Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 611 - 631
A REVIEW ON CONVERSION OF MICROPLASTICS INTO
VALUE-ADDED PRODUCTS: CHALLENGES AND PERSPECTIVES
(Ulasan Tentang
Penukaran Mikroplastik Kepada Produk Nilai Tambah: Cabaran dan Perspektif)
Nurul Mohd Ridzuan Afifah1,
Jennifer Janani Sathiaseelan1, Seng Hon Kee1, Tan Suet
May Amelia1, Wei Yien Lua2, Nazli Aziz4, Wan
Mohd Afiq Wan Mohd Khalik1,5, Sevakumaran Vigneswari3, and
Kesaven Bhubalan1,3,5*
1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia
2Institute of Oceanography and Environment, Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia
3Institute of Climate Adaptation and Marine Biotechnology, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
4Faculty of Business, Economics, and Social Development, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
5Microplastic Research Interest Group, Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia
*Correspondance: kesaven@umt.edu.my
Received: 30 December 2023;
Accepted: 31 March 2024; Published: 29
June 2024
Abstract
Microplastics
have emerged as a pressing environmental concern, exerting profound impacts on
ecosystems, water bodies, terrestrial landscapes, and human food sources. In light of the global plastic waste crisis, innovative
strategies are being explored to manage and recycle plastic waste, with an
emphasis on microplastics. Research endeavours aimed at transforming waste
microplastics into valuable resources align seamlessly with circular economy
principles. Microplastics can be collected using surface water sampling, air
sampling, sediment sampling, soil sampling, shoreline sampling, as well as
wastewater and effluent sampling. Microplastics can be chemically and
physically characterised for composition selection and then converted using
biological, chemical, and mechanical approaches. Biological conversion involves
microbial activity and enzyme utilisation, chemical conversion involves
chemically breaking down polymers into smaller molecules that can be used as
feedstock for valuable materials, while mechanical conversion applies physical
force to reduce polymer size. Both conventional and biodegradable plastics can
undergo biological, chemical, and mechanical recycling to an extent to maintain
their value and prevent the waste of non-renewable resources. However, there
are challenges to overcome in the conversion of microplastics, including
cost-effectiveness, scalability, environmental friendliness, and regulatory
considerations. Appropriate macroplastic management
and life cycle assessment analyses are still crucial for transitioning to a
sustainable and circular economy.
Keywords: microplastics, conversion techniques, value-added products
Abstrak
Mikroplastik telah muncul
sebagai kebimbangan alam sekitar yang mendesak, memberikan impak yang mendalam
terhadap ekosistem, badan air, landskap terestrial, dan sumber makanan manusia.
Dalam konteks krisis sisa plastik
global, strategi inovatif sedang dikaji untuk mengurus dan mengitar semula sisa
plastik, dengan penekanan pada mikroplastik. Usaha penyelidikan yang bertujuan
untuk mengubah mikroplastik sisa menjadi sumber daya bernilai selari dengan
prinsip ekonomi bulat. Mikroplastik boleh dikumpulkan melalui pengambilan
sampel air permukaan, pengambilan sampel udara, pengambilan sampel sedimen,
pengambilan sampel tanah, pengambilan sampel garis pantai, serta pengambilan
sampel air sisa dan air buangan. Mikroplastik boleh dicirikan secara kimia dan
fizikal untuk pemilihan komposisi, dan kemudian diubah menggunakan pendekatan
biologi, kimia, dan mekanikal. Penukaran biologi melibatkan aktiviti mikrob dan
penggunaan enzim, penukaran kimia melibatkan pemecahan kimia polimer menjadi
molekul yang lebih kecil yang boleh digunakan sebagai bahan mentah untuk bahan
bernilai, manakala penukaran mekanikal menggunakan daya fizikal untuk
mengurangkan saiz polimer. Plastik konvensional dan plastik terbiodegradasi
boleh mengalami kitar semula biologi, kimia, dan mekanikal untuk mengekalkan
nilai mereka dan mengelakkan pembaziran sumber tidak boleh diperbaharui. Walau
bagaimanapun, terdapat cabaran yang perlu diatasi dalam penukaran mikroplastik,
termasuk kos-efektif, skalabiliti, kemesraan alam sekitar, dan pertimbangan peraturan.
Pengurusan makroplastik yang sesuai dan analisis penilaian kitar hidup masih
penting untuk bergerak ke arah ekonomi lestari dan bulat.
Kata
kunci: mikroplastik,
teknik penukaran, produk bernilai tambah
References
1. Gad, A. K., Toner, K.,
Benfield, M. C., and Midway, S. R. (2023). Microplastics in mainstem
Mississippi River fishes. Frontiers in Environmental Science, 10:
1065583.
2. Harb, C., Pokhrel, N.,
and Foroutan, H. (2023). Quantification of the emission of atmospheric
microplastics and nanoplastics via sea spray. Environmental
Science and Technology Letters, 10(6): 513-519.
3. He, D., Bristow, K.,
Filipović, V., Lv, J., and He, H. (2020).
Microplastics in terrestrial ecosystems: A scientometric
analysis. Sustainability, 12(20): 8739.
4. Lee, H., Kunz, A., Shim,
W. J., and Walther, B. A. (2019). Microplastic contamination of table salts
from Taiwan, including a global review. Scientific Reports, 9(1):
10145.
