Malaysian Journal of Analytical
Sciences, Vol 28
No 3 (2024): 586 -
602
SYNTHESIS AND MOLECULAR
DOCKING SIMULATION OF CINNAMIC ACIDS DERIVATIVES AGAINSTS DENV2 NS2B/NS3
(Sintesis dan Simulasi Pengedokan Terbitan Asid Sinamik
Terhadap DENV2 NS2B/NS3)
Nadia Mohamed Yusoff1, Siti Nor Khadijah Addis1,
Nurul Huda Abdul Wahab1,2, Fauziah Abdullah3
and Asnuzilawati Asari1,2,*
1Faculty of Science and Marine
Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
2Advanced Nano Materials (ANoMA)
Research Group, Faculty of Science and Marine Environment, Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Phytochemistry Programme, Natural
Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor
Darul Ehsan, Malaysia
*Corresponding author:
asnu@umt.edu.my
Received: 18 February 2024; Accepted:
23 April 2024; Published: 29 June 2024
Abstract
Dengue virus (DENV) is known as one of the serious
global threats to human health since its emergence in the past few decades.
However, clinically approved antiviral drugs are still not available for DENV treatment. The increased number of cases reported
yearly had led to the on-going research in finding an effective drug for
dengue. Cinnamic acid is a naturally occurring compound which consists of α,
β-unsaturated carboxylic acid and is known for its wide pharmacological properties.
Cinnamic acid derivatives such as caffeic acid are one of constituents in Carica
papaya leaf which are used as a folk remedy for dengue. Recently,
cinnamic acid was reported to show a potential against dengue virus. In this
study, eight cinnamic acid derivatives were synthesized by incorporating
cinnamic acid and amide moieties through the reaction of cinnamic acid with
corresponding amines. All compounds were characterized by using 1H
and 13C nuclear magnetic resonance (NMR), Fourier transform infrared
(FTIR), mass spectrometry (MS) and CHN elemental analysis. Then, the
synthesized compounds were simulated for molecular docking to investigate their
binding affinity with the Wichapong homology protein
model crystal structure, DENV-2 NS2B/NS3pro. The lower the value of FEB of a
compound, the higher its binding affinity towards protein. The in-silico study
revealed that compounds 6b1-6b4, with tert-butyl substituents had
the highest binding affinity and good interaction with DENV-2 NS2B/NS3 serine
protease. This might be due to the presence of a tert-butyl moiety in
the structure, which could interact with amino acid residue of protease,
thereby increasing the binding interaction between the ligand and the protein.
Compound 6b2 showed the lowest FEB value despite having less H-bond
interactions as compared to compound 6b3. This was probably due
to the presence of more non-covalent interaction and closer bond distance which
helped to enhance its binding stability. In summary, this study showed that
cinnamic acid could be a promising candidate for the development of antiviral
drugs to target DENV.
Keywords: cinnamic acid, synthesis,
anti-dengue virus, docking
Abstrak
Virus denggi
(DENV) telah dikenali sebagai salah satu ancaman global yang serius terhadap
kesihatan manusia setelah kemunculannya beberapa dekad yang lalu. Walau
bagaimanapun, masih belum ada ubat antiviral yang diluluskan secara klinikal
bagi rawatan DENV. Peningkatan jumlah kes yang dilaporkan setiap tahun telah
membawa kepada penyelidikan yang berterusan dalam pencarian ubat yang berkesan
untuk rawatan denggi. Asid sinamik adalah bahan semulajadi yang mempunyai
kumpulan asid karbosilik α,
β-tak tepu dan dikenali dengan pelbagai sifat farmakologinya. Asid
sinamik seperti asid kafeik merupakan antara komposisi yang terkandung di dalam
daun Carica papaya yang digunakan secara tradisional untuk rawatan
denggi. Kebelakangan ini, asid sinamik telah dilapor menunjukkan potensi
terhadap DENV. Di dalam kajian ini, lapan terbitan asid sinamik telah
disintesis dengan menggabungkan asid sinamik dan amida melalui tindak balas
asid sinamik dengan amina yang bersesuaian. Semua sebatian dicirikan dengan
menggunakan 1H and 13C Resonans Magnetik Nuklear (RMN), Inframerah
Transformasi Fourier (FTIR), spektrometri jisim (MS) dan analisis unsur CHN.
