Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 305 - 321

 

THE INFLUENCES OF SEASONAL MONSOONS UPON PHOSPHORUS, CHLOROPHYLL-A AND PHYSICAL CHARACTERISTIC OF THE KELANTAN WATERS

 

(Kesan Monsun Bermusim ke atas Fosforus, Klorofil-a dan Ciri-ciri Fizikal di Perairan Kelantan)

 

Azyyati Abdul Aziz1, Suhaimi Suratman1*, Ku Nor Afiza Asnida Ku Mansor1,

Fariz Syafiq Mohamad Ali1, and Ku Mohd Kalkausar Ku Yusof2

 

1Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: miman@umt.edu.my

 

 

Received: 5 October 2023; Accepted: 9 January 2024; Published:  29 April 2024

 

 

Abstract

The influences of seasonal monsoons on the variability of phosphorus (phosphate (PO43-), dissolved organic phosphorus (DOP), total particulate phosphorus (TPP)), chlorophyll-a, and physical characteristics in the water columns of Kelantan Waters were investigated based on the datasets collected by three cruises during the southwest monsoon (SWM), inter-monsoon (IM), and northeast monsoon (NEM) seasons. Concentrations of PO43- were determined using a discrete analyzer and standard colorimetric techniques. DOP and TPP were measured using an indirect method that involved a UV digestion system. This system utilizes UV light to oxidize organic phosphorus and total phosphorus compounds into PO43-, thereby making them measurable. Surface and vertical profiles were investigated and showed that almost all parameters measured showed significant differences (p < 0.05) among seasons. The seasonal trends in the surface and vertical distributions of PO43-, DOP, and chlorophyll-a concentrations were found to have peaked during the NEM, followed by the SWM and IM periods. The combination factors of heavy rainfalls, large river discharges, and stronger wind-induced processes during the NEM created conditions conducive for the enhancement of PO43-, DOP, and chlorophyll-a concentrations in the study area. Principal Component Analysis (PCA) demonstrated a strong correlation between chlorophyll-a and PO43-, suggesting that PO43- supply was the dominant source for phytoplankton biomass (chl-a) survival during our sampling period. This study has provided valuable information about phosphorus dynamics in the Kelantan Waters, establishing a baseline for future studies.

 

Keywords: intermonsoon, northeast monsoon, phosphate, dissolved organic phosphorus, South China Sea

 

Abstrak

Pengaruh musim monsun ke atas kepelbagaian fosforus (fosfat (PO43-), organik terlarut fosforus (DOP), jumlah partikulat fosforus (TPP)), klorofil-a, dan ciri fizikal dalam turus air di perairan Kelantan telah dikaji berdasarkan dataset yang dikumpul oleh tiga pelayaran semasa monsun barat daya (SWM), peralihan-monsun (IM), dan monsun timur laut (NEM). Kepekatan PO43- ditentukan menggunakan pengnalisis automatik diskret dan kaedah kolorimetrik piawai. DOP dan TPP diukur menggunakan kaedah tidak langsung yang melibatkan sistem pencernaan UV. Sistem ini menggunakan cahaya UV untuk mengoksida fosforus organik dan sebatian jumlah fosforus menjadi PO43-, menjadikannya boleh diukur. Profil permukaan dan menegak telah dikaji, dan menunjukkan hampir semua parameter yang diukur adalah berbeza secara signifikan (p < 0.05) di antara musim. Kami dapati trend musim dalam taburan permukaan air dan menegak kepekatan PO43-, DOP, dan klorofil-a mencapai puncaknya semasa monsun timur laut, diikuti oleh monsun barat daya dan tempoh perlihan-monsun. Gabungan faktor hujan lebat, sungai besar, dan proses yang diperkuatkan oleh angin semasa monsun timur laut mencipta keadaan yang menyokong peningkatan konsentrasi PO43-, DOP, dan klorofil-a di kawasan kajian. Analisis komponen utama (PCA) menunjukkan korelasi kuat antara klorofil-a dan PO43-, menunjukkan bahawa bekalan PO43- adalah sumber dominan untuk fitoplankton (chl-a) biojisim semasa tempoh penyempelan kami. Kajian ini memberikan maklumat berharga mengenai dinamik fosforus di perairan Kelantran and sebagai garis asas untuk kajian masa depan.

 

Kata kunci: monsun peralihan, monsun timur laut, fosfat, fosforus organik terlarut, Laut China Selatan


 

References

1.      Sosa, O. A., Repeta, D. J., DeLong, E. F., Ashkezari, M. D. and Karl, D. M. (2019). Phosphate-limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation. Environmental Microbiology, 21(7): 2402-2414.

2.      Duhamel, S., Diaz, J. M., Adams, J. C., Djaoudi, K., Steck, V. and Waggoner, E. M. (2021). Phosphorus as an integral component of global marine biogeochemistry. Nature Geoscience, 14(6), 359-368.

