Malaysian Journal of Analytical
Sciences, Vol 28
No 3 (2024): 480 -
488
THE CONVERSION OF
CELLULOSE TO GLUCOSE USING NOBLE METAL PLATINUM SUPPORTED ON ZEOLITE
(Penukaran
Selulosa kepada Glukosa Menggunakan Mangkin Logam Adi
Platinum
Disokong pada Zeolit)
Puteri Nurain Syahirah Megat Muhammad Kamal, Nor Farisha Farhana Mohd
Zaid,
and Amin Safwan Alikasturi*
Universiti Kuala Lumpur Branch Campus Malaysian Institute of
Chemical and Bioengineering Technology,
Lot 1988 Vendor City, Taboh Naning, 78000 Alor Gajah, Melaka,
Malaysia
*Corresponding author:
aminsafwan@unikl.edu.my
Received: 15 September 2023;
Accepted: 31 March 2024; Published: 29 June
2024
Abstract
Today, the chemical industry faces tremendous
pressure to make breakthroughs in green materials, biofuels, and sustainable
chemicals. In fact, the goal is to move industrial methods and technologies
toward those that are cost-effective and environmentally friendly. Chemical
transformation of renewable resources is essential to ensure the long-term
sustainability of chemicals and to make sure that energy is sufficient for
society in the future. The focus of this study was on the conversion of
cellulose to glucose using platinum supported on zeolite as a catalyst. Wet
impregnation method was employed to synthesize the catalyst, which was then
characterized by thermogravimetric analysis (TGA), Fourier transform infrared
(FTIR) spectroscopy, and Brunauer-Emmett-Teller (BET) analysis.
According to the catalyst characterization performed using TGA, the nitrate
precursors of the catalyst decomposed at temperatures between 200 and 280 °C.
The finding was verified by FTIR, which showed a diminishing intensity of the peak
around 1450–1300 cm⁻¹, indicating that the catalyst was free of
precursors. Subsequently, the catalyst was calcined at 500 °C for 5 h. It is
noteworthy that this catalyst has a large surface area of up to 648.13 m²/g. A
catalytic reaction study on the conversion of cellulose to glucose was carried
out to investigate several factors, including substrate loading and catalyst
loading. It was discovered that 0.4 g of cellulose and 0.1 g of platinum
supported on zeolite contributed to a high yield of glucose and conversion of
cellulose (22.07% and 54.9%, respectively). The study shows that the chemical
transformation of cellulose to glucose is possible with the supported noble
metal catalyst.
Keywords: cellulose, glucose, heterogeneous catalyst,
platinum supported on zeolite, supported noble metal catalyst
Abstrak
Industri kimia pada masa kini
menghadapi tekanan yang sangat besar untuk melakukan penemuan dalam bahan
hijau, bahan bakar-bio, dan bahan kimia yang mapan. Malah, matlamatnya adalah
untuk menggerakkan kaedah dan teknologi perindustrian ke arah yang kos efektif
dan mesra alam. Transformasi kimia bagi bahan boleh diperbaharui adalah penting
untuk memastikan keberlanjutan jangka panjang bahan kimia dan tenaga yang
mencukupi untuk masyarakat pada masa hadapan. Oleh itu, fokus kajian ini adalah
kepada penukaran selulosa kepada glukosa menggunakan platinum yang disokong
pada zeolit sebagai mangkin. Kaedah pengisitepuan basah digunakan
untuk mensintesis mangkin, dan ia kemudiannya dicirikan oleh analisis
termogravimetri (TGA), spektroskopi inframerah transformasi Fourier (FTIR), dan
analisis Brunauer-Emmett-Teller (BET). Menurut pencirian mangkin yang dilakukan
menggunakan TGA, prekursor nitrat daripada mangkin boleh diuraikan pada suhu
antara 200 dan 280 °C. Penemuan ini telah disahkan oleh FTIR yang menunjukkan keamatan
puncak yang semakin berkurangan sekitar 1450–1300 cm⁻¹, menunjukkan mangkin adalah bebas daripada prekursor.
Seterusnya, mangkin dikalsin pada 500 °C selama 5 jam. Selain itu, mangkin ini
didapati mempunyai luas permukaan yang besar sehingga 648.13 m²/g. Kajian
tindak balas mangkin mengenai penukaran selulosa kepada glukosa telah
dijalankan untuk menyiasat beberapa faktor, termasuk pemuatan substrat dan
pemuatan mangkin. 0.4 g selulosa dan 0.1 g platinum yang disokong pada zeolit
didapati menyumbang kepada hasil glukosa dan penukaran selulosa yang tinggi
(masing-masing 22.07% dan 54.9%). Kajian menunjukkan bahawa transformasi kimia
selulosa kepada glukosa menunjukkan potensi dengan pemangkin logam adi yang
disokong.
Kata kunci: selulosa. glukosa, mangkin
heterogen, platinum disokong pada zeolit, mangkin logam adi sokongan
References
1.
Merklein,
K., Fong, S. S., and Deng, Y. (2016). Chapter 11 – biomass utilization.
2.
Rackemann, D. W., and Doherty, W. O. (2011). The conversion
of lignocellulosics to levulinic
acid. Biofuels, Bioproducts and Biorefining, 5(2): 198-214.
3.
Lee,
J., Jung, S., Kim, Y. T., Kim, H. J., and Kim, K. H. (2023). Catalytic and
electrocatalytic conversion of glucose into value-added chemicals. Renewable
and Sustainable Energy Reviews, 181: 113337.
4.
Wasie,
A. T., Getachew, M., Asselefech, T., Wotango, S., and Bachheti, R. K.
(2024). Heterogeneous catalytic conversion of lignocellulose: towards green and
renewable chemicals. Discover Applied Sciences, 6: 37.
