Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 305 - 321
THE INFLUENCES OF
SEASONAL MONSOONS UPON PHOSPHORUS, CHLOROPHYLL-A AND PHYSICAL CHARACTERISTIC OF
THE KELANTAN WATERS
(Kesan Monsun Bermusim ke atas Fosforus,
Klorofil-a dan Ciri-ciri Fizikal di Perairan Kelantan)
Azyyati Abdul Aziz1, Suhaimi Suratman1*, Ku Nor
Afiza Asnida Ku Mansor1,
Fariz Syafiq Mohamad Ali1, and Ku Mohd Kalkausar Ku Yusof2
1Institute of Oceanography and Environment, Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia
2Faculty of Science and Marine Environment, Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: miman@umt.edu.my
Received: 5 October 2023; Accepted: 9 January 2024; Published:
29 April 2024
The influences of
seasonal monsoons on the variability of phosphorus (phosphate (PO43-),
dissolved organic phosphorus (DOP), total particulate phosphorus (TPP)),
chlorophyll-a, and physical characteristics in the water columns of Kelantan Waters were investigated based on the
datasets collected by three cruises during the southwest monsoon (SWM), inter-monsoon
(IM), and northeast monsoon (NEM) seasons. Concentrations of PO43- were determined using a
discrete analyzer and standard colorimetric techniques. DOP and TPP were measured using an indirect method that involved a UV
digestion system. This system utilizes UV light to oxidize organic phosphorus
and total phosphorus compounds into PO43-, thereby making
them measurable. Surface and vertical profiles were investigated and showed
that almost all parameters measured showed significant differences (p
< 0.05) among seasons. The seasonal trends in the surface and vertical
distributions of PO43-, DOP, and chlorophyll-a
concentrations were found to have peaked during the NEM,
followed by the SWM and IM periods. The combination factors of heavy rainfalls,
large river discharges, and stronger wind-induced processes during the NEM
created
conditions conducive for the enhancement of PO43-, DOP, and chlorophyll-a concentrations in the study area. Principal Component Analysis (PCA) demonstrated a strong correlation
between chlorophyll-a and PO43-, suggesting that PO43-
supply was the dominant source for phytoplankton biomass (chl-a) survival
during our sampling period. This study has provided
valuable information about phosphorus dynamics in the Kelantan Waters, establishing
a baseline for future studies.
Keywords: intermonsoon, northeast monsoon, phosphate, dissolved organic phosphorus,
South China Sea
Abstrak
Pengaruh musim monsun ke atas kepelbagaian fosforus (fosfat (PO43-),
organik
terlarut fosforus (DOP), jumlah partikulat fosforus
(TPP)), klorofil-a, dan ciri fizikal dalam turus air di perairan Kelantan telah
dikaji berdasarkan dataset yang dikumpul oleh tiga pelayaran semasa monsun
barat daya (SWM), peralihan-monsun (IM), dan monsun timur laut (NEM). Kepekatan
PO43- ditentukan menggunakan pengnalisis automatik
diskret dan kaedah kolorimetrik piawai. DOP dan TPP diukur
menggunakan kaedah tidak langsung yang melibatkan sistem pencernaan UV. Sistem
ini menggunakan cahaya UV untuk mengoksida fosforus organik dan sebatian jumlah
fosforus menjadi PO43-, menjadikannya boleh diukur.
