Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 290 - 304

 

A PORTABLE micro-volume colorimetric assay for aluminium determination using natural reagent extracts from Sappan heartwood by ultrasound-assisted extraction

 

(Satu Kaedah Uji Warna Isipadu-Mikro yang Mudah Alih untuk Penentuan Aluminium Menggunakan Ekstrak Bahan Semulajadi dari Teras Kayu Sappan Melalui Pengekstrakan Dibantu Ultrasonik)

 

Watsaka Siriangkhawut1* and Yaowalak Khanhuathon2

 

1Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

2Chemistry Program, Faculty of Education, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand

 

*Corresponding author: watsaka@hotmail.com

 

 

Received: 18 December 2023; Accepted:12 February 2024; Published:  29 April 2024

 

 

Abstract

An environmentally friendly small-scale ultrasound-assisted extraction and portable micro-volume colorimetry was proposed for the determination of aluminium in pharmaceutical formulations by extraction of Sappan heartwood in acetate buffer pH 5.5. Sonication parameters influencing the extraction of non-synthetic reagents from Sappan heartwood for quantification of aluminium including type of solvent, mass/volume ratio of solvent, extraction time and temperature were investigated. Efficiency of the ultrasound-assisted extraction procedure of aluminium from aluminium hydroxide gel was evaluated by comparing label values and the official method for pharmaceutical formulations. Under optimal conditions, a linear calibration graph ranging from 0.5 to 10 mg L-1 was obtained from micro-volume colorimetric determinations (at 530 nm) with limits of detection and quantification of 0.07 and 0.37 mg L-1, respectively. Relative standard deviations were 2.3 and 1.3% for 1 and 3 mg L-1, respectively. The developed system was successfully applied for the analysis of various forms of aluminium in pharmaceutical formulations (suspension and tablet). Good recoveries between 91 and 107% were obtained.

 

Keywords: Micro-volume colorimetry, ultrasound-assisted extraction, natural reagent, Sappan heartwood, aluminium

 

Abstrak

Satu kaedah pengekstrakan dibantu ultrasonik berskala kecil yang mesra alam dan uji warna isipadu-mikro mudah alih telah dicadangkan untuk penentuan aluminium dalam formulasi farmaseutikal dengan mengekstrak teras kayu Sappan dalam penimbal asetat pH 5.5. Parameter sonikasi yang mempengaruhi pengeluaran bahan kimia bukan sintetik dari teras kayu Sappan untuk pengukuran aluminium termasuk jenis pelarut, nisbah jisim/isipadu pelarut, masa pengekstrakan, dan suhu telah disiasat. Kecekapan prosedur pengekstrakan bantuan ultrasonik aluminium dari gel hidroksida aluminium di nilai dengan membandingkan nilai label dan kaedah rasmi untuk formulasi farmaseutikal. Di bawah keadaan optimum, graf pemilihan linear dengan julat dari 0.5 hingga 10 mg L-1 diperolehi dari penentuan warna isipadu-mikro (pada 530 nm) dengan had pengesanan dan pengukuran masing-masing adalah 0.07 dan 0.37 mg L-1. Sisihan piawai relatif adalah 2.3 dan 1.3% untuk 1 dan 3 mg L-1, secara berturut-turut. Sistem yang dibangunkan telah berjaya digunakan untuk analisis pelbagai bentuk aluminium dalam formulasi farmaseutikal (ampaian dan tablet). Perolehan semula yang baik antara 91 dan 107% telah diperolehi.

 

Kata kunci: Uji warna isipadu-mikro, pengekstrakan dibantu ultrasonik, bahan semulajadi, teras kayu Sappan, aluminium


References

1.      Müller, J.P., Steinegger, A. and Schlatter, C. (1993). Contribution of aluminium from packaging materials and cooking utensils to the daily aluminium intake. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 197: 332-341.

2.      Schäfer, U. and Seifert, M. (2006). Oral intake of aluminum from foodstuffs, food additives, food packaging, cookware and pharmaceutical preparations with respect to dietary regulations. Trace Elements and Electrolytes, 23 (7): 150-161.

3.      Campbell, A., Becaria, A., Lahiri, D. K., Sharman, K. and Bondy, S. C. (2004). Chronic exposure to aluminium in drinking water increases inflammatory parameters selectivity in the brain. Journal of Neuroscience Researches, 75: 565-572.

4.      Zatta, P., Lucchini, R., van Rensburg, S. J. and Taylor, A. (2003). The role of metals in neurodegenerative processes: aluminium, manganese, and zinc. Brain Research Bulletin, 62: 15-28.

