Malaysian Journal of Analytical
Sciences, Vol 28
No 2 (2024): 348 -
364
FROM TRADITIONAL TO
GREEN: EVOLUTION OF SHALE SWELLING INHIBITORS FOR SUSTAINABLE DRILLING
(Daripada
Tradisional Ke Hijau: Evolusi Pencegahan Pembengkakan Syal Untuk Penggerudian
Lestari)
Siti Qurratu’ Aini Mahat1*,
Ismail Mohd Saaid2, Arina Sauki3, Agi Agustine Aja1,
Norida Ridzuan1 and
Norasyikin Ismail1
1Faculty
of Chemical and Process Engineering Technology, Universiti
Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob,
26300, Kuantan, Pahang, Malaysia
2Petroleum
Engineering Department, Universiti Teknologi Petronas, 32610,
Seri Iskandar, Perak, Malaysia
3School
of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah
Alam, Selangor, Malaysia
*Corresponding
author: sitiqurratu@umpsa.edu.my
Received: 1 November 2023; Accepted: 11
March 2024; Published: 29 April 2024
Abstract
The occurrence of shale swelling during water-based
drilling operations poses substantial challenges to the stability of shale
formations. Clay layer expansion is the primary cause of shale swelling, which
results from interactions between clay minerals and drilling fluid components.
The degree of expansion is determined by variables such as clay composition,
ion exchange processes, osmotic pressure, ionic strength, temperature, and
pressure. Therefore, this study explores various shale swelling inhibitors and
meticulously investigates the underlying mechanisms. The effectiveness of conventional inhibitors, such
as potassium chloride (KCl), ammonium chloride (NH4Cl),
and amine-based inhibitors, is well-established. However, it is important to
note that these inhibitors do have certain limitations. Hence, the present work investigates a range of
environmentally friendly inhibitors, including graphene oxide, ionic liquids,
deep eutectic solvents, nanoparticles, nanocomposites, and biosurfactants. Graphene oxide exhibits notable efficacy in
mitigating shale swelling and producing extensive, unbroken protective
coatings.
Ionic liquids, represented by
1-butyl-3-methylimidazolium chloride (BMIMCl), have demonstrated enhanced inhibitory
characteristics in comparison to KCl, resulting in a
reduction in bentonite swelling rates by 19.38%. Furthermore, it has been
observed that deep eutectic solvents (DESs), such as NADES, exhibit remarkable
inhibitory characteristics, resulting in a 49.1-62.8% reduction in the rate of
swelling in clay samples. Nanocomposites, which involve the integration of single-walled
carbon nanotubes (SWCNTs) and polyvinylpyrrolidone (PVP), have demonstrated
successful mitigation of shale swelling and regulation of fluid loss. Moreover,
biosurfactants such as chitosan-grafted l-arginine, flaxseed protein (FP), and
flaxseed mucilage (FM), have exhibited potential as shale inhibitors that are
both biodegradable and environmentally friendly. These findings contribute to
ongoing efforts to improve the environmental sustainability of drilling
operations and adhere to rigorous environmental protection standards. Nevertheless, more investigation, refinement, and
practical application analysis are needed before they can be widely used.
Keywords: water-based drilling fluid, shale formation, shale
swelling, inhibitors, environmentally friendly
Abstrak
Kejadian pembengkakan syal
semasa operasi penggerudian berasaskan air menimbulkan cabaran besar kepada
kestabilan pembentukan syal. Pengembangan lapisan tanah liat adalah punca utama
pembengkakan syal, yang terhasil daripada interaksi antara mineral tanah liat
dan komponen bendalir penggerudian. Tahap pengembangan ditentukan oleh
pembolehubah seperti komposisi tanah liat, proses pertukaran ion, tekanan
osmotik, kekuatan ion, suhu, dan tekanan. Oleh itu, kajian ini meneroka pelbagai
perencat pembengkakan syal dan menyiasat dengan teliti mekanisme asas.