Sebatian yang disintesis kemudiannya disimulasikan menerusi pengedokan molekul
bagi mengkaji keafinan pengikatan mereka bersama struktur kristal homologi
protein Wichapong, DENV-2 NS2B/NS3pro. Kajian in siliko menunjukkan
bahawa sebatian 6b1-6b4, yang mengandungi kumpulan penukargantian tert-butil
menunjukkan tenaga pengikatan yang tinggi dan interaksi yang baik dengan DENV-2
NS2B/NS3 serine protease. Ini mungkin disebabkan oleh kehadiran tert-butil
dalam strukturnya, yang boleh berinteraksi dengan asid amino protein, dengan
itu meningkatkan interaksi pengikatan antara ligan dan protein. Semakin rendah
nilai FEB sebatian, semakin kuat ikatannya dengan enzim. Sebatian 6b2
menunjukkan nilai FEB terendah walaupun ia mempunyai kurang interaksi ikatan
H-bond berbanding dengan sebatian 6b3, dan ini mungkin disebabkan oleh
kehadiran interaksi non-kovalen yang banyak dan jarak ikatan yang berdekatan
telah membantu meningkatkan kestabilan ikatannya. Secara keseluruhannya, kajian ini menunjukkan
bahawa sebatian asid sinamik berpotensi untuk pembangunan ubat-ubatan antiviral
bagi merawat DENV.
Kata kunci: asid sinamik, sintesis, anti-denggi, pengedokan
References
2.
World
Health Organization (WHO). (2019). Dengue and severe dengue.
https://www.who.int/newsroom/fact-sheets/detail/dengue-and-severe-dengue.
[Access online 25 November 2020].
3.
Bere,
A. W., Mulati, O., Kimotho, J., and Ng’ong’a, F. (2021). Carica papaya leaf extract
silver synthesized nanoparticles inhibit dengue type 2 viral replication in
vitro. Pharmaceuticals, 14(8): 718.
4.
Wong, P. F., Wong, L.
P., and AbuBakar, S. (2020). Diagnosis of severe
dengue: challenges, needs and opportunities. Journal of Infection and Public
Health, 13: 193-198.
5.
Khan,
M., Altamish, M., Samal, M., Srivastav, V., Insaf,
A., Parveen, F., Akhtar, J., Krishnan, A., and Ahmad, S. (2023). Antiviral
potential of traditional unani medicine with special
emphasis on dengue: A review. Current Drug Targets, 24(17): 1317-1334.
6.
Martin-Tanguy,
J., Cabanne, F., Perdrizet,
E., and Martin, C. (1978). The distribution of hydroxycinnamic acid amides in
flowering plants. Phytochemistry,
17(11): 1927-1928.
7.
Mohammadzadeh, S., Shariatpanahi, M., Hamedi, M., Ahmadkhaniha,
R., Samadi, N., and Ostad, S. N. (2007). Chemical composition, oral toxicity,
and antimicrobial activity of Iranian propolis. Food
Chemistry,
103(4): 1097-1103.
8.
Clifford, M. N. (1999).
Chlorogenic acids and other cinnamates – nature, occurrence, and dietary burden
Journal of the Science of Food
and Agriculture,
79(3): 362-372.
9.
Fattah,
A., Firdaus, and Soekamto, N. H. (2020). Synthesis of
cinnamic acid derivative and bioactivity as an anticancer based on result
quantitative structure relationship (QSAR) analysis. Indonesia Chimica Acta,
13(1): 23-29.
10.
Seck,
R., Mansaly, M., Gassama, A., Cave, C. and Cojean, S.
(2018). Synthesis and antimalarial activity of cinnamic acid derivatives. Journal
of Chemical and Pharmaceutical Research, 10(11): 1-8.
11.
Silva,
R. H., Andrade, A. C., Nóbrega, D. F., Castro, R. D. D., Pessôa,
H. L., Rani, N., and de Sousa, D. P. (2019). Antimicrobial activity of
4-chlorocinnamic acid derivatives. BioMed Research International,
2019(1): 3941242.
