Malaysian Journal
of Analytical Sciences, Vol 28 No 2 (2024): 290 - 304
A
PORTABLE micro-volume colorimetric assay for aluminium determination using
natural reagent extracts from Sappan heartwood by ultrasound-assisted
extraction
(Satu Kaedah Uji Warna
Isipadu-Mikro yang Mudah Alih untuk
Penentuan Aluminium Menggunakan Ekstrak Bahan Semulajadi dari Teras Kayu Sappan
Melalui Pengekstrakan Dibantu Ultrasonik)
Watsaka Siriangkhawut1* and Yaowalak Khanhuathon2
1Creative
Chemistry and Innovation Research Unit, Department of Chemistry and Center of
Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham
University, Maha Sarakham 44150, Thailand
2Chemistry
Program, Faculty of Education, Chiang Rai Rajabhat University, Chiang Rai 57100,
Thailand
*Corresponding author: watsaka@hotmail.com
Received: 18
December 2023; Accepted:12 February 2024; Published: 29 April 2024
Abstract
An environmentally
friendly small-scale ultrasound-assisted extraction and portable micro-volume
colorimetry was proposed for the determination of aluminium in pharmaceutical
formulations by extraction of Sappan
heartwood in acetate buffer pH 5.5. Sonication
parameters influencing the extraction of non-synthetic reagents from Sappan
heartwood for quantification of aluminium including type of solvent, mass/volume
ratio of solvent, extraction time and temperature were investigated. Efficiency
of the ultrasound-assisted extraction procedure of aluminium from aluminium
hydroxide gel was evaluated by comparing label values and the official method
for pharmaceutical formulations. Under optimal conditions, a linear calibration
graph ranging from 0.5 to 10 mg L-1 was obtained from micro-volume
colorimetric determinations (at 530 nm) with limits of detection and
quantification of 0.07 and 0.37 mg L-1, respectively. Relative
standard deviations were 2.3 and 1.3% for 1 and 3 mg L-1,
respectively. The developed system was successfully applied for the analysis of
various forms of aluminium in pharmaceutical formulations (suspension and
tablet). Good recoveries between 91 and 107% were obtained.
Keywords: Micro-volume colorimetry,
ultrasound-assisted extraction, natural reagent, Sappan heartwood, aluminium
Abstrak
Satu kaedah pengekstrakan dibantu ultrasonik berskala kecil
yang mesra alam dan uji warna isipadu-mikro mudah alih telah dicadangkan untuk
penentuan aluminium dalam formulasi farmaseutikal dengan mengekstrak teras kayu
Sappan dalam penimbal asetat pH 5.5. Parameter sonikasi yang mempengaruhi
pengeluaran bahan kimia bukan sintetik dari teras kayu Sappan untuk pengukuran
aluminium termasuk jenis pelarut, nisbah jisim/isipadu pelarut, masa pengekstrakan,
dan suhu telah disiasat. Kecekapan prosedur pengekstrakan bantuan ultrasonik
aluminium dari gel hidroksida aluminium di nilai dengan membandingkan nilai
label dan kaedah rasmi untuk formulasi farmaseutikal. Di bawah keadaan optimum,
graf pemilihan linear dengan julat dari 0.5 hingga 10 mg L-1
diperolehi dari penentuan warna isipadu-mikro (pada 530 nm) dengan had
pengesanan dan pengukuran masing-masing adalah 0.07 dan 0.37 mg L-1.
Sisihan piawai relatif adalah 2.3 dan 1.3% untuk 1 dan 3 mg L-1,
secara berturut-turut. Sistem yang dibangunkan telah berjaya digunakan untuk
analisis pelbagai bentuk aluminium dalam formulasi farmaseutikal (ampaian dan
tablet). Perolehan semula yang baik antara 91 dan 107% telah diperolehi.
Kata kunci: Uji warna isipadu-mikro,
pengekstrakan dibantu ultrasonik, bahan semulajadi, teras kayu Sappan,
aluminium
References
1.
Müller,
J.P., Steinegger, A. and Schlatter, C. (1993). Contribution of aluminium from
packaging materials and cooking utensils to the daily aluminium intake. Zeitschrift
für Lebensmittel-Untersuchung und Forschung, 197: 332-341.
2.
Schäfer,
U. and Seifert, M. (2006). Oral intake of aluminum from foodstuffs, food
additives, food packaging, cookware and pharmaceutical preparations with
respect to dietary regulations. Trace Elements and Electrolytes, 23 (7):
150-161.
3.
Campbell,
A., Becaria, A., Lahiri, D. K., Sharman, K. and Bondy, S. C. (2004). Chronic exposure
to aluminium in drinking water increases inflammatory parameters selectivity in
the brain. Journal of Neuroscience Researches, 75: 565-572.
4.
Zatta,
P., Lucchini, R., van Rensburg, S. J. and Taylor, A. (2003). The role of metals in neurodegenerative
processes: aluminium, manganese, and zinc. Brain Research Bulletin, 62:
15-28.
5.
Antunes, G. A., dos Santos, H. S., da Silva, Y. P., Silva, M.
