Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 335 - 347

 

SYNTHESIS AND CHARACTERIZATION OF PALLADIUM(II) SCHIFF BASE COMPLEXES DERIVED FROM PHENYLAMINES AND THEIR CATALYTIC ACTIVITY FOR STILLE REACTION

 

(Sintesis dan Pencirian Palladium(II) Bes-Schiff Kompleks Dari Fenilamina dan Aktiviti Sebagai Pemangkin untuk Tindak Balas Stille)

 

Nur Nabihah Muzammil1, Mohd Tajudin Mohd Ali1, and Amalina Mohd Tajuddin1,2*

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia

2Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia

 

*Corresponding author: amalina9487@uitm.edu.my

 

 

Received: 10 September 2023; Accepted: 25 February 2024; Published:  29 April 2024

 

 

Abstract

Schiff bases with hydrogen and methyl at the para-position of phenylamines (B1H and B1Me) and their palladium(II) complexes, (PdB1H and PdB1Me) were synthesized and characterized by elemental analysis, FTIR, 1H and 13C NMR, magnetic susceptibility measurement and UV-Visible spectroscopy. The shifting of the v(C=N) and v(C-O) bands to lower frequencies in FTIR indicated that the complexation to palladium(II) occurred through these moieties. All complexes are diamagnetic and displayed low molar conductivity in acetonitrile, indicating non-electrolytic behaviour. B1H and B1Me are structurally characterized using single crystal X-ray diffraction.  B1H and B1Me crystallize in orthorhombic space group P212121, with a = 6.0879(2) Å, b = 9.1847(2) Å, and c = 21.0661(5) Å and a = 5.9051(9) Å, b = 9.2389(13) Å, and c = 23.297(3) Å, respectively. The palladium(II) complexes were screened for their catalytic activity in the Stille reaction. The reaction was monitored by measuring the % conversion of iodobenzene using GC-FID, where the reaction conditions used were 1.0 mmol% catalyst loading in the presence of triethylamine as the base and DMSO as the solvent at 80°C within 6 hours of the reaction time. It was observed that PdB1Me displayed the best catalytic performance for the Stille reaction, as indicated by the 80% conversion of iodobenzene.

 

Keywords: catalysis, palladium(II), Schiff base, Stille reaction, single crystal X-ray crystallography

 

Abstrak

Bes-Schiff dengan hidrogen dan metil pada fenilamina posisi para (B1H dan B1Me), dan kompleks paladium(II) (PdB1H dan PdB1Me), telah disintesis dan dicirikan oleh analisis unsur, FTIR, 1H dan 13C NMR, ukuran kerentanan magnet dan sinar ultraungu spektroskopi. Peralihan jalur v(C=N) dan v(C-O) kepada frekuensi yang lebih rendah dalam FTIR menunjukkan bahawa kompleksasi kepada paladium(II) berlaku melalui gugusan ini. Semua kompleks adalah diamagnet dan menunjukkan kekonduksian molar rendah dalam asetonitril yang menunjukkan tingkah laku bukan elektrolitik. B1H dan B1Me dicirikan secara struktur menggunakan pembelauan sinar-X kristal tunggal. B1H dan B1Me menghablur dalam ortorombik dengan kumpulan ruang P212121, dengan a = 6.0879(2) Å, b = 9.1847(2) Å, dan c = 21.0661(5) Å dan  a = 5.9051(9) Å, b = 9.2389(13) Å, dan c = 23.297(3) Å. Kompleks paladium(II) telah disaring untuk aktiviti pemangkinnya dalam tindak balas Stille. Tindak balas dipantau dengan mengukur % penukaran iodobenzena menggunakan GC-FID, di mana keadaan tindak balas yang digunakan ialah 1.0 mmol% pemangkin dengan kehadiran trietilamina sebagai bes dan DMSO sebagai pelarut pada 80°C selama 6 jam. PdB1Me memaparkan prestasi pemangkin terbaik di kalangan kompleks untuk tindak balas Stille, ditunjukkan oleh  penukaran 80% iodobenzena.

 

Kata kunci: pemangkinan, paladium(II), Bes-Schiff, tindak balas Stille, kristalografi sinar-X kristal tunggal


References

1.      Xiao, Y. and Cao, C. (2020). Influence of substituents on the structure of Schiff bases Cu(II) complexes. Journal of Molecular Structure, 1209: 127916.

