Malaysian Journal
of Analytical Sciences, Vol 28 No 2 (2024): 322 – 334
ANALYSIS
OF EFFLORESCENCE OF SPENT BLEACHING CLAY BASED GEOPOLYMER USING ALKALINE
LEACHABILITY METHODS
(Analisa
Peroian Geopolimer Berasaskan Tanah Liat Terluntur Menggunakan Kaedah
Kelarutlesapan Alkali)
Puuvina
Jeyasangar, Mohd Hazwan Hussin, and Shangeetha Ganesan*
School of Chemical Sciences, Universiti Sains Malaysia, 11800
USM, Pulau Pinang, Malaysia
*Corresponding author: shangeetha@usm.my
Received: 1
September 2023; Accepted: 15 February 2024; Published: 29 April 2024
Abstract
Geopolymers are a class
of inorganic amorphous polymeric materials made up of silica, alumina and
alkali- metal oxides. The presence of alkali in the geopolymer formulation aids
in the dissolving of aluminosilicate precursors, resulting in the creation of
microstructures and increases geopolymer strength. However, the alkali content
is the most critical factor influencing efflorescence production. Therefore,
this study evaluated the effects of curing parameters on efflorescence
formation on spent bleaching clay based geopolymer. The efflorescence effects were
analysed by alkaline leachability methods using atomic absorption spectroscopy
(AAS) and electrochemical impedance spectroscopy (EIS). Neat geopolymer as well
as cured geopolymer with different liquid/solid (L/S) ratio effects were
studied. Alkaline leaching studies revealed water-cured geopolymers with
liquid/solid (L/S) ratio of 2:1 shows that 974.9 ppm Na+ ions
leached from the geopolymer. This method helps to prevent efflorescence from
reoccurring as most of the free Na+ ions has already been leached
from the geopolymer sample. The EIS analysis also showed that a 2:1 ratio had
excellent resistance which reflects the mobility of the other ions such as
silicon, aluminium and chloride ions. Functional group analysis using FTIR
demonstrated the key peaks involved in development of geopolymer from spent
bleaching clay (SBC) such as v(Si-O-Si / Si-O-Al) (bending & stretching),
v(Al-O)(symmetrical), v(Si-O / Al-O) (asymmetrical) and v(O-H). Surface
morphology analysis using SEM-EDX indicates that adequate silica-rich
components were required to increase the mechanical strength of geopolymers by
densifying their microstructure with more bulk and compact layers. From the
examination of thermal stability of neat and treated geopolymer compositions
decomposed at 700 °C confirming the thermal resistance of the material.
Therefore, for more sustainable cements, alkali leachability can be performed
on SBC-based geopolymer by water-curing as it revealed to have an exceptional
performance on total Na leached, resistance and thermal stability as shown in
this study.
Keywords: geopolymer,
spent bleaching clay, efflorescence, leachability
Abstrak
Geopolimer adalah kelas
bahan polimer amorfus tidak organik yang terdiri daripada silika, alumina dan
logam-alkali oksida. Kehadiran alkali dalam formula geopolymer membantu dalam
pelarutan bahan pemula aluminosilika, menghasilkan mikrostruktur serta menguatkan
struktur geopolimer. Akan tetapi, kandungan alkali adalah faktor yang paling kritikal yang
mempengaruhi pembentukan peroi. Oleh itu, kajian ini adalah untuk menilai
sintesis geopolimer daripada tanah liat terluntur dan menganalisa peroian dengan
kaedah kelarutanlesapan menggunakan AAS dan EIS. Geopolimer tulen serta
geopolimer yang dirawat dengan kesan nisbah cecair/pepejal (L/S) yang berbeza
telah dikaji. Kajian kelarutlesapan alkali menunjukkan geopolimer yang diawet
dengan air pada nisbah air/pepejal (L/S) 2:1 menghasilkan 974.9 ppm Na+ ions
melarutlesap daripada geopolimer tersebut. Cara ini mencegah pembentukkan peroi
daripada berulang kerana kebanyakkan ion Na+ bebas telah dilarutlesap daripada
geopolimer. Analisa EIS menunjukkan bahawa nisbah 2:1 juga mempunyai rintangan
yang baik yang mencerminkan pergerakan ion-ion yang lain seperti silicon,
aluminium dan klorida. Analisa kumpulan fungsi menggunakan FTIR menunjukkan
puncak-puncak utama yang terlibat dalam penghasilan geopolimer berasaskan tanah
liat (SBC) yang terdiri daripada v(Si-O-Si / Si-O-Al) (bengkok & regangan),
v(Al-O) (simetri), v(Si-O / Al-O) (tidak simetri) dan v(O-H). Analisis morfologi
permukaan mengunakan SEM-EDX menunjukkan bahawa komponen kaya silika yang
mencukupi diperlukan untuk meningkatkan kekuatan mekanikal geopolimer dengan
memadatkan struktur mikronya dengan lebih banyak lapisan pukal dan padat.