M., Piatnicki, C. M. S. and Samios, D. (2017). Determination of iron, copper, zinc, aluminum, and chromium
in biodiesel by flame atomic absorption spectrometry using a microemulsion
preparation method. Energy Fuels,
31(3): 2944-2950.
6.
Jalbani,
N., Kazi, T. G., Jamali, M. K., Arain, B. M., Afridi, H. I. and Baloch, A.
(2007). Evaluation of Aluminum contents in different bakery foods by
electrothermal atomic absorption spectrometer. Journal of Food Composition and Analysis, 20: 226-231.
7.
Rezaee,
M., Yaminia, Y., Khanchib, A., Farajia, M. and Saleha, A. (2010). A simple and
rapid new dispersive liquid–liquid microextraction based on solidification of
floating organic drop combined with inductively coupled plasma-optical emission
spectrometry for preconcentration and determination of aluminium in water
samples. Journal of Hazardous Materials,
178: 776-770.
8.
Albals,
D., Al-Momani, I. F., Issa, R. and Yehya, A. (2021). Multi-element
determination of essential and toxic metals in green and roasted coffee beans:
a comparative study among different origins using ICP-MS. Science Progress, 104(2):
1-17.
9.
Nihan,
S. and Elmas, K. (2022). A simple and rapid determination of Al(III) in natural
water samples using dispersive liquid–liquid microextraction after complexation
with a novel antipyrine‑based Schiff Base reagent. Environmental Monitoring and Assessment, 194: 47.
10.
Ammar, J.
W., Khan, Z. A., Ghazi, M. N. and Naser, N. A. (2021). Synthesis of a new
organic probe 4-(4 acetamidophenylazo) pyrogallol for spectrophotometric
determination of Bi(III) and Al(III) in pharmaceutical samples. Reviews in Analytical Chemistry, 40:
108-126.
11.
Renedo,
O. D., Cunado, A. M. N., Romay, E. V. and Lomillo, M. A. A. (2019).
Determination of aluminium using different techniques based on the Al(III)- morin
complex. Talanta, 196: 131-136.
12.
Hafez,
E. M., Sheikh, R. E., Fathallah, M.., Sayqal, A. A. and Gouda, A. A. (2019). An
environment-friendly supramolecular solvent-based liquid–phase microextraction
method for determination of aluminum in water and acid digested food samples
prior to spectrophotometry. Microchemical
Journal, 150: 104100.
13.
Yıldız,
E., Saçmacı, S., Saçmacı, M. and Ülgen, A. (2017). Synthesis, characterization
and application of a new fluorescence reagent for the determination of aluminum
in food samples. Food Chemistry, 237:
942-947.
14.
Armenta, S., Garrigues, S. and de la Guardia, M. (2008). Green analytical chemistry. Trends in Analytical Chemistry, 27 (6): 497-511.
15.
Chemat, F., Garrigues, S. and de la Guardia, M. (2019). Portability in analytical chemistry: A green and democratic
way for sustainability. Current Opinion
in Green and Sustainable Chemistry, 19: 94-98.
16.
Grudpan,
K., Hartwell, S. K., Lapanantnoppakhun, S. and McKelvie, I. (2010). The case
for the use of unrefined natural reagents in analytical chemistry—a green
chemical perspective. Analytical Methods,
2: 1651-1661.
17.
Kiwfo,
K., Woi, P. M., Saenjum, C., Sukkho, T. and Grudpan, K. (2022). Initiatives in
utilizing natural reagents and natural materials for chemical analysis: talent
and challenge for asian in new normal chemical analysis. Malaysian Journal of Analytical Sciences, 26(2): 399-414.
18.
Tontong,
S., Khonyoung, S. and Jakmunee, J. (2012). Flow injection spectrophotometry
using natural reagent from Morinda citrifolia root for determination of
aluminium in tea. Food Chemistry,
132: 624-629.
19.
Insain,
P., Khonyoung, S., Sooksamiti, P., Lapanantnoppakhun, S., Jakmunee, J.,
Zajicek, K. and Hartwell, S. K. (2013). Green analytical methodology using
indian almond (Terminalia Catappa L.) leaf extract for determination of
aluminium ion in waste from ceramic factories. Analytical Sciences, 29: 655-659.
20.
Siriangkhawut,
W., Khanhuathon, Y., Chantiratikul, P., Ponhong, K. and Grudpan, K. (2016). A green
sequential injection spectrophotometric approach using natural reagent extracts
from heartwood of Caesalpinia sappan Linn. for determination of
aluminium. Analytical Sciences, 32: 329-336.
21.
Anugerah,
M. D. A., Daud, A., Sulistyarti, H., Sabarudin, A. and Retniwati, R. (2012).
Method development for the determination of aluminum by μPAD using sappan
wood extract (Caesalpinia sappan). AIP
Conference Proceedings, 2638(1): 050003.
22.
Wongsooksin,
K., Rattanaphani, S., Tangsathitkulchai, M., Rattanaphani, V. and Bremmer, J.