2.      Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B. and De Fátima, Â. (2011). Schiff bases: A short review of their antimicrobial activities. Journal of Advanced Research, 2(1): 1-8.

3.      Gupta, K. C. and Sutar, A. K. (2008). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252(12–14): 1420-1450.

4.      Tsacheva, I., Todorova, Z., Momekova, D., Momekov, G. and Koseva, N. (2023). Pharmacological activities of Schiff bases and their derivatives with low and high molecular phosphonates. Pharmaceuticals, 16(7): 938.

5.      Verma, C. and Quraishi, M. A. (2021). Recent progresses in Schiff Bases as aqueous phase corrosion inhibitors: Design and applications. Coordination Chemistry Reviews, 446: 214105.

6.      El-Ajaily, M. M., Maihub, A. A., Mahanta, U. K., Badhei, G., Mohapatra, R. K. and Das, P. K. (2018). Mixed ligand complexes containing schiff bases and their biological activities: A short review. Rasayan Journal of Chemistry, 11(1): 166-174.

7.      Sheikhshoaie, I., Lotfi, N., Sieler, J., Krautscheid, H. and Khaleghi, M. (2018). Synthesis, structures and antimicrobial activities of nickel(II) and zinc(II) diaminomaleonitrile-based complexes. Transition Metal Chemistry, 43: 555-562.

8.      Sobola, A. O., Watkins, G. M. and Van Brecht, B. (2014). Synthesis, characterization and antimicrobial activity of copper(II) complexes of some ortho-substituted aniline schiff bases; Crystal structure of Bis(2-methoxy-6-imino)methylphenol copper(II) complex. South African Journal of Chemistry, 67: 45-51.

9.      Patil, C. J. and Salve, S. B. (2022). Catalytic studies on complexes of organic compounds: Part-5. Review on use of chiral Schiff base complexes as catalyst. International Journal of Pharmaceutical Sciences Review and Research, 74(2): 9-22.

10.   Czajkowska-Szczykowska, D., Morzycki, J. W. and Wojtkielewicz, A. (2015). Pd-catalyzed steroid reactions. Steroids, 97:13-44.

11.   Herrmann, W. A., Bo, V. P. W., Gsto, C. W. K., Grosche, M., Reisinger, C. and Weskamp, T. (2001). Synthesis, structure and catalytic application of palladium(II) complexes bearing. Journal of Organometallic Chemistry, 618: 616-628.

12.   Davis, J. L., Dhawan, R., & Arndtsen, B. A. (n.d.). Imines in Stille-type cross-coupling reactions: A multicomponent synthesis of a-substituted amides. 590-594.

13.   Carrera, N., Salinas-Castillo, A., Albéniz, A. C., Espinet, P. and Mallavia, R. (2011). Fluorene-based stannylated polymers and their use as recyclable reagents in the Stille reaction. Journal of Organometallic Chemistry, 696(21): 3316-3321.

14.   Ghammamy, S. and Sedaghat, S. (2012). Determination and characterization of new palladium complexes and study of their properties. Middle East Journal of Scientific Research, 12(2): 264-269.

15.   Mpungose, P. P., Vundla, Z. P., Maguire, G. E. M. and Friedrich, H. B. (2018). The current status of heterogeneous palladium catalysed Heck and Suzuki cross-coupling reactions. Molecules, 23(7): 1676.

16.   Prakash, A. and Adhikari, D. (2011). Application of Schiff bases and their metal complexes-A review. International Journal Chemical Technology Research, 3(4): 1891-1896.

17.   Aggoun, D., Fernández-garcía, M., López, D., Bouzerafa, B., Ouennoughi, Y., Setifi, F. and Ourari, A. (2020). New nickel(II) and copper(II) bidentate Schiff base complexes, derived from dihalogenated salicylaldehyde and alkylamine: synthesis, spectroscopic, thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron, 187: 114640.

18.   Aslantaş, M., Kendi, E., Demir, N., Şabik, A. E., Tümer, M. and Kertmen, M. (2009). Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 74(3): 617-624.