Daripada pemeriksaan kestabilan terma komposisi geopolimer yang asal dan
dirawat itu terurai pada suhu 700°C menunjukkan kerintangan haba mereka.
Oleh itu, untuk simen yang lebih mampan, kelarutlesapan alkali boleh dilakukan
pada geopolimer berasaskan SBC dengan pengawetan air kerana ia menunjukkan
prestasi yang luar biasa berdasarkan jumlah Na yang kelarutlesapan serta
kestabilan termanya seperti yang dibuktikan dalam penyelidikan ini.
Kata kunci: geopolimer, tanah liat terluntur, peroian, kelarutlesapan
References
1. Majdoubi, H., Haddaji, Y., Mansouri, S.,
Alaoui, D., Tamraoui, Y., Semlal, N., Oumam, M., Manoun, B. and Hannache, H.
(2021). Thermal, mechanical and microstructural properties of acidic
geopolymer based on moroccan kaolinitic clay. Journal Building Engineering,
35:102078.
2. Janošević, N.,
Đorić-Veljković, S., Topličić-Ćurčić,
G. and Karamarković, J. (2018). Properties of geopolymers. Facta
Universitatis, Series: Architecture and Civil Engineering, 16(1): 045-056.
3. Łach, M., Korniejenko, K., Walter, J., Stefańska,
A. and Mikuła, J. (2020). Decreasing of leaching and improvement of
geopolymer properties by addition of aluminum calcium cements and titanium
oxide. Materials, 13(3): 495.
4. Abdul Rahim, R. H., Rahmiati, T., Azizli, K.
A., Man, Z., Nuruddin, M. F. and Ismail, L. (2015). Comparison of using NaOH
and KOH activated fly ash-based geopolymer on the mechanical properties. In
Materials science forum (Vol. 803, pp. 179-184). Trans Tech Publications Ltd.
5. Memon, F. A., Nuruddin, M. F., Khan, S.,
Shafiq, N. A. S. I. R. and Ayub, T. (2013). Effect of sodium hydroxide
concentration on fresh properties and compressive strength of self-compacting
geopolymer concrete. Journal Engineering Science Technology, 8(1):
44-56.
6. Tuyan, M., Andiç-Çakir, Ö. and Ramyar, K.
(2018). Effect of alkali activator concentration and curing condition on
strength and microstructure of waste clay brick powder-based geopolymer. Composites
Part B: Engineering, 135: 242-252.
7. Hatami, A. M., Sabour, M. R. and Amiri, A.
(2018). Recycling process of spent bleaching clay: Optimization by response
surface methodology. Global Journal of Environmental Science and Management,
4(1): 9-18.
8. Sedghamiz, M. A., Attar, F. and Raeissi, S.
(2019). Experimental investigation of acid regeneration of spent bleaching clay
de-oiled by the in-situ transesterification process at various operating
conditions. Process Safety and Environmental Protection, 124: 121-127.
9. Loh, S. K., Cheong, K. Y. and Salimon, J.
(2017). Surface-active physicochemical characteristics of spent bleaching earth
on soil-plant interaction and water-nutrient uptake: A review. Applied Clay
Science, 140: 59-65.
10. Zhang, C., Yu, M., Li, X., Li, X., Siyal, A.
A., Liu, Y., ... and Li, Y. (2022). Disposal, regeneration and pyrolysis
products characterization of spent bleaching clay from vegetable oil refinery
in a fluidized bed pyrolyser. Journal of Cleaner Production, 346:
131157.
11. Saludung, A., Azeyanagi, T., Ogawa, Y. and Kawai,
K. (2021). Alkali leaching and mechanical performance of epoxy resin-reinforced
geopolymer composite. Materials Letters, 304: 130663.