Keberkesanan perencat konvensional, seperti kalium klorida (KCl), ammonium
klorida (NH4Cl), dan perencat berasaskan amina, adalah mantap. Walau
bagaimanapun, adalah penting untuk ambil perhatian bahawa perencat ini
mempunyai batasan tertentu. Oleh itu, kajian ini menyiasat pelbagai perencat
mesra alam, termasuk graphene oksida, cecair ionik, pelarut eutektik dalam,
nanopartikel, nanokomposit dan biosurfaktan. Grafin oksida mempamerkan
keberkesanan yang ketara dalam mengurangkan pembengkakan syal dan menghasilkan
salutan pelindung yang luas dan tidak pecah. Cecair ionik, yang diwakili oleh
1-butil-3-metilimidazolium klorida (BMIMCl), telah menunjukkan ciri-ciri
perencatan yang dipertingkatkan berbanding dengan KCl, mengakibatkan
pengurangan kadar pembengkakan bentonit sebanyak 19.38%. Tambahan pula, telah
diperhatikan bahawa pelarut eutektik dalam (DES), seperti NADES, mempamerkan
ciri-ciri perencatan yang luar biasa, mengakibatkan pengurangan 49.1-62.8%
dalam kadar bengkak dalam sampel tanah liat. Nanokomposit, yang melibatkan
penyepaduan tiub karbon berdinding tunggal (SWCNTs) dan polivinilpirolidon
(PVP), telah menunjukkan kejayaan pengurangan bengkak syal dan pengawalan
kehilangan bendalir. Selain itu, biosurfaktan seperti kitosan yang dicampurkan
bersama l-arginin, protein biji rami (FP), dan lendir biji rami (FM), telah
mempamerkan potensi sebagai perencat syal yang boleh terbiodegradasi dan mesra
alam. Penemuan ini menyumbang kepada usaha berterusan untuk meningkatkan
kelestarian alam sekitar operasi penggerudian dan mematuhi piawaian
perlindungan alam sekitar yang ketat. Namun begitu, lebih banyak penyiasatan,
penghalusan, dan analisis aplikasi praktikal diperlukan sebelum ia digunakan
secara meluas.
Kata kunci: cecair penggerudian
berasaskan air, batuan syal, pembengkakan syal, perencat, mesra alam sekitar
References
1. Ahmed, A. W., and E.
Kalkan, E. (2019). Drilling fluids; Types,
formation choice and environmental impact. International Journal of Latest
Technology in Engineering, Management & Applied Science, 8(12): 66-71
2. Davoodi, S., Al-Shargabi,
M., Wood, D. A., Rukavishnikov, V. S., and Minaev,
K. M. (2024). Synthetic polymers: A review of applications in drilling fluids.
Petroleum Science, 21(1): 475-518.
3. Li, Y., Xia, C., and Liu, X. (2023). Water-based
drilling fluids containing hydrophobic nanoparticles for minimizing shale
hydration and formation damage. Heliyon,
9(12): e22990.
4. Saleh, T. A. (2022). Advanced trends of shale
inhibitors for enhanced properties of water-based drilling fluid. Upstream
Oil and Gas Technology, 8: 100069.
5.
Zhang, C., Gamage, R. P., Perera, M. S. A., and Zhao,
J. (2017). Characteristics of
clay-abundant shale formations: Use of CO2 for production
enhancement. Energies, 10(11):
1887.
6. Alcázar-Vara, L. A., and
Cortés-Monroy, I. R. (2018). Drilling
fluids for deepwater fields: An overview. Recent Insights in Petroleum
Science and Engineering, InTech Publication.
7. Xianyu, Y., Jihua, C., Guosheng, J., Shuya, C., Ye, Y., Yanping, S., and Zhaohui,
W. (2021). A method of determining osmotic pressure for low-clay shale
with different salt ions considering effect of
dynamic permeability on flow. Engineering Geology, 295: 106434.
8. Xianyu. Y, Zhenxiao, S.,
Yanping, S., Yangdong, P., Ye, Y., Shuya, C., Guosheng, J., and Jihua, C.
(2018). Influence of salt solutions on the permeability, membrane efficiency
and wettability of the Lower Silurian Longmaxi shale
in Xiushan, Southwest China. Applied Clay
Science, 158: 83-93.
9. Dankwa, O. K., Appau, P.
O., and Broni-Bediako, E. (2018). Evaluating the effects of monovalent and
divalent salts on the rheological properties of water based
mud. Open Petroleum Engineering Journal, 11(1): 98-106.
10. Sun, C., Li, G., Sun, Y., He, J., and Rong, H.
(2019). Modelling hydration swelling and weakening of montmorillonite
particles in mudstone. Processes, 7(7): 428.
11. Al-Sarraf, H., Albazali,
T., and Garrouch, A. (2022). Role of diffusion
osmosis on the mechanical and petrophysical alterations of shale when
interacting with aqueous solutions. Geosystem Engineering, 25(1-2):
13-24.
12. Yang, L., Lu, L., Li, X., Shan, Y., Mo, C., Sun,
M., Hu, J., Liu, W., Liang, B., and Xu, J. (2023). Clay mineral transformation
mechanism modelling of shale reservoir in Da’anzhai
Member, Sichuan Basin, Southern China. Frontier Earth Sci (Lausanne),
11: 1205849.