Profil permukaan dan menegak telah dikaji, dan menunjukkan hampir semua
parameter yang diukur adalah berbeza secara signifikan (p < 0.05) di
antara musim. Kami dapati trend musim dalam taburan permukaan air dan menegak
kepekatan PO43-, DOP, dan klorofil-a mencapai puncaknya
semasa monsun timur laut, diikuti oleh monsun barat daya dan tempoh
perlihan-monsun. Gabungan faktor hujan lebat, sungai besar, dan proses yang
diperkuatkan oleh angin semasa monsun timur laut mencipta keadaan yang
menyokong peningkatan konsentrasi PO43-, DOP, dan
klorofil-a di kawasan kajian. Analisis komponen utama (PCA) menunjukkan
korelasi kuat antara klorofil-a dan PO43-, menunjukkan
bahawa bekalan PO43- adalah sumber dominan untuk
fitoplankton (chl-a) biojisim semasa tempoh penyempelan kami. Kajian ini
memberikan maklumat berharga mengenai dinamik fosforus di perairan Kelantran
and sebagai garis asas untuk kajian masa depan.
Kata kunci: monsun peralihan, monsun timur laut, fosfat, fosforus organik terlarut, Laut
China Selatan
2.
Duhamel, S., Diaz, J. M., Adams, J. C., Djaoudi, K., Steck, V. and Waggoner,
E. M. (2021). Phosphorus as an integral component of global marine
biogeochemistry. Nature Geoscience, 14(6), 359-368.
3.
Dodds, W. K., and Whiles, M. R. (2010). Chapter 14 - Nitrogen, Sulfur,
Phosphorus, and Other Nutrients. In Freshwater Ecology (Second Edition).
Academic Press, London: pp. 345-373.
4.
Ruttenberg, K. C., and Dyhrman, S. T. (2012). Dissolved organic phosphorus
production during simulated phytoplankton blooms in a coastal upwelling system.
Frontiers in Microbiology, 3: 1-12.
5.
Lin, S., Litaker, R. W. and Sunda, W. G. (2016). Phosphorus physiological
ecology and molecular mechanisms in marine phytoplankton. Journal of
Phycology, 52(1): 10-36.
6.
Lim, J. H., Lee, C. W., Bong, C. W., Affendi, Y. A., Hii, Y. S., and Kudo,
I. (2018). Distributions of particulate and dissolved phosphorus in aquatic
habitats of Peninsular Malaysia. Marine Pollution Bulletin, 128: 415-427.
7.
Hashihama, F., Saito, H., Shiozaki, T., Ehama, M., Suwa, S. and Sugiyama,
T. (2020). Biogeochemical controls of particulate phosphorus distribution
across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical
Cycles, 34(9): e2020GB006669.
8.
Raimbault, P., Garcia, N., and Cerutti, F. (2008). Distribution of
inorganic and organic nutrients in the South Pacific Ocean - evidence for
long-term accumulation of organic matter in nitrogen-depleted waters. Biogeosciences,
5: 281-298.
9.
Worsfold, P., Mckelvie, I. and Monbet, P. (2016). Determination of
phosphorus in natural waters: A historical review. Analytica Chimica Acta,
918: 8-20.
10.
Nausch, M., Achterberg, E. P., Bach, L. T., Brussaard, C. P. D., Crawfurd,
K. J., Fabian, J., Riebesell, U., Stuhr A., Unger, J. and Wannicke, N. (2018).
Concentrations and uptake of dissolved organic phosphorus compounds in the Baltic
Sea. Frontiers in Marine Science, 5: 386.
11.
Yamaguchi, T., Sato, M., Hashihama, F., Kato, H., Sugiyama, T., Ogawa, H.,
Takahashi K. and Furuya, K. (2021). Longitudinal and vertical variations of
dissolved labile phosphoric monoesters and diesters in the subtropical North
Pacific. Frontiers in Microbiology, 11: 570081.
12.
Yang, Y., Shi, J., Jia, Y., Bai, F., Yang, S., Mi, W., He, S. and Wu, Z.
(2020). Unveiling the impact of glycerol phosphate (DOP) in the dinoflagellate
Peridinium bipes by physiological and transcriptomic analysis. Environmental
Sciences Europe, 32(1): 38
13.
Karl, D. M. (2014). Microbially mediated transformations of phosphorus in
the sea: New views of an old cycle. Annual Review of Marine Science, 6:
279-337.
14.