19.   Buta, I., Shova, S., Ilies, S., Manea, F., Andruh, M. and Costisor, O. (2022). Mono- and oligonuclear complexes based on a o-vanillin derived Schiff-base Ligand: Synthesis, crystal structures, luminescent and electrochemical properties. Journal of Molecular Structure, 1248: 131439.

20.   Kargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M. and Munawar, K. S. (2021). Synthesis, spectral characterization, crystal structure and antibacterial activity of nickel(II), copper(II) and zinc(II) complexes containing ONNO donor Schiff base ligands. Journal of Molecular Structure, 1233: 130112.

21.   Soliman, A. A. and Linert, W. (1999). Investigations on new transition metal chelates of the 3-methoxy-salicylidene-2-aminothiophenol Schiff base. Thermochimica Acta, 338(1-2): 67-75.

22.   Ansari, R. M., Kumar, L. M. and Bhat, B. R. (2018). Air-stable cobalt(II) and nickel(II) complexes with Schiff Base ligand for catalyzing Suzuki–Miyaura cross-coupling reaction. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 44(1): 1-8.

23.   Singh, K., Thakur, R. and Kumar, V. (2016). Co(II), Ni(II), Cu(II), and Zn(II) complexes derived from 4-[{3-(4-bromophenyl)-1-phenyl-1h-pyrazol-4-ylmethylene}-amino]-3-mercapto-6-methyl-5-oxo-1,2,4-triazine. Beni-Suef University Journal of Basic and Applied Sciences, 5(1): 21-30.

24.   Ghorbani-Choghamarani, A., Derakhshan, A. A., Hajjami, M. and Rajabi, L. (2016). Copper-Schiff base alumoxane: A new and reusable mesoporous nano catalyst for Suzuki-Miyaura and Stille C-C cross-coupling reactions. RSC Advances, 6(97): 94314-94324.

25.   Kondori, T., Akbarzadeh-t, N., Fazli, M. and Mir, B. (2020). A Novel Schiff Base Ligand and its Copper Complex: Synthesis, Characterization, X-ray Crystal Structure and Biological Evaluation. Journal of Molecular Structure, 1226: 129395.

26.   Bartyzel, A. (2017). Synthesis, thermal study and some properties of N2O4—donor Schiff Base and its Mn(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes. Journal of Thermal Analysis and Calorimetry, 127(3): 2133-2147.

27.   Abu-khadra, A. S., Farag, R. S. and Abdel-hady, A. E. M. (2016). Synthesis, characterization and antimicrobial activity of Schiff Base phenylsulfonyl acetamide metal complexes. American Journal of Analytical Chemistry, 3: 233-245.

28.   Yu, Y. Y. (2011). 6-Methoxy-2-[(E)-phenyliminomethyl]-phenol. Acta Crystallographica Section E: Structure Reports Online, 67(4): 421-424.

29.   Yeap, G. Y., Ha, S. T., Ishizawa, N., Suda, K., Boey, P. L. and Mahmood, W. A. K. (2003). Synthesis, crystal structure and spectroscopic study of para substituted 2-hydroxy-3-methoxybenzalideneanilines. Journal of Molecular Structure, 658(1–2): 87-99.

30.   Brayton, D. F., Larkin, T. M., Vicic, D. A. and Navarro, O. (2009). Synthesis of A bis(phenoxyketimine) palladium(II) complex and its activity in the Suzuki-Miyaura reaction. Journal of Organometallic Chemistry, 694(18): 3008-3011.

31.   Rosnizam, A. N., Hamali, M. A., Low, A. L. M., Youssef, H. M., Bahron, H. and Tajuddin, A. M. (2022). Palladium (II) complexes bearing N, O-bidentate Schiff base ligands: Experimental, in-silico, antibacterial, and catalytic properties. Journal of Molecular Structure, 1260: 132821.

32.   Denmark, S. E., Smith, R. C. and Chang, W. T. T. (2011). Probing the electronic demands of transmetalation in the palladium-catalyzed cross-coupling of arylsilanolates. Tetrahedron, 67(24): 4391-4396.

33.  Rufino-Felipe, E., Valdés, H. and Morales-Morales, D. (2022). C−S cross-coupling reactions catalyzed by well-defined copper and nickel complexes. European Journal of Organic Chemistry, 2022(31): e202200654.