5. Thornton Hampton, L. M.,
Brander, S. M., Coffin, S., Cole, M., Hermabessiere,
L., Koelmans, A. A., and Rochman, C. M. (2022).
Characterizing microplastic hazards: which concentration metrics and particle
characteristics are most informative for understanding toxicity in aquatic organisms?. Microplastics and Nanoplastics, 2(1):
20.
6. Kallenbach, E. M.,
Eriksen, T. E., Hurley, R. R., Jacobsen, D., Singdahl-Larsen,
C., and Friberg, N. (2022). Plastic recycling plant as a point source of
microplastics to sediment and macroinvertebrates in a remote stream. Microplastics
and Nanoplastics, 2(1): 26.
7. Li, J., Gao, F., Zhang,
D., Cao, W., and Zhao, C. (2022). Zonal distribution characteristics of
microplastics in the Southern Indian Ocean and the influence of Ocean
current. Journal of Marine Science and Engineering, 10(2):
290.
8. Hernandez, L. M.,
Yousefi, N., and Tufenkji, N. (2017). Are there nanoplastics in your personal care products?. Environmental
Science & Technology Letters, 4(7): 280-285.
9. McCormick, A. R.,
Hoellein, T. J., London, M. G., Hittie, J., Scott, J. W., and Kelly, J. J.
(2016). Microplastic in surface waters of urban rivers: concentration, sources,
and associated bacterial assemblages. Ecosphere, 7(11):
e01556.
10. Kang, T., Kim, D., and
Oh, J. H. (2021). Ingestion of microplastics by free-living marine nematodes,
especially Enoplolaimus spp., in Mallipo
Beach, South Korea. Plankton and Benthos Research, 16(2):
109-117.
11. Koelmans, A. A. (2015). Modeling
the role of microplastics in bioaccumulation of organic chemicals to marine
aquatic organisms. A critical review. Marine Anthropogenic Litter,
pp. 309-324.
12. Moyo, S. (2022). An
enigma: A meta-analysis reveals the effect of ubiquitous microplastics on
different taxa in aquatic systems. Frontiers in Environmental Science, 10:
999349.
13. Rades, M., Schubert, P.,
Wilke, T., and Reichert, J. (2022). Reef-building corals do not develop
adaptive mechanisms to better cope with microplastics. Frontiers in
Marine Science, 9: 863187.
14. Li, W., Zhao, W., Zhu,
H., Li, Z. J., and Wang, W. (2023). State of the art in the photochemical
degradation of (micro) plastics: from fundamental principles to catalysts and
applications. Journal of Materials Chemistry A, 11(6):
2503-2527.
15. European Environment Agency. (2022).
Microplastics from textiles: Towards a circular economy for textiles in Europe.
Retrieved on 23 August 2023 from
https://www.eea.europa.eu/publications/microplastics-from-textiles-towards-a
16. Galgani,
L., Beiras, R., Galgani, F., Panti, C., and Borja, A. (2019). Impacts of marine
litter. Frontiers in Marine Science, 6: 208.
17. Pacheco-Lopez,
A., Lechtenberg, F., Somoza-Tornos, A., Graells, M., and Espuna, A. (2021). Economic and
environmental assessment of plastic waste pyrolysis products and biofuels as
substitutes for fossil-based fuels. Frontiers in Energy Research, 9:
676233.
18. Payne, J., McKeown, P.,
and Jones, M. D. (2019). A circular economy approach to plastic waste. Polymer
Degradation and Stability, 165: 170-181.
19. Nabgan, W., Nabgan, B., Tuan
Abdullah, T. A., Ikram, M., Jadhav, A. H., Jalil, A. A., and Ali, M. W. (2022).
Highly active biphasic anatase-rutile Ni-Pd/TNPs nanocatalyst
for the reforming and cracking reactions of microplastic waste dissolved in
phenol. ACS omega, 7(4): 3324-3340.
20. Vaccaro,
P. A., Galvín, A. P., Ayuso, J., Lozano-Lunar, A., and López-Uceda, A. (2021). Pollutant potential of
reinforced concrete made with recycled plastic fibres from food packaging
waste. Applied Sciences, 11(17): 8102.
21. Dionela, T., Evangelista, A., Lansang, C. M., and Sato,
M. V. U. (2022). Sustainable marketing: Studying the effects of environmental
consciousness and involvement degree on purchasing behavior
of consumers. Journal of Business and Management Studies, 4(1):
213-221.
22. Anand, U., Dey, S.,
Bontempi, E., Ducoli, S., Vethaak, A. D., Dey, A.,
and Federici, S. (2023). Biotechnological methods to remove microplastics: a
review. Environmental Chemistry Letters, 21(3): 1787-1810.
23. Wu,
H., Mehrabi, H., Naveed, N., and Karagiannidis, P. (2022). Impact of strategic
control and supply chain management on recycled plastic additive
manufacturing. Journal of Cleaner Production, 364: 132511.
24. Hale, R. C., Seeley, M.
E., King, A. E., and Yu, L. H. (2022). Analytical chemistry of plastic debris:
sampling, methods, and instrumentation. Microplastic in the
Environment: Pattern and Process, pp. 17-67.
25. Hung, C., Klasios, N., Zhu, X., Sedlak, M., Sutton, R., and Rochman,
C. M. (2021). Methods matter: methods for sampling
microplastic and other anthropogenic particles and their implications for
monitoring and ecological risk assessment. Integrated Environmental
Assessment and Management, 17(1): 282-291.