3.      Dodds, W. K., and Whiles, M. R. (2010). Chapter 14 - Nitrogen, Sulfur, Phosphorus, and Other Nutrients. In Freshwater Ecology (Second Edition). Academic Press, London: pp. 345-373.

4.      Ruttenberg, K. C., and Dyhrman, S. T. (2012). Dissolved organic phosphorus production during simulated phytoplankton blooms in a coastal upwelling system. Frontiers in Microbiology, 3: 1-12.

5.      Lin, S., Litaker, R. W. and Sunda, W. G. (2016). Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. Journal of Phycology, 52(1): 10-36.

6.      Lim, J. H., Lee, C. W., Bong, C. W., Affendi, Y. A., Hii, Y. S., and Kudo, I. (2018). Distributions of particulate and dissolved phosphorus in aquatic habitats of Peninsular Malaysia. Marine Pollution Bulletin, 128: 415-427.

7.      Hashihama, F., Saito, H., Shiozaki, T., Ehama, M., Suwa, S. and Sugiyama, T. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles, 34(9): e2020GB006669.

8.      Raimbault, P., Garcia, N., and Cerutti, F. (2008). Distribution of inorganic and organic nutrients in the South Pacific Ocean - evidence for long-term accumulation of organic matter in nitrogen-depleted waters. Biogeosciences, 5: 281-298.

9.      Worsfold, P., Mckelvie, I. and Monbet, P. (2016). Determination of phosphorus in natural waters: A historical review. Analytica Chimica Acta, 918: 8-20.

10.   Nausch, M., Achterberg, E. P., Bach, L. T., Brussaard, C. P. D., Crawfurd, K. J., Fabian, J., Riebesell, U., Stuhr A., Unger, J. and Wannicke, N. (2018). Concentrations and uptake of dissolved organic phosphorus compounds in the Baltic Sea. Frontiers in Marine Science, 5: 386.

11.   Yamaguchi, T., Sato, M., Hashihama, F., Kato, H., Sugiyama, T., Ogawa, H., Takahashi K. and Furuya, K. (2021). Longitudinal and vertical variations of dissolved labile phosphoric monoesters and diesters in the subtropical North Pacific. Frontiers in Microbiology, 11: 570081.

12.   Yang, Y., Shi, J., Jia, Y., Bai, F., Yang, S., Mi, W., He, S. and Wu, Z. (2020). Unveiling the impact of glycerol phosphate (DOP) in the dinoflagellate Peridinium bipes by physiological and transcriptomic analysis. Environmental Sciences Europe, 32(1): 38

13.   Karl, D. M. (2014). Microbially mediated transformations of phosphorus in the sea: New views of an old cycle. Annual Review of Marine Science, 6: 279-337.

14.   Diaz, J. M., Holland, A., Sanders, J. G., Bulski, K., Mollett, D., Chou, C. W., Phillips, D., Tang Y., and Duhamel, S. (2018). Dissolved organic phosphorus utilization by phytoplankton reveals preferential degradation of polyphosphates over phosphomonoesters. Frontiers in Marine Science, 5: 1-17.

15.   Scharler, U. M. and Baird, D. (2003). The nutrient status of the agriculturally impacted Gamtoos estuary, South Africa, with special reference to the river-estuarine interface region (REI). Aquatic Conservation: Marine and Freshwater Ecosystems, 13(2): 99-119.

16.   Meng, J., Yu, Z., Yao, Q., Bianchi, T. S., Paytan, A., Zhao, B., Pan, H., and Yao, P. (2015). Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang estuary. Marine Chemistry, 168: 124-134.

17.   Akhir, M. F. M., Zakaria, N. Z., and Tangang, F. (2014). Intermonsoon variation of physical characteristics and current circulation along the east coast of Peninsular Malaysia. International Journal of Oceanography, 2014: 1-9.

18.   Syafrina, A. H., Zalina, M. D., and Juneng, L. (2015). Historical trend of hourly extreme rainfall in Peninsular Malaysia. Theoretical and Applied Climatology, 120; 259-285.

19.   Daud, N. R., Akhir, M. F. and Muslim, A. M. (2019). Dynamic of ENSO towards upwelling and thermal front zone in the east coast of Peninsular Malaysia. Acta Oceanologica Sinica, 38(1): 48-60.

20.   Kok, P. H, Akhir, M. F., Tangang, F. and Husain, M. L. (2017). Spatiotemporal trends in the southwest monsoon wind-driven upwelling in the southwestern part of the South China Sea. PLoS ONE 12(2): e0171979.

21.   Aziz, A. A., Suratman, S., Kok, P. H., and Akhir, M. F. (2019). Distribution of nutrients concentration in the upwelling area off the east coast of Peninsular Malaysia during the southwest monsoon. Malaysian Journal of Analytical Sciences, 23(6): 1030-1043.

22.   Akhir, M. F. (2012). Surface circulation and temperature distribution of southern South China Sea from global ocean model (OCCAM). Sains Malaysiana, 41(6): 701-714.

