Malaysian Journal of Analytical Sciences, Vol 28 No 3 (2024): 480 - 488

 

THE CONVERSION OF CELLULOSE TO GLUCOSE USING NOBLE METAL PLATINUM SUPPORTED ON ZEOLITE

 

(Penukaran Selulosa kepada Glukosa Menggunakan Mangkin Logam Adi

Platinum Disokong pada Zeolit)

 

Puteri Nurain Syahirah Megat Muhammad Kamal, Nor Farisha Farhana Mohd Zaid,

and Amin Safwan Alikasturi*

 

Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology,

Lot 1988 Vendor City, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia

 

*Corresponding author: aminsafwan@unikl.edu.my

 

 

Received: 15 September 2023; Accepted: 31 March 2024; Published:  29 June 2024

 

 

Abstract

Today, the chemical industry faces tremendous pressure to make breakthroughs in green materials, biofuels, and sustainable chemicals. In fact, the goal is to move industrial methods and technologies toward those that are cost-effective and environmentally friendly. Chemical transformation of renewable resources is essential to ensure the long-term sustainability of chemicals and to make sure that energy is sufficient for society in the future. The focus of this study was on the conversion of cellulose to glucose using platinum supported on zeolite as a catalyst. Wet impregnation method was employed to synthesize the catalyst, which was then characterized by thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, and Brunauer-Emmett-Teller (BET) analysis. According to the catalyst characterization performed using TGA, the nitrate precursors of the catalyst decomposed at temperatures between 200 and 280 °C. The finding was verified by FTIR, which showed a diminishing intensity of the peak around 1450–1300 cm⁻¹, indicating that the catalyst was free of precursors. Subsequently, the catalyst was calcined at 500 °C for 5 h. It is noteworthy that this catalyst has a large surface area of up to 648.13 m²/g. A catalytic reaction study on the conversion of cellulose to glucose was carried out to investigate several factors, including substrate loading and catalyst loading. It was discovered that 0.4 g of cellulose and 0.1 g of platinum supported on zeolite contributed to a high yield of glucose and conversion of cellulose (22.07% and 54.9%, respectively). The study shows that the chemical transformation of cellulose to glucose is possible with the supported noble metal catalyst.

 

Keywords: cellulose, glucose, heterogeneous catalyst, platinum supported on zeolite, supported noble metal catalyst

 

Abstrak

Industri kimia pada masa kini menghadapi tekanan yang sangat besar untuk melakukan penemuan dalam bahan hijau, bahan bakar-bio, dan bahan kimia yang mapan. Malah, matlamatnya adalah untuk menggerakkan kaedah dan teknologi perindustrian ke arah yang kos efektif dan mesra alam. Transformasi kimia bagi bahan boleh diperbaharui adalah penting untuk memastikan keberlanjutan jangka panjang bahan kimia dan tenaga yang mencukupi untuk masyarakat pada masa hadapan. Oleh itu, fokus kajian ini adalah kepada penukaran selulosa kepada glukosa menggunakan platinum yang disokong pada zeolit ​​sebagai mangkin. Kaedah pengisitepuan basah digunakan untuk mensintesis mangkin, dan ia kemudiannya dicirikan oleh analisis termogravimetri (TGA), spektroskopi inframerah transformasi Fourier (FTIR), dan analisis Brunauer-Emmett-Teller (BET). Menurut pencirian mangkin yang dilakukan menggunakan TGA, prekursor nitrat daripada mangkin boleh diuraikan pada suhu antara 200 dan 280 °C. Penemuan ini telah disahkan oleh FTIR yang menunjukkan keamatan puncak yang semakin berkurangan sekitar 1450–1300 cm⁻¹, menunjukkan mangkin adalah bebas daripada prekursor. Seterusnya, mangkin dikalsin pada 500 °C selama 5 jam. Selain itu, mangkin ini didapati mempunyai luas permukaan yang besar sehingga 648.13 m²/g. Kajian tindak balas mangkin mengenai penukaran selulosa kepada glukosa telah dijalankan untuk menyiasat beberapa faktor, termasuk pemuatan substrat dan pemuatan mangkin. 0.4 g selulosa dan 0.1 g platinum yang disokong pada zeolit didapati menyumbang kepada hasil glukosa dan penukaran selulosa yang tinggi (masing-masing 22.07% dan 54.9%). Kajian menunjukkan bahawa transformasi kimia selulosa kepada glukosa menunjukkan potensi dengan pemangkin logam adi yang disokong.

 

Kata kunci: selulosa. glukosa, mangkin heterogen, platinum disokong pada zeolit, mangkin logam adi sokongan

 


References

1.      Merklein, K., Fong, S. S., and Deng, Y. (2016). Chapter 11 – biomass utilization.

2.      Rackemann, D. W., and Doherty, W. O. (2011). The conversion of lignocellulosics to levulinic acid. Biofuels, Bioproducts and Biorefining, 5(2): 198-214.

3.      Lee, J., Jung, S., Kim, Y. T., Kim, H. J., and Kim, K. H. (2023). Catalytic and electrocatalytic conversion of glucose into value-added chemicals. Renewable and Sustainable Energy Reviews, 181: 113337.

4.      Wasie, A. T., Getachew, M., Asselefech, T., Wotango, S., and Bachheti, R. K. (2024). Heterogeneous catalytic conversion of lignocellulose: towards green and renewable chemicals. Discover Applied Sciences, 6: 37.