Diaz, J. M., Holland, A., Sanders, J. G., Bulski, K., Mollett, D., Chou,
C. W., Phillips, D., Tang Y., and Duhamel, S. (2018). Dissolved organic
phosphorus utilization by phytoplankton reveals preferential degradation of
polyphosphates over phosphomonoesters. Frontiers in Marine Science, 5: 1-17.
15.
Scharler, U. M. and Baird, D. (2003). The nutrient status of the
agriculturally impacted Gamtoos estuary, South Africa, with special reference
to the river-estuarine interface region (REI). Aquatic Conservation: Marine
and Freshwater Ecosystems, 13(2): 99-119.
16.
Meng, J., Yu, Z., Yao, Q., Bianchi, T. S., Paytan, A., Zhao, B., Pan, H.,
and Yao, P. (2015). Distribution, mixing behavior, and transformation of
dissolved inorganic phosphorus and suspended particulate phosphorus along a
salinity gradient in the Changjiang estuary. Marine Chemistry, 168: 124-134.
17.
Akhir, M. F. M., Zakaria, N. Z., and Tangang, F. (2014). Intermonsoon variation
of physical characteristics and current circulation along the east coast of
Peninsular Malaysia. International Journal of Oceanography, 2014: 1-9.
18.
Syafrina, A. H., Zalina, M. D., and Juneng, L. (2015). Historical trend of
hourly extreme rainfall in Peninsular Malaysia. Theoretical and Applied
Climatology, 120; 259-285.
19.
Daud, N. R., Akhir, M. F. and Muslim, A. M. (2019). Dynamic of ENSO towards
upwelling and thermal front zone in the east coast of Peninsular Malaysia. Acta
Oceanologica Sinica, 38(1): 48-60.
20.
Kok, P. H, Akhir, M. F., Tangang, F. and Husain, M. L. (2017).
Spatiotemporal trends in the southwest monsoon wind-driven upwelling in the
southwestern part of the South China Sea. PLoS ONE 12(2): e0171979.
21.
Aziz, A. A., Suratman, S., Kok, P. H., and Akhir, M. F. (2019).
Distribution of nutrients concentration in the upwelling area off the east
coast of Peninsular Malaysia during the southwest monsoon. Malaysian Journal
of Analytical Sciences, 23(6): 1030-1043.
22.
Akhir, M. F. (2012). Surface circulation and temperature distribution of
southern South China Sea from global ocean model (OCCAM). Sains Malaysiana,
41(6): 701-714.
23.
Hee, Y. Y., Suratman, S., and Weston, K. (2020). Nutrient cycling and
primary production in Peninsular Malaysia Waters; regional variation and its
causes in the South China Sea. Estuarine, Coastal and Shelf Science, 245:
106947.
24.
Uning, R., Suratman, S., Nasir, F. A. M. and Latif, M. T. (2021). Spatial and
temporal variations in nutrients during upwelling season off the east coast of Peninsular
Malaysia. Bulletin of Environmental Contamination and Toxicology. 108(1):
145-150.
25.
Zainol, Z. and Akhir, M. F. (2016). Coastal upwelling at Terengganu and
Pahang coastal waters: Interaction of hydrography, current circulation and
phytoplankton biomass. Jurnal Teknologi, 78(8): 11-27.
26.
Environment Protection Agency (1993). Method 365.1, revision 2.0:
Determination of phosphorus by semi- automated colorimetry.
27.
Mahaffey, C., Williams, R. G., Wolff, G. A. and Anderson, W. T. (2004).
Physical supply of nitrogen to phytoplankton in the Atlantic Ocean. Global
Biogeochemical Cycles, 18(1): 1-13.
28.
Parsons, T. R., Maita, T. and Lalli, C. M. (1984). Plant pigment. In: a
manual of chemical and biological method for seawater analysis. Oxford:
Pergamon Press: pp. 173.
29.
