Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 348 - 364

 

FROM TRADITIONAL TO GREEN: EVOLUTION OF SHALE SWELLING INHIBITORS FOR SUSTAINABLE DRILLING

 

(Daripada Tradisional Ke Hijau: Evolusi Pencegahan Pembengkakan Syal Untuk Penggerudian Lestari)

 

Siti Qurratu’ Aini Mahat1*, Ismail Mohd Saaid2, Arina Sauki3, Agi Agustine Aja1,

Norida Ridzuan1 and Norasyikin Ismail1

 

1Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia

2Petroleum Engineering Department, Universiti Teknologi Petronas, 32610, Seri Iskandar, Perak, Malaysia

3School of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia

 

*Corresponding author: sitiqurratu@umpsa.edu.my

 

 

Received: 1 November 2023; Accepted: 11 March 2024; Published:  29 April 2024

 

 

Abstract

The occurrence of shale swelling during water-based drilling operations poses substantial challenges to the stability of shale formations. Clay layer expansion is the primary cause of shale swelling, which results from interactions between clay minerals and drilling fluid components. The degree of expansion is determined by variables such as clay composition, ion exchange processes, osmotic pressure, ionic strength, temperature, and pressure. Therefore, this study explores various shale swelling inhibitors and meticulously investigates the underlying mechanisms. The effectiveness of conventional inhibitors, such as potassium chloride (KCl), ammonium chloride (NH4Cl), and amine-based inhibitors, is well-established. However, it is important to note that these inhibitors do have certain limitations. Hence, the present work investigates a range of environmentally friendly inhibitors, including graphene oxide, ionic liquids, deep eutectic solvents, nanoparticles, nanocomposites, and biosurfactants. Graphene oxide exhibits notable efficacy in mitigating shale swelling and producing extensive, unbroken protective coatings. Ionic liquids, represented by 1-butyl-3-methylimidazolium chloride (BMIMCl), have demonstrated enhanced inhibitory characteristics in comparison to KCl, resulting in a reduction in bentonite swelling rates by 19.38%. Furthermore, it has been observed that deep eutectic solvents (DESs), such as NADES, exhibit remarkable inhibitory characteristics, resulting in a 49.1-62.8% reduction in the rate of swelling in clay samples. Nanocomposites, which involve the integration of single-walled carbon nanotubes (SWCNTs) and polyvinylpyrrolidone (PVP), have demonstrated successful mitigation of shale swelling and regulation of fluid loss. Moreover, biosurfactants such as chitosan-grafted l-arginine, flaxseed protein (FP), and flaxseed mucilage (FM), have exhibited potential as shale inhibitors that are both biodegradable and environmentally friendly. These findings contribute to ongoing efforts to improve the environmental sustainability of drilling operations and adhere to rigorous environmental protection standards. Nevertheless, more investigation, refinement, and practical application analysis are needed before they can be widely used.

 

Keywords: water-based drilling fluid, shale formation, shale swelling, inhibitors, environmentally friendly

 

 

Abstrak

Kejadian pembengkakan syal semasa operasi penggerudian berasaskan air menimbulkan cabaran besar kepada kestabilan pembentukan syal. Pengembangan lapisan tanah liat adalah punca utama pembengkakan syal, yang terhasil daripada interaksi antara mineral tanah liat dan komponen bendalir penggerudian. Tahap pengembangan ditentukan oleh pembolehubah seperti komposisi tanah liat, proses pertukaran ion, tekanan osmotik, kekuatan ion, suhu, dan tekanan. Oleh itu, kajian ini meneroka pelbagai perencat pembengkakan syal dan menyiasat dengan teliti mekanisme asas. Keberkesanan perencat konvensional, seperti kalium klorida (KCl), ammonium klorida (NH4Cl), dan perencat berasaskan amina, adalah mantap. Walau bagaimanapun, adalah penting untuk ambil perhatian bahawa perencat ini mempunyai batasan tertentu. Oleh itu, kajian ini menyiasat pelbagai perencat mesra alam, termasuk graphene oksida, cecair ionik, pelarut eutektik dalam, nanopartikel, nanokomposit dan biosurfaktan. Grafin oksida mempamerkan keberkesanan yang ketara dalam mengurangkan pembengkakan syal dan menghasilkan salutan pelindung yang luas dan tidak pecah. Cecair ionik, yang diwakili oleh 1-butil-3-metilimidazolium klorida (BMIMCl), telah menunjukkan ciri-ciri perencatan yang dipertingkatkan berbanding dengan KCl, mengakibatkan pengurangan kadar pembengkakan bentonit sebanyak 19.38%. Tambahan pula, telah diperhatikan bahawa pelarut eutektik dalam (DES), seperti NADES, mempamerkan ciri-ciri perencatan yang luar biasa, mengakibatkan pengurangan 49.1-62.8% dalam kadar bengkak dalam sampel tanah liat. Nanokomposit, yang melibatkan penyepaduan tiub karbon berdinding tunggal (SWCNTs) dan polivinilpirolidon (PVP), telah menunjukkan kejayaan pengurangan bengkak syal dan pengawalan kehilangan bendalir. Selain itu, biosurfaktan seperti kitosan yang dicampurkan bersama l-arginin, protein biji rami (FP), dan lendir biji rami (FM), telah mempamerkan potensi sebagai perencat syal yang boleh terbiodegradasi dan mesra alam. Penemuan ini menyumbang kepada usaha berterusan untuk meningkatkan kelestarian alam sekitar operasi penggerudian dan mematuhi piawaian perlindungan alam sekitar yang ketat. Namun begitu, lebih banyak penyiasatan, penghalusan, dan analisis aplikasi praktikal diperlukan sebelum ia digunakan secara meluas.