26. Hamilton, B. M.,
Jantunen, L., Bergmann, M., Vorkamp, K., Aherne, J.,
Magnusson, K., ... and Peeken, I. (2022).
Microplastics in the atmosphere and cryosphere in the circumpolar North: a case
for multicompartment monitoring. Arctic Science, 8(4):
1116-1126.
27. Khalik, W. M. A. W. M.,
Ibrahim, Y. S., Anuar, S. T., Govindasamy, S., and Baharuddin, N. F. (2018).
Microplastics analysis in Malaysian marine waters: A field study of Kuala Nerus and Kuantan. Marine Pollution Bulletin, 135:
451-457.
28. Radford, F., Horton, A.,
Hudson, M., Shaw, P., and Williams, I. (2023). Agricultural soils and
microplastics: Are biosolids the problem?. Frontiers
in Soil Science, 2: 941837.
29. Taha, Z. D., Amin, R.
M., Anuar, S. T., Nasser, A. A. A., and Sohaimi, E.
S. (2021). Microplastics in seawater and zooplankton: A case study from
Terengganu estuary and offshore waters, Malaysia. Science of the Total
Environment, 786: 147466.
30. Lots, F. A., Behrens,
P., Vijver, M. G., Horton, A. A., and Bosker, T. (2017). A large-scale
investigation of microplastic contamination: abundance and characteristics of
microplastics in European beach sediment. Marine Pollution Bulletin, 123(1-2):
219-226.
31. McNeish, R. E., Kim, L.
H., Barrett, H. A., Mason, S. A., Kelly, J. J., and Hoellein, T. J. (2018).
Microplastic in riverine fish is connected to species traits. Scientific
Reports, 8(1): 11639.
32. Talvitie, J., Mikola,
A., Koistinen, A., and Setälä, O. (2017). Solutions to microplastic
pollution–removal of microplastics from wastewater effluent with advanced
wastewater treatment technologies. Water Research, 123:
401-407.
33. Laglbauer, B. J.,
Franco-Santos, R. M., Andreu-Cazenave, M., Brunelli,
L., Papadatou, M., Palatinus,
A., ... and Deprez, T. (2014). Macrodebris and microplastics from
beaches in Slovenia. Marine Pollution Bulletin, 89(1-2):
356-366.
34. Zhou, C., and Wang, Y.
(2020). Recent progress in the conversion of biomass wastes into functional
materials for value-added applications. Science and Technology of
Advanced Materials, 21(1): 787-804.
35. Lamichhane, G., Acharya,
A., Marahatha, R., Modi, B., Paudel,
R., Adhikari, A., ... and Parajuli, N. (2023). Microplastics in
environment: global concern, challenges, and controlling measures. International
Journal of Environmental Science and Technology, 20(4): 4673-4694.
36. Adhikari,
S., Kelkar, V., Kumar, R., and Halden, R. U. (2022). Methods and challenges
in the detection of microplastics and nanoplastics: a
mini‐review. Polymer International, 71(5):
543-551.
37. Sun, Y., Duan, C., Cao,
N., Ding, C., Huang, Y., and Wang, J. (2022). Biodegradable and conventional
microplastics exhibit distinct microbiome, functionality, and metabolome
changes in soil. Journal of Hazardous Materials, 424: 127282.
38. Thakur, S., Chaudhary, J., Sharma,
B., Verma, A., Tamulevicius, S., and Thakur, V. K.
(2018). Sustainability of bioplastics: Opportunities and challenges. Current
Opinion in Green and Sustainable Chemistry, 13: 68-75.
39. Wang, C., Yu, J., Lu,
Y., Hua, D., Wang, X., and Zou, X. (2021). Biodegradable microplastics (BMPs):
a new cause for concern?. Environmental
Science and Pollution Research, 28: 66511-66518.
40. Weinstein, J. E., Dekle,
J. L., Leads, R. R., and Hunter, R. A. (2020). Degradation of bio-based and
biodegradable plastics in a salt marsh habitat: another potential source of
microplastics in coastal waters. Marine Pollution Bulletin, 160:
111518.
41. Fuller, S., and Gautam,
A. (2016). A procedure for measuring microplastics using pressurized fluid
extraction. Environmental Science and Technology, 50(11):
5774-5780.
42. Maxwell S, H., Melinda
K, F., and Matthew, G. (2020). Counterstaining to separate nile
red-stained microplastic particles from terrestrial invertebrate biomass. Environmental
Science and Technology, 54(9): 5580-5588.
43. Jin, M., Liu, J., Yu,
J., Zhou, Q., Wu, W., Fu, L., ... and Karimi-Maleh, H. (2022). Current
development and future challenges in microplastic detection techniques: A
bibliometrics-based analysis and review. Science Progress, 105(4):
00368504221132151.
44. Shim, W. J., Hong, S.
H., and Eo, S. E. (2017). Identification methods in
microplastic analysis: a review. Analytical Methods, 9(9):
1384-1391.
45. Friedrich, K., Möllnitz, S., Holzschuster, S., Pomberger, R., Vollprecht, D.,
and Sarc, R. (2019). Benchmark analysis for plastic recyclates in Austrian waste management. Detritus, 9(9):
105-112.
46. Schyns, Z. O., and Shaver, M. P. (2021).
Mechanical recycling of packaging plastics: A review. Macromolecular Rapid
Communications, 42(3): 2000415.
