Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 277 - 289

 

ENRICHED SILICA FROM OIL PALM BIOMASS FOR MAGNETIC SOLID PHASE EXTRACTION OF ORGANOCHLORINE PESTICIDE: CHARACTERIZATION AND METHOD DEVELOPMENT

 

(Silika yang Diperkayakan daripada Biomas Kelapa Sawit untuk Pengekstrakan Fasa Pepejal Magnetik Organoklorin Racun Serangga: Ciri dan Pembangunan Kaedah)

 

Nur Husna Zainal Abidin1, Amir Hisyam Othman1, Wan Nazihah Wan Ibrahim1*, Nordiana Suhada Mohammad Tahirudin 1,2 , Nor Suhaila Mohamad Hanapi1, and Nursyamsyila Mat Hadzir1

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Applied Science, Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400, Perak

 

*Corresponding author: wannazihah@uitm.edu.my

 

 

Received: 10 September 2023; Accepted: 12 March 2024; Published:  29 April 2024

 

 

Abstract

This study focused on preparing magnetic silica bio-sorbent made from oil palm fronds and developing methods for analyzing trace amounts of organochlorine pesticides, including Aldrin, Dieldrin, and Heptachlor. The bio-sorbent, namely Fe3O4@SiO2, was prepared through the sol-gel method by combining silica particles derived from oil palm fronds with commercial ferrous (II) oxide. The physical and chemical properties of the bio-sorbents were analyzed using ATR-FTIR, FESEM, EDX, and XRD. According to ATR-FTIR, the bio-sorbent contained absorption bands at 1100 cm-1 and 500-600 cm-1, indicating the functional groups of Si-O and Fe-O. FESEM and EDX studies show the particles have a rough and irregular surface morphology that is composed of 63.9% oxygen, 16.97% silica, and 19.04% ferrous atomic weight. Meanwhile, XRD analysis confirmed that the bio-sorbent was composed of face-centered cubic Fe3O4 and amorphous SiO2, with multiple peaks appearing at 2θ = 22.978 (101), 30.20 (220), 35.60 (311), and 57.50. A magnetic solid-phase extraction method using the synthesized bio-sorbent was developed prior to gas chromatography-mass spectrometry analysis of the selected OCPs. The optimal extraction conditions were determined via one variable at a time (OVAT) and resulted as follows: extraction time, 5 min; desorption solvent, ethyl acetate; desorption time, 5 min; mass of sorbent, 40 mg. The analytical performance of the method was evaluated under these conditions, with a detection limit of 0.1-0.53 mg/L and an extraction recovery of 80-92%. Several linear ranges were obtained for Heptachlor, Aldrin, and Dieldrin, including 0.6-1.8, 0.1-0.3, and 0.2-0.6 mg/L, respectively. The effectiveness of the bio-sorbent was proven by removing pesticides from actual paddy water samples, with calibration curves showing linearity over a wide range of values. The intra- and inter-day precisions were 0.50-1.86% and 0.69-2.54%, respectively.

 

Keywords: bio-sorbent magnetic silica, organochlorine, paddy water samples, magnetic solid phase extraction

 