 

Kata kunci: cecair penggerudian berasaskan air, batuan syal, pembengkakan syal, perencat, mesra alam sekitar

 

References

1.      Ahmed, A. W., and E. Kalkan, E. (2019). Drilling fluids; Types, formation choice and environmental impact. International Journal of Latest Technology in Engineering, Management & Applied Science, 8(12): 66-71

2.      Davoodi, S., Al-Shargabi, M., Wood, D. A., Rukavishnikov, V. S., and Minaev, K. M. (2024). Synthetic polymers: A review of applications in drilling fluids. Petroleum Science, 21(1): 475-518.

3.      Li, Y., Xia, C., and Liu, X. (2023). Water-based drilling fluids containing hydrophobic nanoparticles for minimizing shale hydration and formation damage. Heliyon, 9(12): e22990.

4.      Saleh, T. A. (2022). Advanced trends of shale inhibitors for enhanced properties of water-based drilling fluid. Upstream Oil and Gas Technology, 8: 100069.

5.      Zhang, C., Gamage, R. P., Perera, M. S. A., and Zhao, J. (2017). Characteristics of clay-abundant shale formations: Use of CO2 for production enhancement. Energies, 10(11): 1887.

6.      Alcázar-Vara, L. A., and Cortés-Monroy, I. R. (2018). Drilling fluids for deepwater fields: An overview. Recent Insights in Petroleum Science and Engineering, InTech Publication.

7.      Xianyu, Y., Jihua, C., Guosheng, J., Shuya, C., Ye, Y., Yanping, S., and Zhaohui, W. (2021). A method of determining osmotic pressure for low-clay shale with different salt ions considering effect of dynamic permeability on flow. Engineering Geology, 295: 106434.

8.      Xianyu. Y, Zhenxiao, S., Yanping, S., Yangdong, P., Ye, Y., Shuya, C., Guosheng, J., and Jihua, C. (2018). Influence of salt solutions on the permeability, membrane efficiency and wettability of the Lower Silurian Longmaxi shale in Xiushan, Southwest China. Applied Clay Science, 158: 83-93.

9.      Dankwa, O. K., Appau, P. O., and Broni-Bediako, E. (2018). Evaluating the effects of monovalent and divalent salts on the rheological properties of water based mud. Open Petroleum Engineering Journal, 11(1): 98-106.

10.   Sun, C., Li, G., Sun, Y., He, J., and Rong, H. (2019). Modelling hydration swelling and weakening of montmorillonite particles in mudstone. Processes, 7(7): 428.

11.   Al-Sarraf, H., Albazali, T., and Garrouch, A. (2022). Role of diffusion osmosis on the mechanical and petrophysical alterations of shale when interacting with aqueous solutions. Geosystem Engineering, 25(1-2): 13-24.

12.   Yang, L., Lu, L., Li, X., Shan, Y., Mo, C., Sun, M., Hu, J., Liu, W., Liang, B., and Xu, J. (2023). Clay mineral transformation mechanism modelling of shale reservoir in Da’anzhai Member, Sichuan Basin, Southern China. Frontier Earth Sci (Lausanne), 11: 1205849.

13.   Liu, J., Yang, Z., Sun, J., Dai, Z., Lv, K., and Yo, Q. (2021). Experimental investigation on hydration mechanism of Sichuan shale (China). Journal of Petroleum Science and Engineering, 201: 108421.