47. Hassan, T., Srivastwa, A. K., Sarkar, S., and Majumdar, G. (2022,
February). Characterization of plastics and polymers: A comprehensive study.
In IOP Conference Series: Materials Science and Engineering. IOP
Publishing: p. 012033.
48. Sola, A., Chong, W. J., Simunec, D. P., Li, Y., Trinchi,
A., Kyratzis, I. L., and Wen, C. (2023). Open
challenges in tensile testing of additively manufactured polymers: A literature
survey and a case study in fused filament fabrication. Polymer Testing, 117:
107859.
49. Niranjan, A. (2023, July 27). ‘Era
of global boiling has arrived’, says UN chief as July set to be hottest month
on record. The Guardian.
https://www.theguardian.com/science/2023/jul/27/scientists-july-world-hottest-month-record-climate-temperatures
50. Ng, H. M., Saidi, N. M.,
Omar, F. S., Ramesh, K., Ramesh, S., and Bashir, S. (2002). Thermogravimetric
analysis of polymers. Encyclopedia of
Polymer Science and Technology, 2002: 1-29.
51. McKeen, L.
(2012). The effect of sterilization on plastics and elastomers. William Andrew Publishing.
52. Danielsen, S. P. O., Beech, H. K.,
Wang, S., El-Zaatari, B. M., Wang, X., Sapir, L., Ouchi, T., Wang, Z., Johnson,
P. N., Hu, Y., Lundberg, D. J., Stoychev, G., Craig,
S. L., Johnson, J. A., Kalow, J. A., Olsen, B. D., and Rubinstein, M. (2021).
Molecular characterization of polymer networks. Chemical Reviews,
121(8), 5042-5092.
53.
Li, W., Luo, Y., and Pan, X. (2020). Identification
and characterization methods for microplastics basing on spatial imaging in
micro-/nanoscales. Microplastics in terrestrial environments: Emerging Contaminants
and Major Challenges, 2020 : 25-37.
54. Tirkey, A., and Upadhyay, L. S. B.
(2021). Microplastics: An overview on separation, identification, and
characterization of microplastics. Marine Pollution Bulletin, 170: 112604.
55. Girão, A. V. (2022). SEM/EDS and
optical microscopy analysis of microplastics. In handbook of microplastics in
the environment. Cham: Springer International Publishing: pp. 57-78.
56. Ding, J., Li, J., Sun, C., Jiang,
F., Ju, P., Qu, L., Zheng, Y., and He, C. (2018). Detection of microplastics in
local marine organisms using a multi-technology system. Analytical Methods, 11(1):
78-87.
57. Dehaut, A., Hermabessiere, L., and Duflos, G.
(2019). Current
frontiers and recommendations for the study of microplastics in seafood. TrAC Trends in Analytical Chemistry, 116: 346-359.
58. Fytianos,
G., Ioannidou, E., Thysiadou, A., Mitropoulos, A. C., and Kyzas, G. Z. (2021). Microplastics in mediterranean
coastal countries: A recent overview. Journal of Marine Science and Engineering,
9(1): 98.
59. Renner, G., Schmidt, T. C., and
Schram, J. (2017). A new chemometric approach for automatic identification of
microplastics from environmental compartments based on FT-IR spectroscopy. Analytical
Chemistry, 89(22): 12045-12053.
60. Lasch, P., and Naumann,
D. (2006). Spatial resolution in infrared microspectroscopic
imaging of tissues. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(7):
814-829.
61. Miller, L. M., and
Dumas, P. (2010). From structure to cellular mechanism with infrared microspectroscopy. Current Opinion in Structural
Biology, 20(5): 649-656.
62. Fu,
W., Min, J., Jiang, W., Li, Y., and Zhang, W. (2020). Separation,
characterization and identification of microplastics and nanoplastics
in the environment. Science of the Total Environment, 721:
137561.
63. Baruah, A., Sharma, A.,
Sharma, S., and Nagraik, R. (2022). An insight into
different microplastic detection methods. International Journal of
Environmental Science and Technology, 19(6): 5721-5730.
64. Blanco, M., and Villarroya,
I. (2002). NIR spectroscopy: a rapid-response analytical tool. TrAC Trends in Analytical Chemistry, 21(4):
240-250.
65. Peez, N., Becker, J., Ehlers, S. M.,
Fritz, M., Fischer, C. B., Koop, J. H. E., Winkelmann, C., and Imhof, W.
(2019). Quantitative analysis of PET microplastics in environmental model
samples using quantitative 1H-NMR spectroscopy: validation of an
optimized and consistent sample clean-up method. Analytical and
Bioanalytical Chemistry, 411(28): 7409-7418.
66. Peez, N., Janiska, M. C., and Imhof, W.
(2019). The first application of quantitative 1H NMR spectroscopy as
a simple and fast method of identification and quantification of microplastic
particles (PE, PET, and PS). Analytical and Bioanalytical Chemistry,
411(4): 823-833.
67. Huppertsberg, S., and Knepper, T. P. (2018).
Instrumental analysis of microplastics—benefits and challenges. Analytical and
Bioanalytical Chemistry, 410: 6343-6352.
68. Sridhar, A.,
Kannan, D., Kapoor, A., and Prabhakar, S. (2022). Extraction and detection methods of
microplastics in food and marine systems: A critical review. Chemosphere,
286: 131653.