Shrestha, S. and Kazama, F. (2007). Assessment of surface water quality
using multivariate statistical techniques: a case study of the Fuji River
Basin, Japan. Environmental Modelling and Software, 22(4): 464-475.
30.
Marghany, M. (2012). Intermonsoon water mass characteristics along coastal
waters off Kuala Terengganu, Malaysia. International Journal of the Physical
Sciences, 7(8): 1294-1299.
31.
Akhir, M. F. M., Sinha, P. C. and Husain, M. L. (2011). Seasonal variation
of South China Sea physical characteristics off the east coast of Peninsular
Malaysia from 2002-2010 datasets. International Journal of Environmental
Science, 2(2): 569-575.
32.
Kok, P. H., Akhir, M. F. and Qiao, F. (2019). Distinctive characteristics
of upwelling along the Peninsular Malaysia’s east coast during 2009/10 and
2015/16 El Niños. Continental Shelf Research, 184: 10-20.
33.
Idris, M. S., Sidik, M. J. and Hing, L. S. (2021). Optical characterisation
and classification of water types in the southern South China Sea and straits
of Malacca. Estuarine, Coastal and Shelf Science, 262: 107594.
34.
Shaari, F. and Mustapha, M. A. (2017). Factors influencing the
distribution of chl-a along coastal waters of east peninsular Malaysia. Sains
Malaysiana, 46(8): 1191-1200.
35.
Zhao, C., Maerz, J., Hofmeister, R., Röttgers, R., Wirtz, K., Riethmüller,
R. and Schrum, C. (2019). Characterizing the vertical distribution of
chlorophyll a in the German bight. Continental Shelf Research, 175: 127-146.
36.
Ooi, S. H., Samah, A. A. and Braesicke, P. (2013). Primary productivity
and its variability in the equatorial South China Sea during the northeast
monsoon. Atmospheric Chemistry and Physics Discussions, 13(8): 21573-21608.
37.
Yu, Y., Song, J., Li, X., Yuan, H. and Li, N. (2012). Distribution, sources
and budgets of particulate phosphorus and nitrogen in the East China Sea. Continental
Shelf Research, 43: 142-155.
38.
Provoost, P., Braeckman, U., Van Gansbeke, D., Moodley, L., Soetaert, K.,
Middelburg, J. J. and Vanaverbeke, J. (2013). Modelling benthic
oxygen consumption and benthic-pelagic coupling at a shallow station in the
southern North Sea. Estuarine, Coastal and Shelf Science, 120: 1-11.
39.
Karl, D. M., and Björkman, K. M. (2015). Dynamics of dissolved organic
phosphorus. In biogeochemistry of marine dissolved organic matter, Academic
Press Burlington: pp. 233-334.
40.
Liu, S., Li, X., Zhang, J., Wei, H., Ren, J. and Zhang, G. (2007).
Nutrient dynamics in Jiaozhou Bay. Water, Air, & Soil Pollution: Focus,
7(6): 625-643.
41.
Hee, Y. Y., Suratman, S., Tahir, N. M., and Jickells, T. (2018). Seasonal
variability and Fractionation of P-based nutrients in Sungai Setiu basin,
Terengganu, Malaysia. Sains Malaysiana, 47(5): 883-891.
42.
Huang, Y.-C. A., Huang, S.-C., Meng, P.-J., Hsieh, H. J., and Chen, C. A.
(2012). Influence of strong monsoon winds on the water quality around a marine
cage-culture zone in a shallow and semi-enclosed bay in Taiwan. Marine
Pollution Bulletin, 64(4): 851-860.
43.
Nausch, M., Achterberg, E. P., Bach, L. T., Brussaard, C. P. D., Crawfurd,
K. J., Fabian, J., … Wannicke, N. (2018). Concentrations and uptake of
dissolved organic phosphorus compounds in the Baltic Sea. Frontiers in
Marine Science, 5: 386.