Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 335 - 347
(Sintesis dan Pencirian
Palladium(II) Bes-Schiff Kompleks Dari Fenilamina dan Aktiviti Sebagai
Pemangkin untuk Tindak Balas Stille)
Nur Nabihah Muzammil1, Mohd Tajudin Mohd Ali1,
and Amalina Mohd Tajuddin1,2*
1Faculty of Applied
Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor,
Malaysia
2Atta-ur-Rahman
Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA
Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
*Corresponding author:
amalina9487@uitm.edu.my
Received: 10 September 2023;
Accepted: 25 February 2024; Published: 29 April 2024
Abstract
Schiff bases with hydrogen and methyl at the para-position
of phenylamines (B1H and B1Me) and their palladium(II) complexes, (PdB1H and PdB1Me)
were synthesized and characterized by elemental analysis, FTIR, 1H and
13C NMR, magnetic susceptibility measurement and UV-Visible
spectroscopy. The shifting of the
v(C=N) and v(C-O) bands to lower frequencies in FTIR indicated
that the complexation to palladium(II) occurred through these moieties.
All complexes are diamagnetic and displayed low molar conductivity in
acetonitrile, indicating non-electrolytic behaviour. B1H and B1Me are
structurally characterized using single crystal X-ray diffraction. B1H and B1Me crystallize in orthorhombic
space group P212121, with a = 6.0879(2) Å, b =
9.1847(2) Å, and c = 21.0661(5) Å and a = 5.9051(9) Å, b = 9.2389(13) Å, and c
= 23.297(3) Å, respectively. The palladium(II) complexes were screened for
their catalytic activity in the Stille reaction. The reaction was monitored by
measuring the % conversion of iodobenzene using GC-FID, where the reaction
conditions used were 1.0 mmol% catalyst loading in the presence of
triethylamine as the base and DMSO as the solvent at 80°C within 6 hours of the
reaction time. It was observed that PdB1Me displayed the best catalytic
performance for the Stille reaction, as indicated by the 80% conversion of
iodobenzene.
Keywords: catalysis, palladium(II), Schiff base, Stille reaction, single
crystal X-ray crystallography
Abstrak
Bes-Schiff dengan hidrogen dan metil pada fenilamina posisi para (B1H dan B1Me),
dan kompleks paladium(II) (PdB1H dan PdB1Me), telah disintesis dan dicirikan
oleh analisis unsur, FTIR, 1H dan 13C NMR, ukuran
kerentanan magnet dan sinar ultraungu spektroskopi. Peralihan jalur v(C=N)
dan v(C-O) kepada frekuensi yang lebih rendah dalam FTIR menunjukkan
bahawa kompleksasi kepada paladium(II) berlaku melalui gugusan ini. Semua
kompleks adalah diamagnet dan menunjukkan kekonduksian molar rendah dalam
asetonitril yang menunjukkan tingkah laku bukan elektrolitik. B1H dan B1Me dicirikan secara struktur menggunakan pembelauan
sinar-X kristal tunggal. B1H dan B1Me menghablur dalam ortorombik dengan
kumpulan ruang P212121, dengan a = 6.0879(2)
Å, b = 9.1847(2) Å, dan c = 21.0661(5) Å dan a = 5.9051(9) Å, b = 9.2389(13) Å, dan c =
23.297(3) Å. Kompleks paladium(II) telah disaring untuk aktiviti pemangkinnya
dalam tindak balas Stille. Tindak balas dipantau dengan mengukur % penukaran
iodobenzena menggunakan GC-FID, di mana keadaan tindak balas yang digunakan
ialah 1.0 mmol% pemangkin dengan kehadiran trietilamina sebagai bes dan DMSO
sebagai pelarut pada 80°C selama 6 jam. PdB1Me memaparkan prestasi pemangkin
terbaik di kalangan kompleks untuk tindak balas Stille, ditunjukkan oleh penukaran 80% iodobenzena.
Kata kunci: pemangkinan, paladium(II),
Bes-Schiff, tindak balas Stille, kristalografi sinar-X kristal tunggal
References
1. Xiao, Y. and Cao, C. (2020).
Influence of substituents on the structure of Schiff bases Cu(II) complexes. Journal of Molecular Structure, 1209:
127916.
2. Da Silva, C. M., Da Silva, D. L.,
Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B. and De
Fátima, Â. (2011). Schiff bases:
A short review of their antimicrobial activities. Journal of Advanced
Research, 2(1): 1-8.
