Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 322 – 334

 

ANALYSIS OF EFFLORESCENCE OF SPENT BLEACHING CLAY BASED GEOPOLYMER USING ALKALINE LEACHABILITY METHODS

 

(Analisa Peroian Geopolimer Berasaskan Tanah Liat Terluntur Menggunakan Kaedah Kelarutlesapan Alkali)

 

Puuvina Jeyasangar, Mohd Hazwan Hussin, and Shangeetha Ganesan*

 

School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

 

*Corresponding author: shangeetha@usm.my

 

 

Received: 1 September 2023; Accepted: 15 February 2024; Published:  29 April 2024

 

 

Abstract

Geopolymers are a class of inorganic amorphous polymeric materials made up of silica, alumina and alkali- metal oxides. The presence of alkali in the geopolymer formulation aids in the dissolving of aluminosilicate precursors, resulting in the creation of microstructures and increases geopolymer strength. However, the alkali content is the most critical factor influencing efflorescence production. Therefore, this study evaluated the effects of curing parameters on efflorescence formation on spent bleaching clay based geopolymer. The efflorescence effects were analysed by alkaline leachability methods using atomic absorption spectroscopy (AAS) and electrochemical impedance spectroscopy (EIS). Neat geopolymer as well as cured geopolymer with different liquid/solid (L/S) ratio effects were studied. Alkaline leaching studies revealed water-cured geopolymers with liquid/solid (L/S) ratio of 2:1 shows that 974.9 ppm Na+ ions leached from the geopolymer. This method helps to prevent efflorescence from reoccurring as most of the free Na+ ions has already been leached from the geopolymer sample. The EIS analysis also showed that a 2:1 ratio had excellent resistance which reflects the mobility of the other ions such as silicon, aluminium and chloride ions. Functional group analysis using FTIR demonstrated the key peaks involved in development of geopolymer from spent bleaching clay (SBC) such as v(Si-O-Si / Si-O-Al) (bending & stretching), v(Al-O)(symmetrical), v(Si-O / Al-O) (asymmetrical) and v(O-H). Surface morphology analysis using SEM-EDX indicates that adequate silica-rich components were required to increase the mechanical strength of geopolymers by densifying their microstructure with more bulk and compact layers. From the examination of thermal stability of neat and treated geopolymer compositions decomposed at 700 °C confirming the thermal resistance of the material. Therefore, for more sustainable cements, alkali leachability can be performed on SBC-based geopolymer by water-curing as it revealed to have an exceptional performance on total Na leached, resistance and thermal stability as shown in this study.

 

Keywords: geopolymer, spent bleaching clay, efflorescence, leachability

 

Abstrak

Geopolimer adalah kelas bahan polimer amorfus tidak organik yang terdiri daripada silika, alumina dan logam-alkali oksida. Kehadiran alkali dalam formula geopolymer membantu dalam pelarutan bahan pemula aluminosilika, menghasilkan mikrostruktur serta menguatkan struktur geopolimer. Akan tetapi, kandungan alkali adalah faktor yang paling kritikal yang mempengaruhi pembentukan peroi. Oleh itu, kajian ini adalah untuk menilai sintesis geopolimer daripada tanah liat terluntur dan menganalisa peroian dengan kaedah kelarutanlesapan menggunakan AAS dan EIS. Geopolimer tulen serta geopolimer yang dirawat dengan kesan nisbah cecair/pepejal (L/S) yang berbeza telah dikaji. Kajian kelarutlesapan alkali menunjukkan geopolimer yang diawet dengan air pada nisbah air/pepejal (L/S) 2:1 menghasilkan 974.9 ppm Na+ ions melarutlesap daripada geopolimer tersebut. Cara ini mencegah pembentukkan peroi daripada berulang kerana kebanyakkan ion Na+  bebas telah dilarutlesap daripada geopolimer. Analisa EIS menunjukkan bahawa nisbah 2:1 juga mempunyai rintangan yang baik yang mencerminkan pergerakan ion-ion yang lain seperti silicon, aluminium dan klorida. Analisa kumpulan fungsi menggunakan FTIR menunjukkan puncak-puncak utama yang terlibat dalam penghasilan geopolimer berasaskan tanah liat (SBC) yang terdiri daripada v(Si-O-Si / Si-O-Al) (bengkok & regangan), v(Al-O) (simetri), v(Si-O / Al-O) (tidak simetri) dan v(O-H). Analisis morfologi permukaan mengunakan SEM-EDX menunjukkan bahawa komponen kaya silika yang mencukupi diperlukan untuk meningkatkan kekuatan mekanikal geopolimer dengan memadatkan struktur mikronya dengan lebih banyak lapisan pukal dan padat. Daripada pemeriksaan kestabilan terma komposisi geopolimer yang asal dan dirawat itu terurai pada suhu 700°C menunjukkan kerintangan haba mereka. Oleh itu, untuk simen yang lebih mampan, kelarutlesapan alkali boleh dilakukan pada geopolimer berasaskan SBC dengan pengawetan air kerana ia menunjukkan prestasi yang luar biasa berdasarkan jumlah Na yang kelarutlesapan serta kestabilan termanya seperti yang dibuktikan dalam penyelidikan ini.