14.   Cao, H., Zhang, Z., Bao, T., Sun, P., Wang, T., and Gao, Q. (2019). Experimental investigation of the effects of drilling fluid activity on the hydration behavior of shale reservoirs in northwestern Hunan, China. Energies (Basel), 12(16): 3151.

15.   Shi, X., Wang, L., Guo, J., Su, Q., and Zhuo, X. (2019). Effects of inhibitor KCl on shale expansibility and mechanical properties. Petroleum, 5(4): 407-412.

16.   Chen, X., Yi, H., Gao, L., Shi, X., and Liu, Y. (2020). Effects of inhibitor KCl on hydration swelling and softening of a smectite-poor mudstone. Journal of Petroleum Exploration and Production Technology, 10(7): 2685-2692.

17.   Wysocki, S., Gaczoł, M., and Wysocka, M. (2018). Drilling mud with addition of new hydration inhibitor for clay rocks’, in E3S Web of Conferences, EDP Sciences, 7: 100013.

18.   Lopez-Hernandez, D., Mahia-Masip, M., Melendez, W., and Lopez-Contreras, A. (2022). NH4+ Fixation and ionic competition with K+ in a clayey soil from Ocumare Del Tuy, Venezuela. Canadian Journal of Agriculture and Crops, 7(2): 38-45.

19.   Mo, S., Song, J., Lu, X., Chen, J., and He, L. (2010). The application of ammonium calcium chloride drilling fluid in the shale section in Sudan. Engineering, Environmental Science, Geology, 27(3): 47-50.

20.   Chen, W. L., Grabowski, R. C., and Goel, S. (2022). Clay swelling: Role of cations in stabilizing/destabilizing mechanisms. ACS Omega, 7(4): 3185-3191.

21.   Fu, L., Liao, K., Ge, J., He, Y., Huang, W., and Du, E. (2020). Preparation and inhibition mechanism of bis-quaternary ammonium salt as shale inhibitor used in shale hydrocarbon production. Journal of Molecular Liquids, 309:113244.

22.   Zhang, R., Wang, X., Sun, Y., Zhang, J., Hu, W., Du, W., and Chen, G. (2020). Preparation and performance of ammonium-malic salts as shale swelling inhibitor and a mechanism study. Inorganic and Nano-Metal Chemistry, 50(10): 1027-1031.

23.   Xian, S., Chen, S., Lian, Y., Du, W., Song, Z., and Chen, G. (2021). Preparation and evaluation of ammonium adipate solutions as inhibitors of shale rock swelling. Minerals, 11(9):1013.

24.   Wang, K., Jiang, G., Li, X., and Luckham, P. F. (2020). Study of graphene oxide to stabilize shale in water-based drilling fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606: 125457.

25.   Rana, A., Arfaj, M. K., and Saleh., T. A. (2020). Graphene grafted with glucopyranose as a shale swelling inhibitor in water-based drilling mud. Applied Clay Science, 199:105806.

26.   Lv, K., Huang, P., Zhou, Z., Wei, X., Luo, Q., Huang, Z., Yan, H., and Jia, H. (2020). Study of Janus amphiphilic graphene oxide as a high-performance shale inhibitor and its inhibition mechanism. Frontiers in Chemistry, 8: 201.

27.   Zhu, H., Li, D., Zhao, X., Pang, S., and An, Y. (2022). A novel choline chloride/graphene composite as a shale inhibitor for drilling fluid and the interaction mechanism. RSC Advances, 12(47): 30328-30334.

28.   Ma, J., Pang, S., Zhang, Z., Xia, B., and An, Y. (2021). Experimental study on the polymer/graphene oxide composite as a fluid loss agent for water-based drilling fluids. ACS Omega, 6(14): 9750-9763:

29.   Aramendiz, J. and Imqam, A. (2020). Silica and graphene oxide nanoparticle formulation to improve thermal stability and inhibition capabilities of water-based drilling fluid applied to Woodford shale. SPE Drilling and Completion, 35(2): 164-179.

30.   Ahmed Khan, R., Murtaza, M., Abdulraheem, A., Kamal, M. S., and Mahmoud, M. (2020). Imidazolium-based ionic liquids as clay swelling inhibitors: Mechanism, performance evaluation, and effect of different anions. ACS Omega, 5(41): 26682-26696.