12.
Lee,
S., Han, J. M., Kim, H., Kim, E., Jeong, T. S., Lee, W. S., and Cho, K. H.
(2004). Synthesis of cinnamic acid derivatives and their inhibitory effects on
LDL-oxidation, acyl-CoA:cholesterol
acyltransferase-1 and -2 activity, and decrease of HDL-particle size. Bioorganic and Medicinal Chemistry Letters,
14(18): 4677-4681.
13.
Gao,
X., Tang, J., Liu, H., Liu, L., Kang, L., and Chen, W. (2018).
Structure–activity relationship investigation of tertiary amine
derivatives of cinnamic acid as acetylcholinesterase and butyrylcholinesterase
inhibitors: compared with that of phenylpropionic
acid, sorbic acid and hexanoic acid. Journal
of Enzyme Inhibition and Medicinal Chemistry, 33(1): 519-524.
14.
Zhang,
J., Yang, J., Chang, X., Zhang, C., Zhou, H., and Liu, M. (2012). Ozagrel for acute ischemic stroke: A metaanalysis
of data from randomized controlled trials. Neurological
Research, 34(4): 346-353.
15.
Rees,
C.R., Costin, J.M., Fink, R.C., McMichael, M., Fontaine, K.A., Isern, S., and
Michael, S. (2008). In vitro inhibition of dengue virus entry by p-sulfoxy-cinnamic acid and structurally related
combinatorial chemistries. Antiviral Research, 80(2): 135-42.
16.
Ahmad, N., Fazal, H.,
Ayaz, M., Abbasi, B. H., Mohammad, I., and Fazal, L. (2011). Dengue fever
treatment with Carica papaya leaves extracts. Asian Pacific
Journal of Tropical Biomedicine, 1(4): 330-333.
17.
Ganji, L. R., Gandhi, L., Musturi, V., and Kanyalkar, M.
(2020). Design, synthesis, and evaluation of different scaffold derivatives
against NS2B-NS3 protease of dengue virus. Medicinal Chemistry Research,
30: 285-301.
18.
Nitsche,
C., Steuer, C., and Klein, C. D. (2011). Arylcyanoacrylamides
as inhibitors of the dengue and West Niles virus proteases. Bioorganic &
Medicinal Chemistry, 19(24): 7318-7337.
19.
Aravapalli, S., Lai,
H., Teramoto, T., Alliston, K. R., Lushington, G. H.,
Ferguson, E. L., Padmanabhan, R., and Groutas, W. C.
(2012). Inhibitors of dengue virus and West Nile virus proteases based on the
aminobenzamide scaffold. Bioorganic & Medicinal
Chemistry, 20(13):
4140-4148.
20.
Steuer C, GeGe C, Fischl W, Heinonen KH, Bartenschlager
R, Klein CD. (2011). Synthesis and biological evaluation of α-ketoamides
as inhibitors of the Dengue virus protease with antiviral activity in
cell-culture. Bioorganic & Medicinal Chemistry, 19: 4067-4074.
21.
Leung,
D., Schroder, K., White, H., Fang, N. X., Stoermer, M. J., Abbenante, G.,
Martin, J. L., Young, P. R., and Fairlie, D. P. (2001). Activity of recombinant
dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor,
small peptide substrates, and inhibitors. Journal
of Biological Chemistry, 276(49):
45762-45771.
22.
Chiu,
M. W., Shih, H. M., Yang, T. H., and Yang, Y. L. (2007). The type 2 dengue
virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1)
conjugating enzyme 9 (Ubc9). Journal of.
Biomedical Science, 14(3): 429-444.
23.
Chen,
W. N., Loscha, K. V., Nitsche, C., Graham, B., and
Otting, G. (2014). The dengue virus NS2B-NS3 protease retains the closed
conformation in the complex with BPTI. FEBS
Letters, 588(14): 2206-2211.
24.
Tomlinson,
S., Malmstrom, R., and Watowich, S. (2012). New
approaches to structure-based discovery of dengue protease inhibitors. Infectious Disorder - Drug Targets, 9(3): 327-343.