69. Fries, E., Dekiff,
J. H., Willmeyer, J., Nuelle, M. T., Ebert, M., and
Remy, D. (2013). Identification of polymer types and additives in marine
microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental
Science: Processes & Impacts, 15(10): 1949-1956.
70. Akoueson, F., Chbib, C., Monchy, S.,
Paul-Pont, I., Doyen, P., Dehaut, A., and Duflos, G.
(2021). Identification
and quantification of plastic additives using pyrolysis-GC/MS: A review. Science
of the Total Environment, 773: 145073.
71. La Nasa, J., Biale, G., Fabbri, D., and Modugno,
F. (2020). A
review on challenges and developments of analytical pyrolysis and other thermoanalytical techniques for the quali-quantitative
determination of microplastics. Journal of Analytical and Applied Pyrolysis,
149: 104841.
72. Castelvetro, V., Corti, A., Biale, G., Ceccarini, A., Degano, I., La
Nasa, J., Lomonaco, T., Manariti,
A., Manco, E., Modugno, F.,
and Vinciguerra, V. (2021). New methodologies for the detection,
identification, and quantification of microplastics and their environmental
degradation by-products. Environmental Science and Pollution Research, 28(34):
46764-46780.
73. Giaganini,
G., Cifelli, M., Biagini, D., Ghimenti, S., Corti, A., Castelvetro, V.,
Domenici, V., and Lomonaco, T. (2023). Multi-analytical approach to
characterize the degradation of different types of microplastics:
Identification and quantification of released organic compounds. Molecules,
28(3): 1382.
74. Adelugba, A., and Emenike, C. (2023).
Comparative review of instrumental techniques and methods for the analysis of
microplastics in agricultural matrices. Microplastics, 3(1): 1-21.
75.
Ru, J., Huo, Y. and Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Front Microbiology, 2020:
442.
76.
Thiyagarajan, S., Maaskant-Reilink,
E., Ewing, T. A., Julsing, M. K., and van Haveren, J. (2022). Back-to-monomer recycling of
polycondensation polymers: opportunities for chemicals and enzymes. RSC Advances,
12(2): 947-970.
77.
Wierckx, N.,
Prieto, M. A., Pomposiello, P., de Lorenzo, V.,
O'Connor, K., and Blank, L. M. (2015). Plastic waste as a novel substrate for
industrial biotechnology. Microbial Biotechnology, 8(6):900-903.
78. Mohanan, N., Montazer,
Z., Sharma, P. K., and Levin, D. B. (2020). Microbial and enzymatic degradation
of synthetic plastics. Frontiers in Microbiology, 11: 580709.
79.
Papari, S., Bamdad,
H., and Berruti, F. (2021). Pyrolytic conversion of
plastic waste to value-added products and fuels: A review. Materials,
14(10): 2586.
80.
Ragaert, K., Delva, L., and Van Geem, K. (2017). Mechanical and chemical recycling of solid
plastic waste. Waste Management, 69 : 24-58.
81.
Palve, A. M., Arukula,
R., and Gupta, R. K. (2021). Bioconversion of biowastes for energy
applications. Sustainable Bioconversion of Waste to Value Added Products,
pp. 1-22.
82.
Narancic, T., and O’Connor, K. E. (2017).
Microbial biotechnology addressing the plastic waste disaster. Microbial
Biotechnology, 10(5): 1232-1235.
83.
Tamoor, M., Samak, N. A., Jia, Y., Mushtaq, M. U., Sher, H., Bibi, M. and Xing, J. (2021).
Potential use of microbial enzymes for the conversion of plastic waste into
value-added products: a viable solution. Frontier Microbiology, 12: 777727.
84. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda,
Y., Toyohara, K., Miyamoto,
K., Kimura, Y. and Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene
terephthalate). Science, 351(6278): 1196-1199.
85.
Palm, G. J., Reisky, L.,
Böttcher, D., Müller, H., Michels, E. A. P., Walczak, M. C., Berndt, L., Weiss,
M. S., Bornscheuer, U. T. and Weber, G. (2019).
Structure of the plastic-degrading Ideonella
sakaiensis MHETase
bound to a substrate. Nature Communication, 10 :
1717.
86. Johnston,
B., Adamus, G., Ekere, A. I., Kowalczuk, M., Tchuenbou-Magaia, F., and Radecka, I. (2022). Bioconversion
of plastic waste based on mass full carbon backbone polymeric materials to
value-added polyhydroxyalkanoates (PHAs). Bioengineering, 9(9): 432.
87.
Lee, H. M., Kim, H. R., Jeon, E., Yu, H. C., Lee, S., Li,
J., and Kim, D. H. (2020). Evaluation of the biodegradation efficiency of four
various types of plastics by Pseudomonas aeruginosa isolated from the
gut extract of superworms. Microorganisms,
8(9): 1341.
88. Vimala, P.
P., and Mathew, L. (2016). Biodegradation of polyethylene using Bacillus Subtilis.
Procedia Technology, 24: 232-239.
89. Gan, Z., and Zhang, H. (2019). PMBD:
A comprehensive plastics microbial biodegradation database. Database: The
Journal of Biological Databases and Curation, 2019: 1-11.
90. Atanasova,
N., Stoitsova, S., Paunova‐krasteva, T., and Kambourova, M. (2021). Plastic degradation by extremophilic
bacteria. International Journal of Molecular Sciences, 12: 5610.
