Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 586 - 602

 

SYNTHESIS AND MOLECULAR DOCKING SIMULATION OF CINNAMIC ACIDS DERIVATIVES AGAINSTS DENV2 NS2B/NS3

 

(Sintesis dan Simulasi Pengedokan Terbitan Asid Sinamik Terhadap DENV2 NS2B/NS3)

 

Nadia Mohamed Yusoff1, Siti Nor Khadijah Addis1, Nurul Huda Abdul Wahab1,2, Fauziah Abdullah3

and Asnuzilawati Asari1,2,*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Advanced Nano Materials (ANoMA) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Phytochemistry Programme, Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia

 

*Corresponding author: asnu@umt.edu.my

 

 

Received: 18 February 2024; Accepted: 23 April 2024; Published: 29 June 2024

 

 

Abstract

Dengue virus (DENV) is known as one of the serious global threats to human health since its emergence in the past few decades. However, clinically approved antiviral drugs are still not available for DENV treatment. The increased number of cases reported yearly had led to the on-going research in finding an effective drug for dengue. Cinnamic acid is a naturally occurring compound which consists of α, β-unsaturated carboxylic acid and is known for its wide pharmacological properties. Cinnamic acid derivatives such as caffeic acid are one of constituents in Carica papaya leaf which are used as a folk remedy for dengue. Recently, cinnamic acid was reported to show a potential against dengue virus. In this study, eight cinnamic acid derivatives were synthesized by incorporating cinnamic acid and amide moieties through the reaction of cinnamic acid with corresponding amines. All compounds were characterized by using 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), mass spectrometry (MS) and CHN elemental analysis. Then, the synthesized compounds were simulated for molecular docking to investigate their binding affinity with the Wichapong homology protein model crystal structure, DENV-2 NS2B/NS3pro. The lower the value of FEB of a compound, the higher its binding affinity towards protein. The in-silico study revealed that compounds 6b1-6b4, with tert-butyl substituents had the highest binding affinity and good interaction with DENV-2 NS2B/NS3 serine protease. This might be due to the presence of a tert-butyl moiety in the structure, which could interact with amino acid residue of protease, thereby increasing the binding interaction between the ligand and the protein. Compound 6b2 showed the lowest FEB value despite having less H-bond interactions as compared to compound 6b3. This was probably due to the presence of more non-covalent interaction and closer bond distance which helped to enhance its binding stability. In summary, this study showed that cinnamic acid could be a promising candidate for the development of antiviral drugs to target DENV.

 

Keywords: cinnamic acid, synthesis, anti-dengue virus, docking

 

Abstrak

Virus denggi (DENV) telah dikenali sebagai salah satu ancaman global yang serius terhadap kesihatan manusia setelah kemunculannya beberapa dekad yang lalu. Walau bagaimanapun, masih belum ada ubat antiviral yang diluluskan secara klinikal bagi rawatan DENV. Peningkatan jumlah kes yang dilaporkan setiap tahun telah membawa kepada penyelidikan yang berterusan dalam pencarian ubat yang berkesan untuk rawatan denggi. Asid sinamik adalah bahan semulajadi yang mempunyai kumpulan asid karbosilik α, β-tak tepu dan dikenali dengan pelbagai sifat farmakologinya. Asid sinamik seperti asid kafeik merupakan antara komposisi yang terkandung di dalam daun Carica papaya yang digunakan secara tradisional untuk rawatan denggi. Kebelakangan ini, asid sinamik telah dilapor menunjukkan potensi terhadap DENV. Di dalam kajian ini, lapan terbitan asid sinamik telah disintesis dengan menggabungkan asid sinamik dan amida melalui tindak balas asid sinamik dengan amina yang bersesuaian. Semua sebatian dicirikan dengan menggunakan 1H and 13C Resonans Magnetik Nuklear (RMN), Inframerah Transformasi Fourier (FTIR), spektrometri jisim (MS) dan analisis unsur CHN. Sebatian yang disintesis kemudiannya disimulasikan menerusi pengedokan molekul bagi mengkaji keafinan pengikatan mereka bersama struktur kristal homologi protein Wichapong, DENV-2 NS2B/NS3pro. Kajian in siliko menunjukkan bahawa sebatian 6b1-6b4, yang mengandungi kumpulan penukargantian tert-butil menunjukkan tenaga pengikatan yang tinggi dan interaksi yang baik dengan DENV-2 NS2B/NS3 serine protease. Ini mungkin disebabkan oleh kehadiran tert-butil dalam strukturnya, yang boleh berinteraksi dengan asid amino protein, dengan itu meningkatkan interaksi pengikatan antara ligan dan protein. Semakin rendah nilai FEB sebatian, semakin kuat ikatannya dengan enzim. Sebatian 6b2 menunjukkan nilai FEB terendah walaupun ia mempunyai kurang interaksi ikatan H-bond berbanding dengan sebatian 6b3, dan ini mungkin disebabkan oleh kehadiran interaksi non-kovalen yang banyak dan jarak ikatan yang berdekatan telah membantu meningkatkan kestabilan ikatannya.  Secara keseluruhannya, kajian ini menunjukkan bahawa sebatian asid sinamik berpotensi untuk pembangunan ubat-ubatan antiviral bagi merawat DENV.