5.
Xiang,
M., Liu, J., Fu, W., Tang, T., and Wu, D. (2017). Improved activity for cellulose conversion to levulinic acid through hierarchization of ETS-10 Zeolite. ACS
Sustainable Chemistry and Engineering, 5(7): 5800-5809.
6.
Yoshimura,
A., Tochigi, S., and Matsuno, Y. (2021). Fundamental study of palladium recycling using “dry
aqua regia” considering the recovery from spent auto-catalyst. Journal of
Sustainable Metallurgy, 7(1): 266-276.
7.
Negoi, A., Triantafyllidis, K., Parvulescu,
V. I., and Coman, S. M. (2014). The
hydrolytic hydrogenation of cellulose to sorbitol over M (Ru, Ir, Pd, Rh)-BEA-zeolite catalysts. Catalysis Today,
223: 122-128.
8.
Ya’Aini, N., Amin, N. A. S., and Endud,
S. (2013). Characterization and
performance of hybrid catalysts for levulinic acid
production from glucose. Microporous and Mesoporous Materials, 171:
14-23.
9.
Ayad,
Z., Hussein, Q. H., and Al-Tabbakh, B. A. R. (2020). Synthesis and
characterization of high silica HY zeolite by basicity reduction. AIP
Conference Proceeding. 2213: 020168.
10.
Azan,
M. N. I. N., Kamal, P. N. S. M. M., Rasmadi, M. A.
A., Adzhar, M. H., Zakaria, M. A., Taufek, A. S. A., Nasir, N. S. M., and Alikasturi,
A. S. (2020). Production of biodiesel from palm oil refinery pilot plant waste
using Ni/CaO (ES) catalyst. Materials Today:
Proceedings, 31: 292-299
11.
Małecka, B., Łącz, A.,
Drożdż, E., and Malecki, A. (2015). Thermal
decomposition of d-metal nitrates supported on alumina. Journal of Thermal
Analysis and Calorimetry, 119(2): 1053-1061.
12.
Joshi,
S. S., Zodge, A. D., Pandare,
K. V., and Kulkarni, B. D. (2014). Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium
dioxide as a recyclable solid acid catalyst. Industrial and Engineering
Chemistry Research, 53(49): 18796-18805.
13.
Kamal,
P. N. S. M. M., Sapawe, N., and Alikasturi,
A. S. (2022). Characterization and performance of supported noble metal (pt) on
the production of levulinic acid from cellulose. Materials
Science Forum, 1077: 193–202.
14.
Kamal,
P. N. S. M. M., Mohamad, N. I., Serit, M. E. A.,
Rahim, N. S. A., Jimat, N. I., and Alikasturi, A. S.
(2020). Study on the effect of reaction and calcination temperature towards
glucose hydrolysis using solid acid catalyst. Materials Today: Proceedings,
31: 282-286.
15.
Kamal,
P. N. S. M. M., Sapawe, N., and Alikasturi,
A. S. (2022). Catalytic conversion of cellulose to levulinic
acid using supported noble metal palladium catalyst. Malaysian Journal of
Analytical Sciences, 26(1): 119-129.
16.
Jamal,
S., Rosid, M., Toemen, S., Azelee,
W., Abu Bakar, W., Rosid, S. M., Nazwanie, W.,
Abdullah, W., & Maisarah Aziz, S. (2021). Characteristics of praseodymium
oxide doped manganese/ruthenium catalyst in methanation: effect calcination
temperature. Journal of Academia, 9(1): 49-55.
17.
Ashok,
A., Kumar, A., Bhosale, R. R., Saleh, M. A. H., and Van Den Broeke,
L. J. P. (2015). Cellulose assisted combustion synthesis of porous Cu-Ni nanopowders. RSC Advances, 5(36): 28703-28712.
18.
Baharudin,
K. B., Abdullah, N., and Derawi, D. (2018). Effect of
calcination temperature on the physicochemical properties of zinc oxide
nanoparticles synthesized by coprecipitation. IOP Publishing, 5: 125018.
19.
Al-Fatesh, A. S. A., and Fakeeha, A.
H. (2012). Effects of calcination and activation temperature on dry reforming
catalysts. Journal of Saudi Chemical Society, 16(1): 55-61.
20.
Ramli,
N. A. S., and Amin, N. A. S. (2014). Catalytic
hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid
production. Fuel Processing Technology, 128: 490-498.
21.
Zhang,
X., Zhang, X., Sun, N., Wang, S., Wang, X., and Jiang, Z. (2019). High
production of levulinic acid from cellulosic
feedstocks being catalyzed by temperature-responsive transition metal
substituted heteropolyacids. Renewable Energy,
141: 802-813.
22.
Wang, K., Ye, J., Zhou, M.,
Liu, P., Liang, X., Xu, J., and Jiang, J. (2017). Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent. Cellulose,
24(3): 1383-1394.
23.
Kamal,
P. N. S. M. M., Zabidi, M. D. H. M., and Alikasturi, A. S. (2023). Hydrolysis of cellulose to
glucose catalyzed by noble metal palladium (Pd) supported on silica-alumina. Malaysian
Journal of Analytical Sciences, 27: 261-270.
24.
Zarin,
M. A. A., Zainol, M. M., and Amin, N. A. S. (2020). Optimizing levulinic acid
from cellulose catalyzed by HY-zeolite immobilized ionic liquid (HY-IL) using
response surface methodology. Malaysian Journal of Fundamental and Applied
Sciences, 16(6): 625-629.
25.
Mufrodi,
Z., Astuti, E., Aktawan, A., and Purwono,
S. (2018). The effect of recycle stream on the
selectivity and yield of the formation of triacetin from glycerol. IOP
Conference Series: Earth and Environmental Science, 175(1): 012013.