3. Gupta, K. C. and Sutar, A. K. (2008).
Catalytic activities of Schiff base transition metal complexes. Coordination
Chemistry Reviews, 252(12–14): 1420-1450.
4. Tsacheva, I., Todorova, Z., Momekova,
D., Momekov, G. and Koseva, N. (2023). Pharmacological activities of Schiff bases
and their derivatives with low and high molecular phosphonates. Pharmaceuticals,
16(7): 938.
5. Verma, C. and Quraishi, M. A. (2021).
Recent progresses in Schiff Bases as aqueous phase corrosion inhibitors: Design
and applications. Coordination Chemistry Reviews, 446: 214105.
6. El-Ajaily, M. M., Maihub, A. A.,
Mahanta, U. K., Badhei, G., Mohapatra, R. K. and Das, P. K. (2018). Mixed
ligand complexes containing schiff bases and their biological activities: A
short review. Rasayan Journal of Chemistry, 11(1): 166-174.
7. Sheikhshoaie, I., Lotfi, N., Sieler,
J., Krautscheid, H. and Khaleghi, M. (2018). Synthesis, structures and
antimicrobial activities of nickel(II) and zinc(II) diaminomaleonitrile-based
complexes. Transition Metal Chemistry,
43: 555-562.
8. Sobola, A. O., Watkins, G. M. and Van
Brecht, B. (2014). Synthesis, characterization and antimicrobial activity of
copper(II) complexes of some ortho-substituted aniline schiff bases; Crystal
structure of Bis(2-methoxy-6-imino)methylphenol copper(II) complex. South
African Journal of Chemistry, 67:
45-51.
9. Patil, C. J. and Salve, S. B. (2022).
Catalytic studies on complexes of organic compounds: Part-5. Review on use of
chiral Schiff base complexes as catalyst. International Journal of
Pharmaceutical Sciences Review and Research, 74(2): 9-22.
10. Czajkowska-Szczykowska, D., Morzycki,
J. W. and Wojtkielewicz, A. (2015). Pd-catalyzed steroid reactions. Steroids,
97:13-44.
11. Herrmann, W. A., Bo, V. P. W., Gsto,
C. W. K., Grosche, M., Reisinger, C. and Weskamp, T. (2001). Synthesis,
structure and catalytic application of palladium(II) complexes bearing. Journal
of Organometallic Chemistry, 618:
616-628.
12. Davis, J. L., Dhawan, R., &
Arndtsen, B. A. (n.d.). Imines in Stille-type cross-coupling reactions: A multicomponent
synthesis of a-substituted amides. 590-594.
13. Carrera, N., Salinas-Castillo, A.,
Albéniz, A. C., Espinet, P. and Mallavia, R. (2011). Fluorene-based stannylated polymers and their use as
recyclable reagents in the Stille reaction. Journal of Organometallic
Chemistry, 696(21): 3316-3321.
14. Ghammamy, S. and Sedaghat, S. (2012).
Determination and characterization of new palladium complexes and study of
their properties. Middle East Journal of Scientific Research, 12(2): 264-269.
15. Mpungose, P. P., Vundla, Z. P.,
Maguire, G. E. M. and Friedrich, H. B. (2018). The current status of
heterogeneous palladium catalysed Heck and Suzuki cross-coupling reactions. Molecules,
23(7): 1676.
16. Prakash, A. and Adhikari, D. (2011).
Application of Schiff bases and their metal complexes-A review. International Journal Chemical Technology
Research, 3(4): 1891-1896.
17. Aggoun, D., Fernández-garcía, M.,
López, D., Bouzerafa, B., Ouennoughi, Y., Setifi, F. and Ourari, A. (2020). New
nickel(II) and copper(II) bidentate Schiff base complexes, derived from
dihalogenated salicylaldehyde and alkylamine: synthesis, spectroscopic,
thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron,
187: 114640.
18. Aslantaş, M., Kendi, E., Demir, N.,
Şabik, A. E., Tümer, M. and Kertmen, M. (2009). Synthesis, spectroscopic, structural characterization,
electrochemical and antimicrobial activity studies of the Schiff base ligand
and its transition metal complexes. Spectrochimica Acta - Part A: Molecular
and Biomolecular Spectroscopy, 74(3):
617-624.