5.      Antunes, G. A., dos Santos, H. S., da Silva, Y. P., Silva, M. M., Piatnicki, C. M. S. and Samios, D. (2017). Determination of iron, copper, zinc, aluminum, and chromium in biodiesel by flame atomic absorption spectrometry using a microemulsion preparation method. Energy Fuels, 31(3): 2944-2950.

6.      Jalbani, N., Kazi, T. G., Jamali, M. K., Arain, B. M., Afridi, H. I. and Baloch, A. (2007). Evaluation of Aluminum contents in different bakery foods by electrothermal atomic absorption spectrometer. Journal of Food Composition and Analysis, 20: 226-231.

7.      Rezaee, M., Yaminia, Y., Khanchib, A., Farajia, M. and Saleha, A. (2010). A simple and rapid new dispersive liquid–liquid microextraction based on solidification of floating organic drop combined with inductively coupled plasma-optical emission spectrometry for preconcentration and determination of aluminium in water samples. Journal of Hazardous Materials, 178: 776-770.

8.      Albals, D., Al-Momani, I. F., Issa, R. and Yehya, A. (2021). Multi-element determination of essential and toxic metals in green and roasted coffee beans: a comparative study among different origins using ICP-MS. Science Progress, 104(2): 1-17.

9.      Nihan, S. and Elmas, K. (2022). A simple and rapid determination of Al(III) in natural water samples using dispersive liquid–liquid microextraction after complexation with a novel antipyrine‑based Schiff Base reagent. Environmental Monitoring and Assessment, 194: 47.

10.   Ammar, J. W., Khan, Z. A., Ghazi, M. N. and Naser, N. A. (2021). Synthesis of a new organic probe 4-(4 acetamidophenylazo) pyrogallol for spectrophotometric determination of Bi(III) and Al(III) in pharmaceutical samples. Reviews in Analytical Chemistry, 40: 108-126.

11.   Renedo, O. D., Cunado, A. M. N., Romay, E. V. and Lomillo, M. A. A. (2019). Determination of aluminium using different techniques based on the Al(III)- morin complex. Talanta, 196: 131-136.

12.   Hafez, E. M., Sheikh, R. E., Fathallah, M.., Sayqal, A. A. and Gouda, A. A. (2019). An environment-friendly supramolecular solvent-based liquid–phase microextraction method for determination of aluminum in water and acid digested food samples prior to spectrophotometry. Microchemical Journal, 150: 104100.

13.   Yıldız, E., Saçmacı, S., Saçmacı, M. and Ülgen, A. (2017). Synthesis, characterization and application of a new fluorescence reagent for the determination of aluminum in food samples. Food Chemistry, 237: 942-947.

14.   Armenta, S., Garrigues, S. and de la Guardia, M. (2008). Green analytical chemistry. Trends in Analytical Chemistry, 27 (6): 497-511.

15.   Chemat, F., Garrigues, S. and de la Guardia, M. (2019). Portability in analytical chemistry: A green and democratic way for sustainability. Current Opinion in Green and Sustainable Chemistry, 19: 94-98.

16.   Grudpan, K., Hartwell, S. K., Lapanantnoppakhun, S. and McKelvie, I. (2010). The case for the use of unrefined natural reagents in analytical chemistry—a green chemical perspective. Analytical Methods, 2: 1651-1661.

17.   Kiwfo, K., Woi, P. M., Saenjum, C., Sukkho, T. and Grudpan, K. (2022). Initiatives in utilizing natural reagents and natural materials for chemical analysis: talent and challenge for asian in new normal chemical analysis. Malaysian Journal of Analytical Sciences, 26(2): 399-414.

18.   Tontong, S., Khonyoung, S. and Jakmunee, J. (2012). Flow injection spectrophotometry using natural reagent from Morinda citrifolia root for determination of aluminium in tea. Food Chemistry, 132: 624-629.

19.   Insain, P., Khonyoung, S., Sooksamiti, P., Lapanantnoppakhun, S., Jakmunee, J., Zajicek, K. and Hartwell, S. K. (2013). Green analytical methodology using indian almond (Terminalia Catappa L.) leaf extract for determination of aluminium ion in waste from ceramic factories. Analytical Sciences, 29: 655-659.

20.   Siriangkhawut, W., Khanhuathon, Y., Chantiratikul, P., Ponhong, K. and Grudpan, K. (2016). A green sequential injection spectrophotometric approach using natural reagent extracts from heartwood of Caesalpinia sappan Linn. for determination of aluminium. Analytical Sciences, 32: 329-336.

21.   Anugerah, M. D. A., Daud, A., Sulistyarti, H., Sabarudin, A. and Retniwati, R. (2012). Method development for the determination of aluminum by μPAD using sappan wood extract (Caesalpinia sappan). AIP Conference Proceedings, 2638(1): 050003.