12. Škvára, F., Kopecký, L., Šmilauer, V. and Bittnar,
Z. (2009). Material and structural characterization of alkali activated
low-calcium brown coal fly ash. Journal of Hazardous Materials, 168(2-3):
711-720.
13. Ying, M. W., Azmi, M. and Ganesan, S. (2022).
Synthesis and characterization of spent bleaching clay‐based geopolymer:
an effort towards palm oil industry waste reutilization. Chemistry–An Asian
Journal, 17(14): e202200286.
14. Shehata, N., Sayed, E. T. and Abdelkareem, M.
A. (2021). Recent progress in environmentally friendly geopolymers: A review. Science
of the Total Environment, 762: 143166.
15. Zhang, Z., Provis, J. L., Reid, A. and Wang, H.
(2014). Fly ash-based geopolymers: The relationship between composition, pore
structure and efflorescence. Cement and Concrete Research, 64: 30-41.
16. Liew, Y. M., Heah, C. Y. and Kamarudin, H.
(2016). Structure and properties of clay-based geopolymer cements: A review. Progress
in Materials Science, 83: 595-629.
17. Tchadjie, L. N. and Ekolu, S. O. (2018).
Enhancing the reactivity of aluminosilicate materials toward geopolymer
synthesis. Journal of Materials Science, 53(7): 4709-4733.
18. Finocchiaro, C., Barone, G., Mazzoleni, P.,
Leonelli, C., Gharzouni, A. and Rossignol, S. (2020). FT-IR study of early
stages of alkali activated materials based on pyroclastic deposits (Mt. Etna,
Sicily, Italy) using two different alkaline solutions. Construction and
Building Materials, 262: 120095.
19. Abdullah, M. M. A. B., Ming, L. Y., Yong, H. C.
and Tahir, M. F. M. (2018). Clay-based materials in geopolymer technology. Cement
Based Materials, 239: 77438.
20. Shi, H., Ma, H., Tian, L., Yang, J. and Yuan,
J. (2020). Effect of microwave curing on metakaolin-quartz-based geopolymer
bricks. Construction and Building Materials, 258: 120354.
21. Okashah, A. M., Zainal, F. F., Hayazi, N. F.,
Nordin, M. N. and Abdullah, A. (2021). Pozzolanic properties of calcined clay
in geopolymer concrete: A review. In AIP Conference Proceedings (Vol. 2339, No.
1). AIP Publishing.
22. Li, Z., Zhang, S., Zuo, Y., Chen, W. and Ye, G.
(2019). Chemical deformation of metakaolin based geopolymer. Cement and
Concrete Research, 120: 108-118.
23. Feng, B., Liu, J., Chen, Y., Tan, X., Zhang, M.
and Sun, Z. (2022). Properties and microstructure of self-waterproof metakaolin
geopolymer with silane coupling agents. Construction and Building Materials,
342: 128045.
24. Zawrah, M. F., Sawan, S. A., Khattab, R. M. and
Abdel-Shafi, A. A. (2020). Effect of nano sand on the properties of
metakaolin-based geopolymer: Study on its low rate sintering. Construction
and Building Materials, 246: 118486.
25. Zidi, Z., Ltifi, M. and Zafar, I. (2021).
Synthesis and attributes of nano-SiO2 local metakaolin
based-geopolymer. Journal of Building Engineering, 33: 101586.
26. Salahudeen, N. (2018). Metakaolinization effect
on the thermal and physiochemical propperties of kankara kaolin. Applied
Science and Engineering Progress, 11(2): 127-135.
27. Cecilia, J. A., García-Sancho, C. and Franco,
F. (2013). Montmorillonite based porous clay heterostructures: Influence of Zr
in the structure and acidic properties. Microporous and Mesoporous
Materials, 176: 95-102.
28. Alekseeva, O., Noskov, A., Grishina, E.,
Ramenskaya, L., Kudryakova, N., Ivanov, V. and Agafonov, A. (2019). Structural
and thermal properties of montmorillonite/ionic liquid composites. Materials,
12(16): 2578.
29. Chen, X., Zhu, G., Zhou, M., Wang, J. and Chen,
Q. (2018). Effect of organic polymers on the properties of slag-based
geopolymers. Construction and Building Materials, 167: 216-224.
