effects of the addition of citric acid on tannin-sucrose adhesive and physical properties of the particleboard. BioResources, 11(1): 1319-1333.

31.   Widyorini, R., Umemura, K., Septiano, A., Soraya, D. K., Dewi, G. K., and Nugroho, W. D. (2018). Manufacture and properties of citric acid-bonded composite board made from salacca frond: Effects of maltodextrin addition, pressing temperature, and pressing method. BioResources, 13(4): 8662-8676.

32.   Edalat, H., Faezipour, M., Thole, V., and Kamke, F. A. (2014). A new quantitative method for evaluation of adhesive penetration pattern in particulate wood-based composites: Elemental counting method. Wood Science and Technology, 48: 703-712.

33.   Márquez, I., Paredes, N., Alarcia, F., and Velasco, J. I. (2022). Influence of acrylonitrile content on the adhesive properties of water-based acrylic pressure-sensitive adhesives. Polymers, 14(5): 909.