 

Kata kunci: geopolimer, tanah liat terluntur, peroian, kelarutlesapan

 


 

References

1.     Majdoubi, H., Haddaji, Y., Mansouri, S., Alaoui, D., Tamraoui, Y., Semlal, N., Oumam, M., Manoun, B. and Hannache, H. (2021). Thermal, mechanical and microstructural properties of acidic geopolymer based on moroccan kaolinitic clay. Journal Building Engineering, 35:102078.

2.    Janošević, N., Đorić-Veljković, S., Topličić-Ćurčić, G. and Karamarković, J. (2018). Properties of geopolymers. Facta Universitatis, Series: Architecture and Civil Engineering, 16(1): 045-056.

3.    Łach, M., Korniejenko, K., Walter, J., Stefańska, A. and Mikuła, J. (2020). Decreasing of leaching and improvement of geopolymer properties by addition of aluminum calcium cements and titanium oxide. Materials, 13(3): 495.

4.    Abdul Rahim, R. H., Rahmiati, T., Azizli, K. A., Man, Z., Nuruddin, M. F. and Ismail, L. (2015). Comparison of using NaOH and KOH activated fly ash-based geopolymer on the mechanical properties. In Materials science forum (Vol. 803, pp. 179-184). Trans Tech Publications Ltd.

5.    Memon, F. A., Nuruddin, M. F., Khan, S., Shafiq, N. A. S. I. R. and Ayub, T. (2013). Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete. Journal Engineering Science Technology, 8(1): 44-56.

6.    Tuyan, M., Andiç-Çakir, Ö. and Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B: Engineering, 135: 242-252.

7.    Hatami, A. M., Sabour, M. R. and Amiri, A. (2018). Recycling process of spent bleaching clay: Optimization by response surface methodology. Global Journal of Environmental Science and Management, 4(1): 9-18.

8.    Sedghamiz, M. A., Attar, F. and Raeissi, S. (2019). Experimental investigation of acid regeneration of spent bleaching clay de-oiled by the in-situ transesterification process at various operating conditions. Process Safety and Environmental Protection, 124: 121-127.

9.    Loh, S. K., Cheong, K. Y. and Salimon, J. (2017). Surface-active physicochemical characteristics of spent bleaching earth on soil-plant interaction and water-nutrient uptake: A review. Applied Clay Science, 140: 59-65.

10. Zhang, C., Yu, M., Li, X., Li, X., Siyal, A. A., Liu, Y., ... and Li, Y. (2022). Disposal, regeneration and pyrolysis products characterization of spent bleaching clay from vegetable oil refinery in a fluidized bed pyrolyser. Journal of Cleaner Production, 346: 131157.