30. Boum, R. B. E., Kaze, C. R., Nemaleu, J. G. D.,
Djaoyang, V. B., Rachel, N. Y., Ninla, P. L., ... and Kamseu, E. (2020). Thermal
behaviour of metakaolin–bauxite blends geopolymer: microstructure and
mechanical properties. SN Applied Sciences, 2(8):1358.
31. Nemaleu, J. G. D., Bakaine Djaoyang, V.,
Bilkissou, A., Kaze, C. R., Boum, R. B. E., Djobo, J. N. Y., ... and Kamseu, E.
(2022). Investigation of groundnut shell powder on development of lightweight
metakaolin based geopolymer composite: mechanical and microstructural
properties. Silicon, 14(2): 449-461.
32. Aouan, B., Alehyen, S., Fadil, M., Alouani, M.
E., Khabbazi, A., Atbir, A. and Taibi, M. H. (2021). Compressive strength
optimization of metakaolin‐based geopolymer by central composite design. Chemical
Data Collections, 31:100636.
33. El Alouani, M., Alehyen, S. and El Achouri, M.
(2019). Preparation, characterization, and application of metakaolin-based
geopolymer for removal of methylene blue from aqueous solution. Journal of
Chemistry, 2019: 4212901.
34. Gultekin, A. and Ramyar, K. (2022). Effect of
curing type on microstructure and compressive strength of geopolymer mortars. Ceramics
International, 48(11): 16156-16172.
35. Nmiri, A., Hamdi, N., Yazoghli-Marzouk, O.,
Duc, M. and Srasra, E. (2017). Synthesis and characterization of
kaolinite-based geopolymer: Alkaline activation effect on calcined kaolinitic
clay at different temperatures. Journal Materials Environmental Sciences,
8(2): 276-290.
36. Marsh, A., Heath, A., Patureau, P., Evernden,
M. and Walker, P. (2018). Alkali activation behaviour of un-calcined
montmorillonite and illite clay minerals. Applied Clay Science, 166:
250-261.
37. Jaradat, Y. and Matalkah, F. (2021). Olive
biomass ash-based geopolymer composite: development and characterisation. Advances
in Applied Ceramics, 120(1): 1-9.
38. Longhi, M. A., Zhang, Z., Walkley, B.,
Rodríguez, E. D. and Kirchheim, A. P. (2021). Strategies for control and
mitigation of efflorescence in metakaolin-based geopolymers. Cement and
Concrete Research, 144: 106431.
39. Zhang, Z., Provis, J. L., Ma, X., Reid, A. and Wang,
H. (2018). Efflorescence and subflorescence induced microstructural and
mechanical evolution in fly ash-based geopolymers. Cement and Concrete Composites,
92: 165-177.
40. Tigue, A. A. S., Malenab, R. A. J., Dungca, J.
R., Yu, D. E. C. and Promentilla, M. A. B. (2018). Chemical stability and
leaching behavior of one-part geopolymer from soil and coal fly ash mixtures. Minerals,
8(9): 411.
41. Hu, X., Shi, C., Liu, X. and Zhang, Z. (2020).
Studying the effect of alkali dosage on microstructure development of
alkali-activated slag pastes by electrical impedance spectroscopy (EIS). Construction
and Building Materials, 261: 119982.
42. Biondi, L., Perry, M., McAlorum, J., Vlachakis,
C. and Hamilton, A. (2020). Geopolymer-based moisture sensors for reinforced
concrete health monitoring. Sensors and Actuators B: Chemical, 309:
127775.
43. Song, Q., Wang, J., Dong, T., Hel, L. and Lu,
S. (2019). Study of the Alkali activated Geopolymer by AC Impedance
Spectroscopy. In IOP Conference Series: Earth and Environmental Science
(Vol. 267, No. 2, p. 022001). IOP Publishing.
44. Fan, L. F., Zhong, W. L. and Zhang, Y. H. (2022). Effect of the composition and concentration of geopolymer
pore solution on the passivation characteristics of reinforcement. Construction
and Building Materials, 319: 126128.
45. Pengou, M., Ngouné, B., Tchakouté, H. K., Nanseu, C. P. and Ngameni, E.
(2020). Utilization of
geopolymer cements as supercapacitors: influence of the hardeners on their
properties. SN Applied Sciences, 2: 1-7.