 

Kata kunci: asid sinamik, sintesis, anti-denggi, pengedokan

 

References

1.      Bhatt, S., Gething, P. W., Brady, O.J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., and Hay, S. I. (2021). The global distribution and burden of dengue. Nature, 496 (7446): 504-507.

2.      World Health Organization (WHO). (2019). Dengue and severe dengue. https://www.who.int/newsroom/fact-sheets/detail/dengue-and-severe-dengue. [Access online 25 November 2020].

3.      Bere, A. W., Mulati, O., Kimotho, J., and Ng’ong’a, F. (2021). Carica papaya leaf extract silver synthesized nanoparticles inhibit dengue type 2 viral replication in vitro. Pharmaceuticals, 14(8): 718.

4.      Wong, P. F., Wong, L. P., and AbuBakar, S. (2020). Diagnosis of severe dengue: challenges, needs and opportunities. Journal of Infection and Public Health, 13: 193-198.

5.      Khan, M., Altamish, M., Samal, M., Srivastav, V., Insaf, A., Parveen, F., Akhtar, J., Krishnan, A., and Ahmad, S. (2023). Antiviral potential of traditional unani medicine with special emphasis on dengue: A review. Current Drug Targets, 24(17): 1317-1334.

6.      Martin-Tanguy, J., Cabanne, F., Perdrizet, E., and Martin, C. (1978). The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry, 17(11): 1927-1928.

7.      Mohammadzadeh, S., Shariatpanahi, M., Hamedi, M., Ahmadkhaniha, R., Samadi, N., and Ostad, S. N. (2007). Chemical composition, oral toxicity, and antimicrobial activity of Iranian propolis. Food Chemistry, 103(4): 1097-1103.

8.      Clifford, M. N. (1999). Chlorogenic acids and other cinnamates – nature, occurrence, and dietary burden

Journal of the Science of Food and Agriculture, 79(3): 362-372.

9.      Fattah, A., Firdaus, and Soekamto, N. H. (2020). Synthesis of cinnamic acid derivative and bioactivity as an anticancer based on result quantitative structure relationship (QSAR) analysis. Indonesia Chimica Acta, 13(1): 23-29.

10.   Seck, R., Mansaly, M., Gassama, A., Cave, C. and Cojean, S. (2018). Synthesis and antimalarial activity of cinnamic acid derivatives. Journal of Chemical and Pharmaceutical Research, 10(11): 1-8.

11.   Silva, R. H., Andrade, A. C., Nóbrega, D. F., Castro, R. D. D., Pessôa, H. L., Rani, N., and de Sousa, D. P. (2019). Antimicrobial activity of 4-chlorocinnamic acid derivatives. BioMed Research International, 2019(1): 3941242.

12.   Lee, S., Han, J. M., Kim, H., Kim, E., Jeong, T. S., Lee, W. S., and Cho, K. H. (2004). Synthesis of cinnamic acid derivatives and their inhibitory effects on LDL-oxidation, acyl-CoA:cholesterol acyltransferase-1 and -2 activity, and decrease of HDL-particle size. Bioorganic and Medicinal Chemistry Letters, 14(18): 4677-4681.

13.   Gao, X., Tang, J., Liu, H., Liu, L., Kang, L., and Chen, W. (2018). Structure–activity relationship investigation of tertiary amine derivatives of cinnamic acid as acetylcholinesterase and butyrylcholinesterase inhibitors: compared with that of phenylpropionic acid, sorbic acid and hexanoic acid. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1): 519-524.

14.   Zhang, J., Yang, J., Chang, X., Zhang, C., Zhou, H., and Liu, M. (2012). Ozagrel for acute ischemic stroke: A metaanalysis of data from randomized controlled trials. Neurological Research, 34(4): 346-353.

15.   Rees, C.R., Costin, J.M., Fink, R.C., McMichael, M., Fontaine, K.A., Isern, S., and Michael, S. (2008). In vitro inhibition of dengue virus entry by p-sulfoxy-cinnamic acid and structurally related combinatorial chemistries. Antiviral Research, 80(2): 135-42.