B. (2008). Study of an Al(III) complex with the plant dye brazilein from Caesalpimia
sappan Linn. Suranaree Journal of Science and Technology, 15 (2):
159-165.
23.
Nirmal, N.
P., Rajput, M. S., Prasad, R. G. S. V. and Ahmad, M. (2015). Brazilin from Caesalpinia
sappan heartwood and its pharmacological activities: A review. Asian Pacific Journal of Tropical Medicine,
8(6): 421-430.
24.
Lioe, H.
N., Adawiyah, D. R. and Anggraeni, R. (2012). Isolation and characterization of
the major natural dyestuff component of brazilwood (Caesalpinia sappan
L.). International Food Research Journal,
19(2): 537-542.
25.
Sirirak,
J., Suppharatthanya, P., Chantha, K., Girdthep, S. and Chayabutra, S. (2021).
Eco-friendly lake pigment from Sappanwood: Adsorption study and its application
as natural colorant for natural rubber toy balloon. Journal of Metals, Materials and Minerals, 31(2): 27-37.
26.
Thanayutsiri,
T., Patrojanasophon, P., Opanasopit, P., Ngawhirunpat, T., Laiwattanapaisal, W.
and Rojanarata, T. (2023). Rapid and efficient microwave-assisted extraction of
Caesalpinia sappan Linn. heartwood and subsequent synthesis of gold
nanoparticles. Green Processing and
Synthesis, 12: 20228109.
27.
Chowdhury,
M. A., Choi, M., Ko, W., Lee, H., Kim, S. C., Oh, H., Woo, E. R., Kim, Y. C.
and Lee, D. S. (2019). Standardized microwave extract of sappan lignum exerts
anti‑inflammatory effects through inhibition of NF‑κB activation
via regulation of heme oxygenase‑1 expression. Molecular Medicine Reports, 19: 1809-1816.
28.
Badami, S.,
Geetha, B., Sharma, S. V., Rajan, S. and Suresh, B. (2007). Microwave-assisted
rapid extraction of red dye from Caesalpinia sappan heartwood. Natural Product Research, 21 (12): 1091
– 1098.
29.
Djaeni,
M., Kumoro, A. C., Utari, F. D. and Septiani, I. E. (2021). Enhancement of the
sappanwood extract yield by aqueous ultrasound-assisted extraction using water
solvent. International Journal on
Advanced Science, Engineering and Information Technology, 11(4): 1514-1520.
30.
Kurniasari,
L., Djaeni, M. and Kumoro, A. C. (2023). Ultrasound-assisted extraction (UAE) of
sappan wood (Caesalpinia sappan L.): Effect of solvent concentration and
kinetic studies. Brazilian Journal of
Food Technology, 26: e2022140.
31.
Bendicho, C., De La Calla, I., Pena, F., Costas, P. M., Cabaleiro,
N. and Lavilla, N. (2012). Ultrasound-assisted
pretreatment of solid samples in the context of green analytical chemistry. Trends in Analytical Chemistry, 31 (1): 50 – 60.
32.
The
United States Pharmacopoeia (2007). 24th ed., US Pharmacopoeia Convention,
Rockville, MD, 86.
33.
Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A.,
Fabiano-Tixier, A. S. and Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products.
mechanisms, techniques, combinations, protocols and applications: a review. Ultrasonics
Sonochemistry, 34: 540-560.
34.
Vinatoru,
M. (2001). An overview of the ultrasonically assisted extraction of bioactive
principles from herbs. Ultrasonics Sonochemistry, 8: 303-313.
35.
Tiwari,
B. K. (2015). Ultrasound: A clean, green extraction technology. Trends in
Analytical Chemistry, 71: 100-109.
36.
Khaodee,
W., Aeungmaitrepirom, W. and Tuntulani, T. (2014). Effectively simultaneous
naked-eye detection of Cu(II), Pb(II), Al(III) and Fe(III) using cyanidin
extracted from red cabbage as chelating agent. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 126: 98-104.
37.
Park,
H., Kim, W., Kim, M., Lee, G., Lee, W. and Park, J. (2021). Eco-friendly and
enhanced colorimetric detection of aluminum ions using pectin-rich apple
extract-based gold nanoparticles. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 245: 118880.
38.
da Silva, H. M., Mageste, A. B., e Silva, S. J. B., Ferreira,
G. M. D. and Ferreira, G. M. D. (2020). Anthocyanin immobilization in carboxymethylcellulose/starch
films: a sustainable sensor for the detection of Al(III) ions in aqueous
matrices. Carbohydrate Polymers, 230: 115679.
39.
Yardımcı
B. (2023). Spectrophotometric and smartphone-based dual monitoring method for
the determination of Al(III) ions using fermented black carrot juice
(şalgam/shalgam) as a green chromogenic agent. Journal of the Turkish
Chemical Society Chemistry Section A, 10 (1): 161-76.
40.
Pena-Pereira,
F., Wojnowski, W. and Tobiszewski, M. (2020). AGREE—Analytical GREEnness Metric
approach and software. Analytical Chemistry, 92(14): 10076-10082.