91. Nguyen, S. T., McLoughlin, E. A.,
Cox, J. H., Fors, B. P., and Knowles, R. R. (2021). Depolymerization of
hydroxylated polymers via light-driven C–C bond cleavage. Journal of the
American Chemical Society, 143(31): 12268-12277.
92. Gao. R. and Sun, C. (2021). A marine
bacterial community capable of degrading poly(ethylene terephthalate) and
polyethylene. Journal of Hazardous Materials, 416: 125928.
93. Wu, Z., Shi,
W., Valencak, T. G., Zhang, Y., Liu, G., and Ren, D.
(2023). Biodegradation
of conventional plastics: Candidate organisms and potential mechanisms. Science
of The Total Environment, 2023: 163908.
94. Zhang, M. Q., Wang, M., Sun, B., Hu,
C., Xiao, D., and Ma, D. (2022). Catalytic strategies for upvaluing plastic
wastes. Chemistry, 8(11): 2912-2923.
95. Taniguchi,
I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y., and Oda, K. (2019). Biodegradation of PET: Current status and application aspects. ACS Catalysis,
9(5): 4089-4105.
96. Roberts, C.,
Edwards, S., Vague, M., León-Zayas, R., Scheffer, H., Chan, G., Swartz, N. A., and
Mellies, J. L. (2020). Environmental consortium containing Pseudomonas
and Bacillus species synergistically degrades polyethylene terephthalate
plastic. mSphere, 5(6): e01151-20.
97. Qi, X., Ma,
Y., Chang, H., Li, B., Ding, M., and Yuan, Y. (2021). Evaluation of PET
degradation using artificial microbial consortia. Frontiers in Microbiology,
12 : 778828.
98.
Wang, C., and El-Sepelgy, O.
(2021). Reductive depolymerization of plastics catalyzed
with transition metal complexes. Current Opinion in Green and Sustainable
Chemistry, 32: 100547.
99. Knott, B. C.,
Erickson, E., Allen, M. D., Gado, J. E., Graham, R.,
Kearns, F. L., Pardo, I., Topuzlu, E., Anderson, J.
J., Austin, H. P., Dominick, G., Johnson, C. W., Rorrer, N. A., Szostkiewicz, C.
J., Copié, V., Payne, C. M., Lee Woodcock, H., Donohoe, B. S., Beckham, G. T., and McGeehan,
J. E. (2020). Characterization
and engineering of a two-enzyme system for plastics depolymerization. Proceedings
of the National Academy of Sciences, pp. 1-20.
100. Alberti, C., and Enthaler,
S. (2020). Depolymerization of end-of-life poly(lactide) to lactide via
zinc-catalysis. Chemistry Select, 5(46): 14759-14763.
101. Mao, Y., Fan, S., Li, X., Shi, J.,
Wang, M., Niu, Z., and Chen, G. (2023). Trash to treasure: Electrocatalytic
upcycling of polyethylene terephthalate (PET) microplastic to value-added
products by Mn0.1Ni0.9Co2O4-δ RSFs spinel. Journal of Hazardous
Materials, 457(2023): 131743.
102. Han, Z., Rong, L., Wu, J., Zhang,
L., Wang, Z., and Ding, K. (2012). Catalytic hydrogenation of cyclic
carbonates: A practical approach from CO2 and epoxides to methanol
and diols. Angewandte Chemie,
124(52): 13218-13222.
103. Klein, S.,
Dimzon, I. K., Eubeler, J., and Knepper, T. P.
(2018). Analysis, occurrence, and degradation of microplastics in the aqueous
environment. Freshwater Microplastics: Emerging Environmental Contaminants?, pp.
51-67.
104. Al-Azzawi,
M. S., Kefer, S., Weißer, J., Reichel, J., Schwaller,
C., Glas, K., ... and Drewes, J. E. (2020).
Validation of sample preparation methods for microplastic analysis in
wastewater matrices—reproducibility and standardization. Water, 12(9): 2445.
105. Mahari, W. A. W., Kee, S. H., Foong,
S. Y., Amelia, T. S. M., Bhubalan, K., Man, M., Yang,
Y. F., Ong, H. C., Vithanage, M., Lam, S. S., and Sonne, C. (2022). Generating
alternative fuel and bioplastics from medical plastic waste and waste frying
oil using microwave co-pyrolysis combined with microbial fermentation. Renewable
and Sustainable Energy Reviews, 153: 111790.
106. Akgül, A.,
Palmeiro-Sanchez, T., Lange, H., Magalhaes, D., Moore, S., Paiva, A., Kazanç, F., and Trubetskaya, A.
(2022). Characterization
of tars from the recycling of PHA bioplastic and synthetic plastics using fast
pyrolysis. Journal of Hazardous Materials, 439: 129696.
107. Nabgan, W., Nabgan,
B., Tuan Abdullah, T. A., Ikram, M., Jadhav, A. H., Ali, M. W., and Jalil, A.
A. (2022). Hydrogen and value-added liquid fuel generation from
pyrolysis-catalytic steam reforming conditions of microplastics waste dissolved
in phenol over bifunctional Ni-Pt supported on Ti-Al nanocatalysts.
Catalysis Today, 400–401: 35-48.
108. Jung, J. M., Cho, S. H., Jung, S.,
Lin, K. Y. A., Chen, W. H., Tsang, Y. F., and Kwon, E. E. (2022). Disposal of
plastic mulching film through CO2-assisted catalytic pyrolysis as a strategic
means for microplastic mitigation. Journal of Hazardous Materials, 430: 128454.