22.   Wongsooksin, K., Rattanaphani, S., Tangsathitkulchai, M., Rattanaphani, V. and Bremmer, J. B. (2008). Study of an Al(III) complex with the plant dye brazilein from Caesalpimia sappan Linn. Suranaree Journal of Science and Technology, 15 (2): 159-165.

23.   Nirmal, N. P., Rajput, M. S., Prasad, R. G. S. V. and Ahmad, M. (2015). Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pacific Journal of Tropical Medicine, 8(6): 421-430.

24.   Lioe, H. N., Adawiyah, D. R. and Anggraeni, R. (2012). Isolation and characterization of the major natural dyestuff component of brazilwood (Caesalpinia sappan L.). International Food Research Journal, 19(2): 537-542.

25.   Sirirak, J., Suppharatthanya, P., Chantha, K., Girdthep, S. and Chayabutra, S. (2021). Eco-friendly lake pigment from Sappanwood: Adsorption study and its application as natural colorant for natural rubber toy balloon. Journal of Metals, Materials and Minerals, 31(2): 27-37.

26.   Thanayutsiri, T., Patrojanasophon, P., Opanasopit, P., Ngawhirunpat, T., Laiwattanapaisal, W. and Rojanarata, T. (2023). Rapid and efficient microwave-assisted extraction of Caesalpinia sappan Linn. heartwood and subsequent synthesis of gold nanoparticles. Green Processing and Synthesis, 12: 20228109.

27.   Chowdhury, M. A., Choi, M., Ko, W., Lee, H., Kim, S. C., Oh, H., Woo, E. R., Kim, Y. C. and Lee, D. S. (2019). Standardized microwave extract of sappan lignum exerts anti‑inflammatory effects through inhibition of NF‑κB activation via regulation of heme oxygenase‑1 expression. Molecular Medicine Reports, 19: 1809-1816.

28.   Badami, S., Geetha, B., Sharma, S. V., Rajan, S. and Suresh, B. (2007). Microwave-assisted rapid extraction of red dye from Caesalpinia sappan heartwood. Natural Product Research, 21 (12): 1091 – 1098.

29.   Djaeni, M., Kumoro, A. C., Utari, F. D. and Septiani, I. E. (2021). Enhancement of the sappanwood extract yield by aqueous ultrasound-assisted extraction using water solvent. International Journal on Advanced Science, Engineering and Information Technology, 11(4): 1514-1520.

30.   Kurniasari, L., Djaeni, M. and Kumoro, A. C. (2023). Ultrasound-assisted extraction (UAE) of sappan wood (Caesalpinia sappan L.): Effect of solvent concentration and kinetic studies. Brazilian Journal of Food Technology, 26: e2022140.

31.   Bendicho, C., De La Calla, I., Pena, F., Costas, P. M., Cabaleiro, N. and Lavilla, N. (2012). Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry. Trends in Analytical Chemistry, 31 (1): 50 – 60.

32.   The United States Pharmacopoeia (2007). 24th ed., US Pharmacopoeia Convention, Rockville, MD, 86.

33.   Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S. and Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. mechanisms, techniques, combinations, protocols and applications: a review. Ultrasonics Sonochemistry, 34: 540-560.

34.   Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8: 303-313.

35.   Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. Trends in Analytical Chemistry, 71: 100-109.

36.   Khaodee, W., Aeungmaitrepirom, W. and Tuntulani, T. (2014). Effectively simultaneous naked-eye detection of Cu(II), Pb(II), Al(III) and Fe(III) using cyanidin extracted from red cabbage as chelating agent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126: 98-104.

37.   Park, H., Kim, W., Kim, M., Lee, G., Lee, W. and Park, J. (2021). Eco-friendly and enhanced colorimetric detection of aluminum ions using pectin-rich apple extract-based gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 245: 118880.

38.   da Silva, H. M., Mageste, A. B., e Silva, S. J. B., Ferreira, G. M. D. and Ferreira, G. M. D. (2020). Anthocyanin immobilization in carboxymethylcellulose/starch films: a sustainable sensor for the detection of Al(III) ions in aqueous matrices. Carbohydrate Polymers, 230: 115679.

39.   Yardımcı B. (2023). Spectrophotometric and smartphone-based dual monitoring method for the determination of Al(III) ions using fermented black carrot juice (şalgam/shalgam) as a green chromogenic agent. Journal of the Turkish Chemical Society Chemistry Section A, 10 (1): 161-76.

40.   Pena-Pereira, F., Wojnowski, W. and Tobiszewski, M. (2020). AGREE—Analytical GREEnness Metric approach and software. Analytical Chemistry, 92(14): 10076-10082.