16.   Ahmad, N., Fazal, H., Ayaz, M., Abbasi, B. H., Mohammad, I., and Fazal, L. (2011). Dengue fever treatment with Carica papaya leaves extracts. Asian Pacific Journal of Tropical Biomedicine, 1(4): 330-333.

17.   Ganji, L. R., Gandhi, L., Musturi, V., and Kanyalkar, M. (2020). Design, synthesis, and evaluation of different scaffold derivatives against NS2B-NS3 protease of dengue virus. Medicinal Chemistry Research, 30: 285-301.

18.   Nitsche, C., Steuer, C., and Klein, C. D. (2011). Arylcyanoacrylamides as inhibitors of the dengue and West Niles virus proteases. Bioorganic & Medicinal Chemistry, 19(24): 7318-7337.

19.   Aravapalli, S., Lai, H., Teramoto, T., Alliston, K. R., Lushington, G. H., Ferguson, E. L., Padmanabhan, R., and Groutas, W. C. (2012). Inhibitors of dengue virus and West Nile virus proteases based on the aminobenzamide scaffold. Bioorganic & Medicinal Chemistry, 20(13): 4140-4148.

20.   Steuer C, GeGe C, Fischl W, Heinonen KH, Bartenschlager R, Klein CD. (2011). Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorganic & Medicinal Chemistry, 19: 4067-4074.

21.   Leung, D., Schroder, K., White, H., Fang, N. X., Stoermer, M. J., Abbenante, G., Martin, J. L., Young, P. R., and Fairlie, D. P. (2001). Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. Journal of Biological Chemistry, 276(49): 45762-45771.

22.   Chiu, M. W., Shih, H. M., Yang, T. H., and Yang, Y. L. (2007). The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Journal of. Biomedical Science, 14(3): 429-444.

23.   Chen, W. N., Loscha, K. V., Nitsche, C., Graham, B., and Otting, G. (2014). The dengue virus NS2B-NS3 protease retains the closed conformation in the complex with BPTI. FEBS Letters, 588(14): 2206-2211.

24.   Tomlinson, S., Malmstrom, R., and Watowich, S. (2012). New approaches to structure-based discovery of dengue protease inhibitors. Infectious Disorder - Drug Targets, 9(3): 327-343.

25.   Preugschat, F., Yao, C. W., and Strauss, J. H. (1990). In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. Journal of Virology, 64(9): 4364-4374.

26.   Benet, L. Z., Hosey, C. M., Ursu, O., and Oprea, T. I. (2016). BDDCS, the rule of 5 and drug ability. Advanced Drug Delivery Reviews, 101: 89-98.

27.   Daina, A., Michielin, O. and Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7: 42717.

28.   Chai, T., Zhao, X. B., Wang, W. F., Qiang, Y., Zhang, X. Y., and Yang, J. L. (2018). Design, synthesis of N-phenethyl cinnamide derivatives and their biological activities for the treatment of Alzheimer’s disease: Antioxidant, beta-amyloid disaggregating, and rescue effects on memory loss. Molecules, 23(10): 2663.

29.   Khatkar, A., Nanda, A., Kumar, P., and Narasimhan, B. (2017). Synthesis, antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Arabian Journal of Chemistry, 10: S3804-S3815.

30.   Vishnoi, S., Agrawal, V., and Kasana, V. K. (2009). Synthesis and structure-activity relationships of substituted cinnamic acids and amide analogues: a new class of herbicides. Journal of Agriculture and Food Chemistry, 57 (8): 3261-3265.

31.   Doherty, E. M., Fotsch, C., Bo, Y., Chakrabarti, P. P., Chen, N., Gavva, N., Han, N., Kelly, M. G., Kincaid, J., Klionsky, L., Liu, Q., Ognyanov, V. I., Tamir, R., Wang, X., Zhu, J., Norman, M. H., and Treanor, J. J. S. (2005). Discovery of potent, orally available vanilloid receptor-1 antagonists. Structure-activity relationship of n-aryl cinnamides. Journal of Medicinal Chemistry, 48(1): 71-90.

32.   Grinter, S. Z., and Zou, X. (2014). Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules, 19(7): 10150-10176.

33.   Wichapong, K., Pianwanit, S., Sippl, W., and Kokpol, S. (2010). Homology modeling and molecular dynamics simulations of dengue virus NS2B/NS3 protease: Insight into molecular interaction. Journal of Molecular Recognition, 23(3): 283-300.

34.   Valeur, E., and Bradley, M. (2009). Amide bond formation: Beyond the myth of coupling reagents, Chemical Society Reviews, 38: 606-631.

35.   Kasprzak A, Zuchowska A, and Poplawska M. (2018). Functionalization of graphene: does organic chemistry matter? Beilstein Journal of Organic Chemistry, 14: 2018-2026.