109. National Energy Technology
Laboratory (n.d.). Gasification introduction. Retrieved from
https://netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/intro-to-gasification.
[Accessed on 23/8/2023].
110. Wang, Z., Liu, X., Burra, K. G., Li, J.,
Zhang, M., Lei, T., and Gupta, A. K. (2021). Towards enhanced catalytic
reactivity in CO2-assisted gasification of polypropylene. Fuel, 284:
119076.
111. Moghadam, R. A., Yusup, S., Uemura,
Y., Chin, B. L. F., Lam, H. L., and Al Shoaibi, A.
(2014). Syngas production from palm kernel shell and polyethylene waste blend
in fluidized bed catalytic steam co-gasification process. Energy, 75: 40-44.
112. Lin, Y., Kouznetsova, T. B., and Craig, S. L. (2020). Mechanically gated degradable
polymers. Journal of the American Chemical Society, 142(5): 2105-2109.
113. Alauddin, M., Choudhury, I. A., El Baradie, M. A., and Hashmi, M. S. J. (1995). Plastics and
their machining: A review. Journal of Materials Processing Technology,
54(1–4): 40-46.
114. Zhou, J., Hsu, T. G., and Wang, J.
(2023). Mechanochemical degradation and recycling of synthetic polymers. In Angewandte Chemie - International
Edition, 62(27): 768.
115. Damayanti, D., Saputri, D. R., Marpaung, D. S.
S., Yusupandi, F., Sanjaya,
A., Simbolon, Y. M., Asmarani,
W., Ulfa, M., and Wu, H. S. (2022). Current prospects for plastic waste
treatment. Polymers, 14(15): 3133.
116. Eitzen, L., Paul, S., Braun, U.,
Altmann, K., Jekel, M., and Ruhl, A. S. (2019). The challenge in preparing
particle suspensions for aquatic microplastic research. Environmental
Research, 168: 490-495.
117. Kefer, S., Miesbauer, O., and Langowski,
H. C. (2021). Environmental microplastic particles vs. engineered plastic
microparticles—a comparative review. Polymers, 13(17): 2881.
118. Ramos, A.,
Monteiro, E., and Rouboa, A. (2022). Biomass pre-treatment techniques for the
production of biofuels using thermal conversion methods – A review. Energy
Conversion and Management, 270: 116271.
119. Lievens, S., Vervoort, E., Poma, G.,
Covaci, A., and Van Der Borght, M. (2023). A production
and fractionation protocol for polyvinyl chloride microplastics. Methods and
Protocols, 6(1): 15.
120. Nykamp, G., Carstensen, U., and
Müller, B. W. (2002). Jet milling - A new technique for microparticle
preparation. International Journal of Pharmaceutics, 242(1-2): 79-86.
121. Boey, J. Y., Lee, C. K., and Tay, G.
S. (2022). Factors affecting mechanical properties of reinforced bioplastics: A
review. Polymers, 14(18): 3737.
122. Sikora, J. W. (2008). Increasing the
efficiency of the extrusion process. Polymer Engineering & Science,
48(9): 1678-1682.
123. Ragaert, K., Delva, L., and Van Geem, K. (2017). Mechanical and chemical recycling of solid
plastic waste. Waste Management, 69: 24-58.
124. Schyns, Z. O., and Shaver, M. P. (2021).
Mechanical recycling of packaging plastics: A review. Macromolecular Rapid
Communications, 42(3), 2000415.
125. La Mantia,
F. P., and Vinci, M. (1994). Recycling poly(ethyleneterephthalate).
Polymer Degradation and Stability, 45(1): 121-125.
126. Vogt, B. D., Stokes, K. K., and Kumar, S. K.
(2021). Why is recycling of postconsumer plastics so challenging? ACS
Applied Polymer Materials, 3(9): 4325-4346.
127. Pfohl, P., Roth, C., Meyer, L.,
Heinemeyer, U., Gruendling, T., Lang, C., ... and Jessl, S. (2021). Microplastic extraction protocols can
impact the polymer structure. Microplastics and Nanoplastics,
1: 1-13.
128. Imteaz, M. A., Arulrajah,
A., and Maghool, F. (2020). Environmental and
geotechnical suitability of recycling waste materials from plasterboard
manufacturing. Waste Management and Research, 38(4): 383-391.
129. Almohana, A. I., Abdulwahid, M. Y.,
Galobardes, I., Mushtaq, J., and Almojil, S. F.
(2022). Producing sustainable concrete with plastic waste: A review. Environmental
Challenges, 9: 100626.
130. Rosenboom, J. G., Langer, R. and
Traverso, G. (2022). Bioplastics for a circular economy. Nature Review Materials,
7: 117-137.
131. Maurya, A., Bhattacharya, A., and
Khare, S. K. (2020). Enzymatic remediation of polyethylene terephthalate
(PET)–based polymers for effective management of plastic wastes: an overview. Frontiers
in Bioengineering and Biotechnology, 8: 602325.
132. Williams, J. M., Nitzsche, M. P.,
Bromberg, L., Qu, Z., Moment, A. J., Hatton, T. A., and Park, A. H. A. (2023).
Hybrid thermo-electrochemical conversion of plastic wastes commingled with
marine biomass to value-added products using renewable energy. Energy and
Environmental Science, 16(12): 5805-5821.