13. Liu, J., Yang, Z., Sun, J., Dai, Z., Lv, K., and Yo, Q. (2021).
Experimental investigation on hydration mechanism of Sichuan shale (China). Journal
of Petroleum Science and Engineering, 201: 108421.
14.
Cao,
H., Zhang, Z., Bao, T., Sun, P., Wang, T., and Gao, Q. (2019). Experimental
investigation of the effects of drilling fluid activity on the hydration
behavior of shale reservoirs in northwestern Hunan, China. Energies (Basel), 12(16):
3151.
15. Shi, X., Wang, L., Guo, J.,
Su, Q., and Zhuo, X. (2019). Effects
of inhibitor KCl on shale expansibility and
mechanical properties. Petroleum, 5(4): 407-412.
16. Chen, X., Yi, H., Gao, L., Shi, X., and Liu, Y.
(2020). Effects of inhibitor KCl on hydration
swelling and softening of a smectite-poor mudstone. Journal of Petroleum
Exploration and Production Technology, 10(7): 2685-2692.
17. Wysocki, S., Gaczoł,
M., and Wysocka, M. (2018). Drilling mud with addition of new hydration
inhibitor for clay rocks’, in E3S Web of Conferences, EDP Sciences, 7:
100013.
18. Lopez-Hernandez, D., Mahia-Masip, M., Melendez,
W., and Lopez-Contreras, A. (2022). NH4+ Fixation and
ionic competition with K+ in a clayey soil from Ocumare
Del Tuy, Venezuela. Canadian Journal of Agriculture and Crops, 7(2):
38-45.
19. Mo, S., Song, J., Lu, X., Chen, J., and He, L.
(2010). The application of ammonium calcium chloride drilling fluid in the
shale section in Sudan. Engineering, Environmental Science, Geology,
27(3): 47-50.
20. Chen, W. L., Grabowski, R. C., and Goel, S.
(2022). Clay swelling: Role of cations in stabilizing/destabilizing
mechanisms. ACS Omega, 7(4): 3185-3191.
21. Fu, L., Liao, K., Ge, J., He, Y., Huang, W., and
Du, E. (2020). Preparation and inhibition mechanism of bis-quaternary ammonium
salt as shale inhibitor used in shale hydrocarbon production. Journal of
Molecular Liquids, 309:113244.
22. Zhang, R., Wang, X., Sun, Y., Zhang, J., Hu, W.,
Du, W., and Chen, G. (2020). Preparation and performance of ammonium-malic
salts as shale swelling inhibitor and a mechanism study. Inorganic and
Nano-Metal Chemistry, 50(10): 1027-1031.
23. Xian, S., Chen, S., Lian, Y., Du, W., Song, Z.,
and Chen, G. (2021). Preparation and evaluation of ammonium adipate solutions
as inhibitors of shale rock swelling. Minerals, 11(9):1013.
24. Wang, K., Jiang, G., Li, X., and Luckham, P. F. (2020). Study of graphene oxide to
stabilize shale in water-based drilling fluids. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 606: 125457.
25. Rana, A., Arfaj, M. K., and Saleh., T. A. (2020).
Graphene grafted with glucopyranose as a shale swelling inhibitor in
water-based drilling mud. Applied Clay Science, 199:105806.
26. Lv, K., Huang, P., Zhou, Z., Wei, X., Luo, Q.,
Huang, Z., Yan, H., and Jia, H. (2020). Study of Janus amphiphilic graphene
oxide as a high-performance shale inhibitor and its inhibition mechanism. Frontiers
in Chemistry, 8: 201.
27. Zhu, H., Li, D., Zhao, X., Pang, S., and An, Y.
(2022). A novel choline chloride/graphene composite as a shale inhibitor for
drilling fluid and the interaction mechanism. RSC Advances, 12(47):
30328-30334.
28. Ma, J., Pang, S., Zhang, Z., Xia, B., and An, Y.
(2021). Experimental study on the polymer/graphene oxide composite as a fluid
loss agent for water-based drilling fluids. ACS Omega, 6(14):
9750-9763:
29. Aramendiz, J. and Imqam, A.
(2020). Silica and graphene oxide nanoparticle formulation to improve thermal
stability and inhibition capabilities of water-based drilling fluid applied to
Woodford shale. SPE Drilling and Completion, 35(2): 164-179.
30. Ahmed Khan, R., Murtaza, M., Abdulraheem, A.,
Kamal, M. S., and Mahmoud, M. (2020). Imidazolium-based ionic liquids as clay
swelling inhibitors: Mechanism, performance evaluation, and effect of
different anions. ACS Omega, 5(41): 26682-26696.