23.   Hee, Y. Y., Suratman, S., and Weston, K. (2020). Nutrient cycling and primary production in Peninsular Malaysia Waters; regional variation and its causes in the South China Sea. Estuarine, Coastal and Shelf Science, 245: 106947.

24.   Uning, R., Suratman, S., Nasir, F. A. M. and Latif, M. T. (2021). Spatial and temporal variations in nutrients during upwelling season off the east coast of Peninsular Malaysia. Bulletin of Environmental Contamination and Toxicology. 108(1): 145-150.

25.   Zainol, Z. and Akhir, M. F. (2016). Coastal upwelling at Terengganu and Pahang coastal waters: Interaction of hydrography, current circulation and phytoplankton biomass. Jurnal Teknologi, 78(8): 11-27.

26.   Environment Protection Agency (1993). Method 365.1, revision 2.0: Determination of phosphorus by semi- automated colorimetry.

27.   Mahaffey, C., Williams, R. G., Wolff, G. A. and Anderson, W. T. (2004). Physical supply of nitrogen to phytoplankton in the Atlantic Ocean. Global Biogeochemical Cycles, 18(1): 1-13.

28.   Parsons, T. R., Maita, T. and Lalli, C. M. (1984). Plant pigment. In: a manual of chemical and biological method for seawater analysis. Oxford: Pergamon Press: pp. 173.

29.   Shrestha, S. and Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji River Basin, Japan. Environmental Modelling and Software, 22(4): 464-475.

30.   Marghany, M. (2012). Intermonsoon water mass characteristics along coastal waters off Kuala Terengganu, Malaysia. International Journal of the Physical Sciences, 7(8): 1294-1299.

31.   Akhir, M. F. M., Sinha, P. C. and Husain, M. L. (2011). Seasonal variation of South China Sea physical characteristics off the east coast of Peninsular Malaysia from 2002-2010 datasets. International Journal of Environmental Science, 2(2): 569-575.

32.   Kok, P. H., Akhir, M. F. and Qiao, F. (2019). Distinctive characteristics of upwelling along the Peninsular Malaysia’s east coast during 2009/10 and 2015/16 El Niños. Continental Shelf Research, 184: 10-20.

33.   Idris, M. S., Sidik, M. J. and Hing, L. S. (2021). Optical characterisation and classification of water types in the southern South China Sea and straits of Malacca. Estuarine, Coastal and Shelf Science, 262: 107594.

34.   Shaari, F. and Mustapha, M. A. (2017). Factors influencing the distribution of chl-a along coastal waters of east peninsular Malaysia. Sains Malaysiana, 46(8): 1191-1200.

35.   Zhao, C., Maerz, J., Hofmeister, R., Röttgers, R., Wirtz, K., Riethmüller, R. and Schrum, C. (2019). Characterizing the vertical distribution of chlorophyll a in the German bight. Continental Shelf Research, 175: 127-146.

36.   Ooi, S. H., Samah, A. A. and Braesicke, P. (2013). Primary productivity and its variability in the equatorial South China Sea during the northeast monsoon. Atmospheric Chemistry and Physics Discussions, 13(8): 21573-21608.

37.   Yu, Y., Song, J., Li, X., Yuan, H. and Li, N. (2012). Distribution, sources and budgets of particulate phosphorus and nitrogen in the East China Sea. Continental Shelf Research, 43: 142-155.

38.   Provoost, P., Braeckman, U., Van Gansbeke, D., Moodley, L., Soetaert, K., Middelburg, J. J. and Vanaverbeke, J. (2013). Modelling benthic oxygen consumption and benthic-pelagic coupling at a shallow station in the southern North Sea. Estuarine, Coastal and Shelf Science, 120: 1-11.

39.   Karl, D. M., and Björkman, K. M. (2015). Dynamics of dissolved organic phosphorus. In biogeochemistry of marine dissolved organic matter, Academic Press Burlington: pp. 233-334.

40.   Liu, S., Li, X., Zhang, J., Wei, H., Ren, J. and Zhang, G. (2007). Nutrient dynamics in Jiaozhou Bay. Water, Air, & Soil Pollution: Focus, 7(6): 625-643.

41.   Hee, Y. Y., Suratman, S., Tahir, N. M., and Jickells, T. (2018). Seasonal variability and Fractionation of P-based nutrients in Sungai Setiu basin, Terengganu, Malaysia. Sains Malaysiana, 47(5): 883-891.

42.   Huang, Y.-C. A., Huang, S.-C., Meng, P.-J., Hsieh, H. J., and Chen, C. A. (2012). Influence of strong monsoon winds on the water quality around a marine cage-culture zone in a shallow and semi-enclosed bay in Taiwan. Marine Pollution Bulletin, 64(4): 851-860.

43.   Nausch, M., Achterberg, E. P., Bach, L. T., Brussaard, C. P. D., Crawfurd, K. J., Fabian, J., … Wannicke, N. (2018). Concentrations and uptake of dissolved organic phosphorus compounds in the Baltic Sea. Frontiers in Marine Science, 5: 386.