133. Tiwari, R., Azad, N., Dutta, D.,
Yadav, B. R., and Kumar, S. (2023). A critical review and future perspective of
plastic waste recycling. Science of the Total Environment, 2023: 163433.
134. Geyer, R., Jambeck,
J. R., and Law, K. L. (2017). Production, use, and fate of all plastics ever
made. Science Advances, 3(7): e1700782.
135. Cole, M., Lindeque, P., Halsband, C., and Galloway, T. S. (2011). Microplastics as
contaminants in the marine environment: A review. Marine Pollution Bulletin,
62(12): 2588-2597.
136. González-Pleiter,
M., Tamayo-Belda, M., Pulido-Reyes, G., Amariei, G., Leganés, F., Rosal, R., and
Fernández-Piñas, F. (2019). Secondary nanoplastics released
from a biodegradable microplastic severely impact freshwater environments. Environmental
Science: Nano, 6(5): 1382-1392.
137. Ma, H., Pu, S.,
Liu, S., Bai, Y., Mandal, S., and Xing, B. (2020). Microplastics in aquatic
environments: Toxicity to trigger ecological consequences. Environmental
Pollution, 261: 114089.
138. Aragaw, T. A., and Mekonnen, B. A. (2021).
Distribution and impact of microplastics in the aquatic systems: A review of
ecotoxicological effects on biota. microplastic pollution. Sustainable
Textiles: Production, Processing, Manufacturing & Chemistry. Springer
Singapore: pp. 65-104.
139. Sequeira, I. F., Prata, J. C., da
Costa, J. P., Duarte, A. C., and Rocha-Santos, T. (2020). Worldwide contamination of fish with
microplastics: A brief global overview. Marine Pollution Bulletin, 160:
111681.
140. Kutralam-Muniasamy,
G., Pérez-Guevara, F., Elizalde-Martínez, I., and Shruti, V. C. (2020). Review of current trends, advances
and analytical challenges for microplastics contamination in Latin America. Environmental
Pollution, 267: 115463.
141. Carrington, D. (2022, March
24). Microplastics found in human blood
for first time. The Guardian. Retrieved from
https://www.theguardian.com/environment/2022/mar/24/microplastics-found-in-human-blood-for-first-time. [Accessed on 22 August 2023]
142. Mitrano, D.
M., and Wohlleben, W. (2020). Microplastic regulation should be more precise to incentivize both
innovation and environmental safety. Nature Communications, 11(1): 5324.
143. Poonacha, S. (2023, May 8). Plastic action
in rural india with the alliance to end plastic waste.
Retrieved from https://repurpose.global/blog/post/partnership-highlights-mobilizing-plastic-action-in-rural-india-with-the-alliance-to-end-plastic-waste.
[Accessed on 22August 2023]
144. Liu, J.,
Yang, Y., An, L., Liu, Q., and Ding, J. (2021). The value of China’s legislation on
plastic pollution prevention in 2020. Bulletin of Environmental
Contamination and Toxicology, 2021: 1-8.
145. Extended Producer Responsibility Act
(EPRA). 2022. Retrieved from
https://legacy.senate.gov.ph/republic_acts/ra%2011898.pdf. [Accessed on 22
August 2023]
146. Solid Waste and Public Cleansing
Management Act 2007 (Act 672).
147. Department of Agriculture, Water and
the Environment. (2021). National Plastics Plan 2021.
148. Department of Environment and
Natural Resources. (2020). National solid waste management commission.
149. Ministry of Energy, Science,
Technology, Environment and Climate Change. (2018). Malaysia’s roadmap towards
zero single-use plastics 2018-2030: Towards a sustainable future.
150. Ministry of Environment and Water.
(2021). Malaysia plastics sustainability roadmap 2021-2030: Catalysing
sustainability and circularity towards a new plastics economy. Retrieved from
https://ce.acsdsd.org/knowledge/the-malaysia-plastic-sustainability-roadmap-2021-2030-catalyzing-sustainability-and-circularity-towards-a-new-plastic-economy/.
[Accessed on 22 August 2023]
151. GESAMP (2015). Sources, fate and
effects of microplastics in the marine environment: a global assessment,
London: International Maritime Organization.
152. Microbeads-Free Waters Act (2015)
153. OECD (2013 October 28). Policies for
Bioplastics in the Context of a Bioeconomy, OECD Science, Technology and
Industry Policy Papers, No. 10, OECD Publishing, Paris. Retrieved from
http://dx.doi.org/10.1787/5k3xpf9rrw6d-en. [Accessed on 22 August 2023]
154. OECD (2020, June 4). Microbeads in
cosmetics. The Oceans-Policy in practice.
155. OECD (2021). Policies to reduce
microplastics pollution in water: Focus on textiles and tyres.
156. The Strait Times (2023, May 9).
Malaysia to impose total ban on plastic bags by 2025. Retrieved from
https://www.straitstimes.com/asia/se-asia/malaysia-to-impose-total-ban-on-plastic-bags-by-2025.
[Accessed on 22 August 2023]
157. UNEP (2018). Legal limits on
single-use plastics and microplastics: A global review of national laws and
regulations. Retrieved from
https://www.unep.org/resources/report/legal-limits-single-use-plastics-and-microplastics.
[Accessed on 23 August 2023]
158. Xinhua (2020). China reveals plan to
cut plastic use by 2025. China.org.cn. Retrieved from
http://www.china.org.cn/china/2020-01/19/content_75629958.htm. [Accessed on 22
August 2023]