19. Buta, I., Shova, S., Ilies, S.,
Manea, F., Andruh, M. and Costisor, O. (2022). Mono- and oligonuclear complexes
based on a o-vanillin derived Schiff-base Ligand: Synthesis, crystal
structures, luminescent and electrochemical properties. Journal of Molecular
Structure, 1248: 131439.
20. Kargar, H., Ardakani, A. A., Tahir,
M. N., Ashfaq, M. and Munawar, K. S. (2021). Synthesis, spectral
characterization, crystal structure and antibacterial activity of nickel(II),
copper(II) and zinc(II) complexes containing ONNO donor Schiff base ligands. Journal
of Molecular Structure, 1233:
130112.
21. Soliman, A. A. and Linert, W. (1999).
Investigations on new transition metal chelates of the
3-methoxy-salicylidene-2-aminothiophenol Schiff base. Thermochimica Acta,
338(1-2): 67-75.
22. Ansari, R. M., Kumar, L. M. and Bhat,
B. R. (2018). Air-stable cobalt(II) and nickel(II) complexes with Schiff Base ligand
for catalyzing Suzuki–Miyaura cross-coupling reaction. Russian Journal of
Coordination Chemistry/Koordinatsionnaya Khimiya, 44(1): 1-8.
23. Singh, K., Thakur, R. and Kumar, V.
(2016). Co(II), Ni(II), Cu(II), and Zn(II) complexes derived from
4-[{3-(4-bromophenyl)-1-phenyl-1h-pyrazol-4-ylmethylene}-amino]-3-mercapto-6-methyl-5-oxo-1,2,4-triazine.
Beni-Suef University Journal of Basic and Applied Sciences, 5(1):
21-30.
24. Ghorbani-Choghamarani, A.,
Derakhshan, A. A., Hajjami, M. and Rajabi, L. (2016). Copper-Schiff base
alumoxane: A new and reusable mesoporous nano catalyst for Suzuki-Miyaura and
Stille C-C cross-coupling reactions. RSC Advances, 6(97): 94314-94324.
25. Kondori, T., Akbarzadeh-t, N., Fazli,
M. and Mir, B. (2020). A Novel Schiff Base Ligand and its Copper Complex:
Synthesis, Characterization, X-ray Crystal Structure and Biological Evaluation.
Journal of Molecular Structure, 1226:
129395.
26. Bartyzel, A. (2017). Synthesis, thermal
study and some properties of N2O4—donor Schiff Base and
its Mn(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes. Journal of Thermal
Analysis and Calorimetry, 127(3):
2133-2147.
27. Abu-khadra, A. S., Farag, R. S. and Abdel-hady,
A. E. M. (2016). Synthesis, characterization and antimicrobial activity of Schiff
Base phenylsulfonyl acetamide metal complexes. American Journal of
Analytical Chemistry, 3: 233-245.
28. Yu, Y. Y. (2011).
6-Methoxy-2-[(E)-phenyliminomethyl]-phenol. Acta Crystallographica Section
E: Structure Reports Online, 67(4):
421-424.
29. Yeap, G. Y., Ha, S. T., Ishizawa, N.,
Suda, K., Boey, P. L. and Mahmood, W. A. K. (2003). Synthesis, crystal
structure and spectroscopic study of para substituted
2-hydroxy-3-methoxybenzalideneanilines. Journal of Molecular Structure, 658(1–2): 87-99.
30. Brayton, D. F., Larkin, T. M., Vicic,
D. A. and Navarro, O. (2009). Synthesis of A bis(phenoxyketimine) palladium(II)
complex and its activity in the Suzuki-Miyaura reaction. Journal of
Organometallic Chemistry, 694(18):
3008-3011.
31. Rosnizam, A. N., Hamali, M. A., Low,
A. L. M., Youssef, H. M., Bahron, H. and Tajuddin, A. M. (2022). Palladium (II)
complexes bearing N, O-bidentate Schiff base ligands: Experimental, in-silico,
antibacterial, and catalytic properties. Journal
of Molecular Structure, 1260: 132821.
32. Denmark, S. E., Smith, R. C. and
Chang, W. T. T. (2011). Probing the electronic demands of transmetalation in
the palladium-catalyzed cross-coupling of arylsilanolates. Tetrahedron, 67(24): 4391-4396.
33. Rufino-Felipe, E., Valdés, H. and Morales-Morales,
D. (2022). C−S cross-coupling reactions catalyzed by well-defined copper
and nickel complexes. European Journal of Organic Chemistry, 2022(31):
e202200654.