5.      Xiang, M., Liu, J., Fu, W., Tang, T., and Wu, D. (2017). Improved activity for cellulose conversion to levulinic acid through hierarchization of ETS-10 Zeolite. ACS Sustainable Chemistry and Engineering, 5(7): 5800-5809.

6.      Yoshimura, A., Tochigi, S., and Matsuno, Y. (2021). Fundamental study of palladium recycling using “dry aqua regia” considering the recovery from spent auto-catalyst. Journal of Sustainable Metallurgy, 7(1): 266-276.

7.      Negoi, A., Triantafyllidis, K., Parvulescu, V. I., and Coman, S. M. (2014). The hydrolytic hydrogenation of cellulose to sorbitol over M (Ru, Ir, Pd, Rh)-BEA-zeolite catalysts. Catalysis Today, 223: 122-128.

8.      Ya’Aini, N., Amin, N. A. S., and Endud, S. (2013). Characterization and performance of hybrid catalysts for levulinic acid production from glucose. Microporous and Mesoporous Materials, 171: 14-23.

9.      Ayad, Z., Hussein, Q. H., and Al-Tabbakh, B. A. R. (2020). Synthesis and characterization of high silica HY zeolite by basicity reduction. AIP Conference Proceeding. 2213: 020168.

10.   Azan, M. N. I. N., Kamal, P. N. S. M. M., Rasmadi, M. A. A., Adzhar, M. H., Zakaria, M. A., Taufek, A. S. A., Nasir, N. S. M., and Alikasturi, A. S. (2020). Production of biodiesel from palm oil refinery pilot plant waste using Ni/CaO (ES) catalyst. Materials Today: Proceedings, 31: 292-299

11.   Małecka, B., Łącz, A., Drożdż, E., and Malecki, A. (2015). Thermal decomposition of d-metal nitrates supported on alumina. Journal of Thermal Analysis and Calorimetry, 119(2): 1053-1061.

12.   Joshi, S. S., Zodge, A. D., Pandare, K. V., and Kulkarni, B. D. (2014). Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium dioxide as a recyclable solid acid catalyst. Industrial and Engineering Chemistry Research, 53(49): 18796-18805.

13.   Kamal, P. N. S. M. M., Sapawe, N., and Alikasturi, A. S. (2022). Characterization and performance of supported noble metal (pt) on the production of levulinic acid from cellulose. Materials Science Forum, 1077: 193–202.

14.   Kamal, P. N. S. M. M., Mohamad, N. I., Serit, M. E. A., Rahim, N. S. A., Jimat, N. I., and Alikasturi, A. S. (2020). Study on the effect of reaction and calcination temperature towards glucose hydrolysis using solid acid catalyst. Materials Today: Proceedings, 31: 282-286.

15.   Kamal, P. N. S. M. M., Sapawe, N., and Alikasturi, A. S. (2022). Catalytic conversion of cellulose to levulinic acid using supported noble metal palladium catalyst. Malaysian Journal of Analytical Sciences, 26(1): 119-129.

16.   Jamal, S., Rosid, M., Toemen, S., Azelee, W., Abu Bakar, W., Rosid, S. M., Nazwanie, W., Abdullah, W., & Maisarah Aziz, S. (2021). Characteristics of praseodymium oxide doped manganese/ruthenium catalyst in methanation: effect calcination temperature. Journal of Academia, 9(1): 49-55.

17.   Ashok, A., Kumar, A., Bhosale, R. R., Saleh, M. A. H., and Van Den Broeke, L. J. P. (2015). Cellulose assisted combustion synthesis of porous Cu-Ni nanopowders. RSC Advances, 5(36): 28703-28712.

18.   Baharudin, K. B., Abdullah, N., and Derawi, D. (2018). Effect of calcination temperature on the physicochemical properties of zinc oxide nanoparticles synthesized by coprecipitation. IOP Publishing, 5: 125018.

19.   Al-Fatesh, A. S. A., and Fakeeha, A. H. (2012). Effects of calcination and activation temperature on dry reforming catalysts. Journal of Saudi Chemical Society, 16(1): 55-61.

20.   Ramli, N. A. S., and Amin, N. A. S. (2014). Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production. Fuel Processing Technology, 128: 490-498.

21.   Zhang, X., Zhang, X., Sun, N., Wang, S., Wang, X., and Jiang, Z. (2019). High production of levulinic acid from cellulosic feedstocks being catalyzed by temperature-responsive transition metal substituted heteropolyacids. Renewable Energy, 141: 802-813.

22.   Wang, K., Ye, J., Zhou, M., Liu, P., Liang, X., Xu, J., and Jiang, J. (2017). Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent. Cellulose, 24(3): 1383-1394.

23.   Kamal, P. N. S. M. M., Zabidi, M. D. H. M., and Alikasturi, A. S. (2023). Hydrolysis of cellulose to glucose catalyzed by noble metal palladium (Pd) supported on silica-alumina. Malaysian Journal of Analytical Sciences, 27: 261-270.

24.   Zarin, M. A. A., Zainol, M. M., and Amin, N. A. S. (2020). Optimizing levulinic acid from cellulose catalyzed by HY-zeolite immobilized ionic liquid (HY-IL) using response surface methodology. Malaysian Journal of Fundamental and Applied Sciences, 16(6): 625-629.

25.   Mufrodi, Z., Astuti, E., Aktawan, A., and Purwono, S. (2018). The effect of recycle stream on the selectivity and yield of the formation of triacetin from glycerol. IOP Conference Series: Earth and Environmental Science, 175(1): 012013.