25.
Preugschat,
F., Yao, C. W., and Strauss, J. H. (1990). In vitro processing of dengue virus
type 2 nonstructural proteins NS2A, NS2B, and NS3. Journal of Virology,
64(9): 4364-4374.
26.
Benet,
L. Z., Hosey, C. M., Ursu, O., and Oprea, T. I. (2016). BDDCS, the rule of 5
and drug ability. Advanced Drug Delivery Reviews, 101:
89-98.
27.
Daina, A., Michielin, O. and Zoete, V. (2017). SwissADME:
A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal
chemistry friendliness of small molecules. Scientific Reports, 7:
42717.
28.
Chai,
T., Zhao, X. B., Wang, W. F., Qiang, Y., Zhang, X. Y., and Yang, J. L. (2018).
Design, synthesis of N-phenethyl cinnamide
derivatives and their biological activities for the treatment of Alzheimer’s
disease: Antioxidant, beta-amyloid disaggregating, and rescue effects on memory
loss. Molecules, 23(10): 2663.
29.
Khatkar, A., Nanda, A., Kumar, P., and Narasimhan, B. (2017). Synthesis,
antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Arabian
Journal of Chemistry, 10: S3804-S3815.
30.
Vishnoi, S., Agrawal, V., and Kasana, V. K. (2009).
Synthesis and structure-activity relationships of substituted cinnamic acids
and amide analogues: a new class of herbicides. Journal of Agriculture and
Food Chemistry, 57 (8): 3261-3265.
31.
Doherty, E. M., Fotsch, C., Bo, Y., Chakrabarti, P.
P., Chen, N., Gavva, N., Han,
N., Kelly, M. G., Kincaid, J., Klionsky,
L., Liu, Q., Ognyanov, V. I., Tamir, R., Wang,
X., Zhu, J., Norman, M. H., and Treanor, J. J. S. (2005).
Discovery of potent, orally available vanilloid receptor-1 antagonists.
Structure-activity relationship of n-aryl cinnamides.
Journal of Medicinal Chemistry, 48(1): 71-90.
32.
Grinter,
S. Z., and Zou, X. (2014). Challenges, applications, and recent advances of
protein-ligand docking in structure-based drug design. Molecules, 19(7): 10150-10176.
33.
Wichapong,
K., Pianwanit, S., Sippl, W., and Kokpol,
S. (2010). Homology modeling and molecular dynamics simulations of dengue virus
NS2B/NS3 protease: Insight into molecular interaction. Journal of Molecular Recognition, 23(3): 283-300.
34.
Valeur,
E., and Bradley, M. (2009). Amide bond formation:
Beyond the myth of coupling reagents, Chemical Society Reviews, 38:
606-631.
35.
Kasprzak A, Zuchowska A,
and Poplawska M. (2018). Functionalization of graphene: does organic chemistry
matter? Beilstein Journal of Organic Chemistry, 14: 2018-2026.
36.
Liew, K. M., Tagg, T., and
Khairul, W. M. (2019). Synthesis and characterization of N-analineferrocenylamides
via carbodiimide coupling. Malaysian Journal of Analytical Sciences,
23(2): 189-196.
37.
Lampman,
G. M., Pavia, D. L., Kriz, G. S., and Vyvyan, J. R. (2010). Spectroscopy.
International Edition, Brooks/Cole Cengage Learning, Canada; pp 15-198.
38.
Brian
C. Smith. Spectroscopy - Solution for Materials Analysis (2020). Multimedia
Pharma Sciences, US, 35(1): pp. 10-15.
39.
Itoh, N., Sato, A.,
Yamazaki, T., Numata, M., and Takatsu, A. (2013). Determination of the carbon,
hydrogen and nitrogen contents of alanine and their uncertainties using the
certified reference material l-alanine (NMIJ CRM 6011-a). Analytical
Sciences, 29: 1209-1212.
40.
Kuveke, R. E. H., Barwise, L.,
van Ingen, Y., Vashisth, K., Roberts, N., Chitnis, S. S., Dutton, J. L.,
Martin, C. D., and Melen, R. L. (2022). An international study evaluating
elemental analysis. ACS Central Science, 8(7): 855-863.