31.   Khan, R. A., Ahmad, H. M., Murtaza, M., Abdulraheem, A., Kamal M. S., and Mahmoud, M. (2021). Impact of multi-branched ionic liquid on shale swelling and hydration for high temperature drilling applications in Proceedings of the SPE/IADC Middle East Drilling Technology Conference and Exhibition, Society of Petroleum Engineers.

32.   Khan, R. A., Tariq, Z., Murtaza, M., Kamal, M. S., Mahmoud, M., and Abdulraheem, A. (2022). Ionic liquids as completion fluids to mitigate formation damage. Journal of Petroleum Science and Engineering, 214:110564.

33.   Rahman, M. T., Negash, B. M., Danso, D. K., Idris, A., Elryes, A. A., and Umar, I. A. (2022). Effects of imidazolium- and ammonium-based ionic liquids on clay swelling: experimental and simulation approach. Journal Petroleum Exploration Production Technology, 12(7): 1841-1853.

34.   Jia, H., Huang, P., Han, Y., Wang, Q., Jia, K., Sun, T., Zhang, F., Yan, H., and Lv, K. (2022). Investigation for the novel use of a typical deep eutectic solvent as a potential shale inhibitor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44(1): 1402-1415.

35.   Sultana, K., Rahman, M. T., Habib, K., and Das, L. (2022). Recent advances in deep eutectic solvents as shale swelling inhibitors: A comprehensive review. ACS Omega, 7(33): 28723-28755.

36.   Rasool, M. H. and Ahmad, M. (2023). Epsom salt-based natural deep eutectic solvent as a drilling fluid additive: A game-changer for shale swelling inhibition. Molecules, 28(15): 5784.

37.   Rasool, M. H., Ahmad, M., Siddiqui, N. A., and Junejo, A. Z. (2023). Eco-friendly drilling fluid: Calcium chloride-based natural deep eutectic solvent (NADES) as an all-rounder additive. Energies (Basel), 16(14): 5533.

38.   Beg, M., Haider, M. B., Thakur, N. K., Husein, M., Sharma, S., and Kumar, R. (2021). Clay-water interaction inhibition using amine and glycol-based deep eutectic solvents for efficient drilling of shale formations. Journal of Molecular Liquids, 340: 117134.

39.   Rana, A., I. Khan, A., Ali, S., Saleh, T. A., and Khan, S. A. (2020). Controlling shale swelling and fluid loss properties of water-based drilling Mud via ultrasonic impregnated SWCNTs/PVP nanocomposites. Energy and Fuels, 34(8): 9515-9523.

40.   Ahmad, H. M., Iqbal, T., Al Harthi, M. A., and Kamal, M. S. (2021). Synergistic effect of polymer and nanoparticles on shale hydration and swelling performance of drilling fluids. Journal of Petroleum Science and Engineering, 205: 108763.

41.   Zamora-Ledezma, C., Narváez-Muñoz, C., Guerrero, V. H., Medina, E., and Meseguer-Olmo, L. (2022). Nanofluid formulations based on two-dimensional nanoparticles, their performance, and potential application as water-based drilling fluids. ACS Omega, 7(24): 20457-20476.

42.   López, D., Chamat, N. M., Galeano-Caro, D., Páramo, L., Ramirez, D., Jaramillo, D., Cortés, F. B., and Franco, C. A. (2023). Use of nanoparticles in completion fluids as dual effect treatments for well stimulation and clay swelling damage inhibition: an assessment of the effect of nanoparticle chemical nature. Nanomaterials, 13(3): 388.

43.   Abdullah, A. H., Ridha, S., Mohshim, D. F., Yusuf, M., Kamyab, H., Krishna, S., and Maoinser, M. A. (2022). A comprehensive review of nanoparticles: Effect on water-based drilling fluids and wellbore stability. Chemosphere, 308: 136274.

44.   Ma, J., Yu, P., Xia, B., An, Y., and Wang, Z. (2019). Synthesis of a biodegradable and environmentally friendly shale inhibitor based on chitosan-grafted l-arginine for wellbore stability and the mechanism study. ACS Applied Bio Materials, 2(10): 4303-4315.

45.   Fakhari, N., Bing, C. H., Bennour, Z., and Gholami, R. (2023). Green and biodegradable surfactant based shale inhibitors for water based fluids. Journal of Molecular Liquids, 371: 121106.

46.   Ghasemi, M., Moslemizadeh, A., Shahbazi, K., Mohammadzadeh, O., Zendehboudi, S., and Jafari, S. (2019). Primary evaluation of a natural surfactant for inhibiting clay swelling. Journal of Petroleum Science and Engineering, 178: 878-891.