31. Khan, R. A., Ahmad, H. M., Murtaza, M.,
Abdulraheem, A., Kamal M. S., and Mahmoud, M. (2021). Impact of multi-branched
ionic liquid on shale swelling and hydration for high temperature drilling
applications in Proceedings of the SPE/IADC Middle East Drilling Technology
Conference and Exhibition, Society of Petroleum Engineers.
32. Khan, R. A., Tariq, Z., Murtaza, M., Kamal, M. S.,
Mahmoud, M., and Abdulraheem, A. (2022). Ionic liquids as completion fluids to
mitigate formation damage. Journal of Petroleum Science and Engineering,
214:110564.
33. Rahman, M. T., Negash, B. M., Danso, D. K., Idris,
A., Elryes, A. A., and Umar, I. A. (2022). Effects
of imidazolium- and ammonium-based ionic liquids on clay swelling:
experimental and simulation approach. Journal Petroleum Exploration
Production Technology, 12(7): 1841-1853.
34. Jia, H., Huang, P., Han, Y., Wang, Q., Jia, K.,
Sun, T., Zhang, F., Yan, H., and Lv, K. (2022).
Investigation for the novel use of a typical deep eutectic solvent as a
potential shale inhibitor. Energy Sources, Part A: Recovery, Utilization
and Environmental Effects, 44(1): 1402-1415.
35. Sultana, K., Rahman, M. T., Habib, K., and Das, L.
(2022). Recent advances in deep eutectic solvents as shale swelling
inhibitors: A comprehensive review. ACS Omega, 7(33): 28723-28755.
36. Rasool, M. H. and Ahmad, M. (2023). Epsom
salt-based natural deep eutectic solvent as a drilling fluid additive: A
game-changer for shale swelling inhibition. Molecules, 28(15): 5784.
37.
Rasool,
M. H., Ahmad, M., Siddiqui, N. A., and Junejo, A. Z. (2023). Eco-friendly
drilling fluid: Calcium chloride-based natural deep eutectic solvent (NADES)
as an all-rounder additive. Energies (Basel), 16(14): 5533.
38. Beg, M., Haider, M. B., Thakur, N. K., Husein, M.,
Sharma, S., and Kumar, R. (2021). Clay-water interaction inhibition using
amine and glycol-based deep eutectic solvents for efficient drilling of shale
formations. Journal of Molecular Liquids, 340: 117134.
39. Rana, A., I. Khan, A., Ali, S., Saleh, T. A., and
Khan, S. A. (2020). Controlling shale swelling and fluid loss properties of
water-based drilling Mud via ultrasonic impregnated SWCNTs/PVP nanocomposites.
Energy and Fuels, 34(8): 9515-9523.
40. Ahmad, H. M., Iqbal, T., Al Harthi,
M. A., and Kamal, M. S. (2021). Synergistic effect of polymer and
nanoparticles on shale hydration and swelling performance of drilling fluids. Journal
of Petroleum Science and Engineering, 205: 108763.
41. Zamora-Ledezma, C., Narváez-Muñoz, C., Guerrero,
V. H., Medina, E., and Meseguer-Olmo, L. (2022). Nanofluid formulations based
on two-dimensional nanoparticles, their performance, and potential application
as water-based drilling fluids. ACS Omega, 7(24): 20457-20476.
42. López, D., Chamat, N.
M., Galeano-Caro, D., Páramo, L., Ramirez, D.,
Jaramillo, D., Cortés, F. B., and Franco, C. A. (2023). Use of nanoparticles
in completion fluids as dual effect treatments for well stimulation and clay
swelling damage inhibition: an assessment of the effect of nanoparticle
chemical nature. Nanomaterials, 13(3): 388.
43. Abdullah, A. H., Ridha, S., Mohshim,
D. F., Yusuf, M., Kamyab, H., Krishna, S., and Maoinser, M. A. (2022). A comprehensive review of
nanoparticles: Effect on water-based drilling fluids and wellbore stability. Chemosphere,
308: 136274.
44. Ma, J., Yu, P., Xia, B., An, Y., and Wang, Z.
(2019). Synthesis of a biodegradable and environmentally friendly shale
inhibitor based on chitosan-grafted l-arginine for wellbore stability and the
mechanism study. ACS Applied Bio Materials,
2(10): 4303-4315.
45. Fakhari, N., Bing, C. H., Bennour, Z., and
Gholami, R. (2023). Green and biodegradable surfactant based
shale inhibitors for water based fluids. Journal of Molecular Liquids,
371: 121106.
46. Ghasemi, M., Moslemizadeh,
A., Shahbazi, K., Mohammadzadeh, O., Zendehboudi,
S., and Jafari, S. (2019). Primary evaluation of a natural surfactant for
inhibiting clay swelling. Journal of Petroleum Science and Engineering,
178: 878-891.