41.
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F.,
Belew, R. K., Goodsell, D. S., and Olson, A. J. (2009), AutoDock4 and
AutoDockTools4: Automated docking with selective receptor flexibility. Journal
of Computational Science, 30(16): 2785-2791.
42.
Bianco,
G., Forli, S., Goodsell, D. S., and Olson, A. J. (2016). Covalent docking using
autodock: Two-point attractor and flexible side chain
methods. Protein Science, 25(1): 295-301.
43.
Hevener,
K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J.,
White, S. W., and Lee, R. E. (2009). Validation of Molecular Docking Programs
for Virtual Screening against Dihydropteroate Synthase. Journal of Chemical
Information and Modeling, 49(2): 44-460.
44.
Khalili,
N. S. D., Khawory, M. H., Salin, N. H., Zakaria, I.
I., Hariono, M., Mikhaylov, A. A., Kamarulzaman, E.
E., A Wahab, H., Supratman, U., and Nurul Azmi, M. (2024). Synthesis and
biological activity of imidazole phenazine derivatives as potential inhibitors
for NS2b-NS3 dengue protease. Heliyon, 10(2):
e24202.
45.
Terefe,
E. M., and Ghosh, A. (2022). Molecular docking, validation dynamics
simulations, and pharmacokinetic prediction of pharmacokinetic prediction of
phytochemicals isolated from Croton dichogamus
against the HIV-1 reverse transcriptase. Bioinformatics and Biology Insight,
16: 1179322221125605.
46.
Ivona,
L. and Karelson, M. (2022). The impact of software
used and the type of target protein on molecular docking accuracy. Molecule,
27(4): 9041.
47.
Thioguanine Hariono, M., Choi, S. B., Roslim,
R. F., Nawi, M. S., Tan, M. L., Kamarulzaman, E. E., Mohamed, N., Yusof, R.,
Othman, S., Abd Rahman, N., Othman, R., and Wahab, H. A. (2019).
Thioguanine-based DENV-2 NS2B/NS3 protease inhibitors: Virtual screening,
synthesis, biological evaluation and molecular modelling. PloS one, 14(1): e0210869.
48.
Purohit, P., Sahoo, S.,
Panda, M., Sahoo, P. S., and Meher, B. R. (2022). Targeting the DENV NS2B-NS3
protease with active antiviral phytocompounds: Structure-based virtual
screening, molecular docking and molecular dynamic simulation studies. Journal
of Molecular Modeling, 28(11): 365.
49.
Anupurath,
S., Rajaraman, V., Gunasekaran, S., Krishnan, A., Sreedevi, S. M., Vinod, S.
M., Dakshinamoorthi, B. M., and Rajendran, K. (2021).
Electrochemical investigation and molecular docking technique on the
interaction of acridinedione dyes with water-soluble nonfluorophic simple amino acids. ACS Omega, 6:
30932-30941.
50.
Lipinski,
C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug
Discovery: Today Technologies, 1(4): 337-341.
51.
Vishvakarma, V.K.,
Patel, R., Kumari, K., and Singh P. (2017). Interaction between bovine serum
albumin and gemini surfactants using molecular
docking characterization, Information Sciences Letters, 3(2017): 1-9.
52.
Veber, D. F., Johnson,
S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., and Kopple, K. D. (2002).
Molecular properties that influence the oral bioavailability of drug
candidates. Journal of Medicinal Chemistry, 45(12): 2615-2623.
53.
Kenny P. W. (2022).
Hydrogen-bond donors in drug design. Journal of Medicinal Chemistry, 65(21):
14261-14275.
54.
Khan,
S. A., Kumar, S., and Maqsood, A. M., (2013). Virtual screening of
molecular properties and bioactivity score of boswellic
acid derivatives in search of potent anti-inflammatory lead molecule, International
Journal of Interdisciplinary and Multidisciplinary Studies, 1: 8-12.
55.
Halder,
A. K., Moura and Cardeiro, M. N. D. S. (2018). QSAR modelling: A therapeutic
patent review 2010-present. Expert Opinion on Therapeutic Patents, 28(6):
467-476.