11.   Saludung, A., Azeyanagi, T., Ogawa, Y. and Kawai, K. (2021). Alkali leaching and mechanical performance of epoxy resin-reinforced geopolymer composite. Materials Letters, 304: 130663.

12. Škvára, F., Kopecký, L., Šmilauer, V. and Bittnar, Z. (2009). Material and structural characterization of alkali activated low-calcium brown coal fly ash. Journal of Hazardous Materials, 168(2-3): 711-720.

13.  Ying, M. W., Azmi, M. and Ganesan, S. (2022). Synthesis and characterization of spent bleaching clay‐based geopolymer: an effort towards palm oil industry waste reutilization. Chemistry–An Asian Journal, 17(14): e202200286.

14. Shehata, N., Sayed, E. T. and Abdelkareem, M. A. (2021). Recent progress in environmentally friendly geopolymers: A review. Science of the Total Environment, 762: 143166.

15. Zhang, Z., Provis, J. L., Reid, A. and Wang, H. (2014). Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 64: 30-41.

16. Liew, Y. M., Heah, C. Y. and Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 83: 595-629.

17. Tchadjie, L. N. and Ekolu, S. O. (2018). Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. Journal of Materials Science, 53(7): 4709-4733.

18. Finocchiaro, C., Barone, G., Mazzoleni, P., Leonelli, C., Gharzouni, A. and Rossignol, S. (2020). FT-IR study of early stages of alkali activated materials based on pyroclastic deposits (Mt. Etna, Sicily, Italy) using two different alkaline solutions. Construction and Building Materials, 262: 120095.

19. Abdullah, M. M. A. B., Ming, L. Y., Yong, H. C. and Tahir, M. F. M. (2018). Clay-based materials in geopolymer technology. Cement Based Materials, 239: 77438.

20. Shi, H., Ma, H., Tian, L., Yang, J. and Yuan, J. (2020). Effect of microwave curing on metakaolin-quartz-based geopolymer bricks. Construction and Building Materials, 258: 120354.

21. Okashah, A. M., Zainal, F. F., Hayazi, N. F., Nordin, M. N. and Abdullah, A. (2021). Pozzolanic properties of calcined clay in geopolymer concrete: A review. In AIP Conference Proceedings (Vol. 2339, No. 1). AIP Publishing.

22. Li, Z., Zhang, S., Zuo, Y., Chen, W. and Ye, G. (2019). Chemical deformation of metakaolin based geopolymer. Cement and Concrete Research, 120: 108-118.

23. Feng, B., Liu, J., Chen, Y., Tan, X., Zhang, M. and Sun, Z. (2022). Properties and microstructure of self-waterproof metakaolin geopolymer with silane coupling agents. Construction and Building Materials, 342: 128045.

24. Zawrah, M. F., Sawan, S. A., Khattab, R. M. and Abdel-Shafi, A. A. (2020). Effect of nano sand on the properties of metakaolin-based geopolymer: Study on its low rate sintering. Construction and Building Materials, 246: 118486.

25. Zidi, Z., Ltifi, M. and Zafar, I. (2021). Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. Journal of Building Engineering, 33: 101586.

26. Salahudeen, N. (2018). Metakaolinization effect on the thermal and physiochemical propperties of kankara kaolin. Applied Science and Engineering Progress, 11(2): 127-135.

27. Cecilia, J. A., García-Sancho, C. and Franco, F. (2013). Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous and Mesoporous Materials, 176: 95-102.

28. Alekseeva, O., Noskov, A., Grishina, E., Ramenskaya, L., Kudryakova, N., Ivanov, V. and Agafonov, A. (2019). Structural and thermal properties of montmorillonite/ionic liquid composites. Materials, 12(16): 2578.

29. Chen, X., Zhu, G., Zhou, M., Wang, J. and Chen, Q. (2018). Effect of organic polymers on the properties of slag-based geopolymers. Construction and Building Materials, 167: 216-224.