36.   Liew, K. M., Tagg, T., and Khairul, W. M. (2019). Synthesis and characterization of N-analineferrocenylamides via carbodiimide coupling. Malaysian Journal of Analytical Sciences, 23(2): 189-196.

37.   Lampman, G. M., Pavia, D. L., Kriz, G. S., and Vyvyan, J. R. (2010). Spectroscopy. International Edition, Brooks/Cole Cengage Learning, Canada; pp 15-198.

38.   Brian C. Smith. Spectroscopy - Solution for Materials Analysis (2020). Multimedia Pharma Sciences, US, 35(1): pp. 10-15.

39.   Itoh, N., Sato, A., Yamazaki, T., Numata, M., and Takatsu, A. (2013). Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material l-alanine (NMIJ CRM 6011-a). Analytical Sciences, 29: 1209-1212.

40.   Kuveke, R. E. H., Barwise, L., van Ingen, Y., Vashisth, K., Roberts, N., Chitnis, S. S., Dutton, J. L., Martin, C. D., and Melen, R. L. (2022). An international study evaluating elemental analysis. ACS Central Science, 8(7): 855-863.

41.   Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. (2009), AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Science, 30(16): 2785-2791.

42.   Bianco, G., Forli, S., Goodsell, D. S., and Olson, A. J. (2016). Covalent docking using autodock: Two-point attractor and flexible side chain methods. Protein Science, 25(1): 295-301.

43.   Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., and Lee, R. E. (2009). Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase. Journal of Chemical Information and Modeling, 49(2): 44-460.

44.   Khalili, N. S. D., Khawory, M. H., Salin, N. H., Zakaria, I. I., Hariono, M., Mikhaylov, A. A., Kamarulzaman, E. E., A Wahab, H., Supratman, U., and Nurul Azmi, M. (2024). Synthesis and biological activity of imidazole phenazine derivatives as potential inhibitors for NS2b-NS3 dengue protease. Heliyon, 10(2): e24202.

45.   Terefe, E. M., and Ghosh, A. (2022). Molecular docking, validation dynamics simulations, and pharmacokinetic prediction of pharmacokinetic prediction of phytochemicals isolated from Croton dichogamus against the HIV-1 reverse transcriptase. Bioinformatics and Biology Insight, 16: 1179322221125605.

46.     Ivona, L. and Karelson, M. (2022). The impact of software used and the type of target protein on molecular docking accuracy. Molecule, 27(4): 9041.

47.   Thioguanine Hariono, M., Choi, S. B., Roslim, R. F., Nawi, M. S., Tan, M. L., Kamarulzaman, E. E., Mohamed, N., Yusof, R., Othman, S., Abd Rahman, N., Othman, R., and Wahab, H. A. (2019). Thioguanine-based DENV-2 NS2B/NS3 protease inhibitors: Virtual screening, synthesis, biological evaluation and molecular modelling. PloS one14(1): e0210869.

48.   Purohit, P., Sahoo, S., Panda, M., Sahoo, P. S., and Meher, B. R. (2022). Targeting the DENV NS2B-NS3 protease with active antiviral phytocompounds: Structure-based virtual screening, molecular docking and molecular dynamic simulation studies. Journal of Molecular Modeling, 28(11): 365.

49.   Anupurath, S., Rajaraman, V., Gunasekaran, S., Krishnan, A., Sreedevi, S. M., Vinod, S. M., Dakshinamoorthi, B. M., and Rajendran, K. (2021). Electrochemical investigation and molecular docking technique on the interaction of acridinedione dyes with water-soluble nonfluorophic simple amino acids. ACS Omega, 6: 30932-30941.

50.   Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery: Today Technologies, 1(4): 337-341.

51.   Vishvakarma, V.K., Patel, R., Kumari, K., and Singh P. (2017). Interaction between bovine serum albumin and gemini surfactants using molecular docking characterization, Information Sciences Letters, 3(2017): 1-9.

52.   Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., and Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12): 2615-2623.

53.   Kenny P. W. (2022). Hydrogen-bond donors in drug design. Journal of Medicinal Chemistry, 65(21): 14261-14275.

54.   Khan, S. A., Kumar, S., and Maqsood, A. M., (2013). Virtual screening of molecular properties and bioactivity score of boswellic acid derivatives in search of potent anti-inflammatory lead molecule, International Journal of Interdisciplinary and Multidisciplinary Studies, 1: 8-12.

55.   Halder, A. K., Moura and Cardeiro, M. N. D. S. (2018). QSAR modelling: A therapeutic patent review 2010-present. Expert Opinion on Therapeutic Patents28(6): 467-476.