30. Boum, R. B. E., Kaze, C. R., Nemaleu, J. G. D., Djaoyang, V. B., Rachel, N. Y., Ninla, P. L., ... and Kamseu, E. (2020). Thermal behaviour of metakaolin–bauxite blends geopolymer: microstructure and mechanical properties. SN Applied Sciences, 2(8):1358.

31. Nemaleu, J. G. D., Bakaine Djaoyang, V., Bilkissou, A., Kaze, C. R., Boum, R. B. E., Djobo, J. N. Y., ... and Kamseu, E. (2022). Investigation of groundnut shell powder on development of lightweight metakaolin based geopolymer composite: mechanical and microstructural properties. Silicon, 14(2): 449-461.

32. Aouan, B., Alehyen, S., Fadil, M., Alouani, M. E., Khabbazi, A., Atbir, A. and Taibi, M. H. (2021). Compressive strength optimization of metakaolin‐based geopolymer by central composite design. Chemical Data Collections, 31:100636.

33. El Alouani, M., Alehyen, S. and El Achouri, M. (2019). Preparation, characterization, and application of metakaolin-based geopolymer for removal of methylene blue from aqueous solution. Journal of Chemistry, 2019: 4212901.

34. Gultekin, A. and Ramyar, K. (2022). Effect of curing type on microstructure and compressive strength of geopolymer mortars. Ceramics International, 48(11): 16156-16172.

35. Nmiri, A., Hamdi, N., Yazoghli-Marzouk, O., Duc, M. and Srasra, E. (2017). Synthesis and characterization of kaolinite-based geopolymer: Alkaline activation effect on calcined kaolinitic clay at different temperatures. Journal Materials Environmental Sciences, 8(2): 276-290.

36. Marsh, A., Heath, A., Patureau, P., Evernden, M. and Walker, P. (2018). Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Applied Clay Science, 166: 250-261.

37. Jaradat, Y. and Matalkah, F. (2021). Olive biomass ash-based geopolymer composite: development and characterisation. Advances in Applied Ceramics, 120(1): 1-9.

38. Longhi, M. A., Zhang, Z., Walkley, B., Rodríguez, E. D. and Kirchheim, A. P. (2021). Strategies for control and mitigation of efflorescence in metakaolin-based geopolymers. Cement and Concrete Research, 144: 106431.

39. Zhang, Z., Provis, J. L., Ma, X., Reid, A. and Wang, H. (2018). Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers. Cement and Concrete Composites, 92: 165-177.

40. Tigue, A. A. S., Malenab, R. A. J., Dungca, J. R., Yu, D. E. C. and Promentilla, M. A. B. (2018). Chemical stability and leaching behavior of one-part geopolymer from soil and coal fly ash mixtures. Minerals, 8(9): 411.

41. Hu, X., Shi, C., Liu, X. and Zhang, Z. (2020). Studying the effect of alkali dosage on microstructure development of alkali-activated slag pastes by electrical impedance spectroscopy (EIS). Construction and Building Materials, 261: 119982.

42. Biondi, L., Perry, M., McAlorum, J., Vlachakis, C. and Hamilton, A. (2020). Geopolymer-based moisture sensors for reinforced concrete health monitoring. Sensors and Actuators B: Chemical, 309: 127775.

43. Song, Q., Wang, J., Dong, T., Hel, L. and Lu, S. (2019). Study of the Alkali activated Geopolymer by AC Impedance Spectroscopy. In IOP Conference Series: Earth and Environmental Science (Vol. 267, No. 2, p. 022001). IOP Publishing.

44. Fan, L. F., Zhong, W. L. and Zhang, Y. H. (2022). Effect of the composition and concentration of geopolymer pore solution on the passivation characteristics of reinforcement. Construction and Building Materials, 319: 126128.

45. Pengou, M., Ngouné, B., Tchakouté, H. K., Nanseu, C. P. and Ngameni, E. (2020). Utilization of geopolymer cements as supercapacitors: influence of the hardeners on their properties. SN Applied Sciences, 2: 1-7.