Abstrak

Kajian ini bertujuan untuk menghasilkan biosorbent silika magnetik daripada pelepah kelapa sawit dan membangunkan kaedah untuk menganalisis jumlah jejak racun serangga organoklorin seperti Heptachlor, Aldrin, dan Dieldrin. Bio-sorben iaitu Fe3O4-SiO2 telah disediakan melalui kaedah sol-gel dengan menggabungkan zarah silika yang diperolehi daripada pelepah kelapa sawit dengan ferus (II) oksida komersial. Sifat fizikal dan kimia bio-sorben telah dianalisis menggunakan ATR-FTIR, FESEM, EDX, dan XRD. Menurut ATR-FTIR, bio-sorben mengandungi julat penyerapan pada 1100 cm-1 dan 500-600 cm-1, yang menunjukkan kumpulan fungsi Si-O dan Fe-O. Kajian FESEM dan EDX menunjukkan bahawa partikel mempunyai morfologi permukaan yang kasar dan tidak teratur yang terdiri daripada 63.9% oksigen, 16.97% silika, dan 19.04% berat atom ferus. Sementara itu, analisis XRD mengesahkan bahawa bio-sorben terdiri daripada Fe3O4 kubik berpusat muka dan SiO2 amorfus, dengan pelbagai puncak yang muncul pada 2θ = 22.978 (101), 30.20 (220), 35.60 (311), dan 57.50. Pembangunan kaedah pengekstrakan fasa pepejal magnet dengan menggunakan bio-sorben yang disintesis telah dijalankan diikuti analisis oleh kromatografi gas spektrometri jisim (GC-MS) daripada OCP yang terpilih. Keadaan pengekstrakan optimum ditentukan melalui satu parameter pada satu masa dan hasilnya seperti berikut: masa pengekstrakan 5 min; pelarut desorpsi, etil esitat; masa desorpsi, minit, dan sorbent jisim 40 mg. Prestasi analisis kaedah dinilai di bawah keadaan ini, dengan had pengesanan 0.1-0.53 mg/L dan pemulihan pengekstrakan 80-92%. Beberapa julat linear telah diperolehi untukHeptachlor, Aldrin dan Dieldrin, termasuk 0.6-1.8, 0.1-0.3, dan 0.2-0.6 mg/L masing-masing. Keberkesanan biosorben telah dibuktikan dengan mengeluarkan racun perosak daripada sampel air padi sebenar, dengan lengkung penentukuran menunjukkan kelinearan ke atas julat nilai yang luas.Ketepatan dalam dan antara hari ditemui dalam julat 0.50-1.86% dan 0.69-2.54%, masing-masing.

 

Kata kunci: bio-sorben silika magnet, organoklorin, sampel air padi, pengekstrakan fasa pepejal magnet

 


 

References

1.      Lesiak, B., Rangam, N., Jiricek, P., Gordeev, I., Tóth, J., Kövér, L., ... and Borowicz, P. (2019). Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Frontiers in chemistry7: 642.

2.      Vijay, V., Pimm, S. L., Jenkins, C. N., and Smith, S. J. (2016). The impacts of oil palm on recent deforestation and biodiversity loss. PloS one11(7), e0159668.

3.      Kamaraj, M., Sudarshan, K., Sonia, S. V. R. K. N., Chidambararajan, P., and Bekele, A. (2020). Upgradation of maize stalk waste as an alternate agrarian raw material for the production of amorphous silica composites. Journal of Analytical and Applied Pyrolysis, 151: 104908.

4.      Onoja, E., Attan, N., Chandren, S., Razak, F. I. A., Keyon, A. S. A., Mahat, N. A. and Wahab, R. A. (2017). Insights into the physicochemical properties of the Malaysian oil palm leaves as an alternative source of industrial materials and bioenergy. Malaysian Journal of Fundamental and Applied Sciences13(4): 623-631.

5.      Chen, L., Liu, J., Zhang, Y., Zhang, G., Kang, Y., Chen, A., ... and Shao, L. (2018). The toxicity of silica nanoparticles to the immune system. Nanomedicine13(15): 1939-1962.

6.      Nguyen, V. H., Vu, C. M., Choi, H. J. and Kien, B. X. (2019). Nanosilica extracted from hexafluorosilicic acid of waste fertilizer as reinforcement material for natural rubber: Preparation and mechanical characteristics. Materials12(17): 2707.

7.      Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., ... and Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences1: 1-16.

8.      Fukase, E. and Martin, W. (2020). Economic growth, convergence, and world food demand and supply. World Development132: 104954.

9.      van der Werf, H. M. (1996). Assessing the impact of pesticides on the environment. Agriculture, Ecosystems & Environment60(2-3): 81-96.

10.   Tsagkaris, A. S., Pulkrabova, J., and Hajslova, J. (2021). Optical screening methods for pesticide residue detection in food matrices: advances and emerging analytical trends. Foods10(1): 88.

11.   Ranveer, S. A., Harshitha, C. G., Dasriya, V., Tehri, N., Kumar, N., and Raghu, H. V. (2023). Assessment of developed paper stripbased sensor with pesticide residues in different dairy environmental samples. Current Research in Food Science6: 100416.

12.   Alam, S., Srivastava, N., Iqbal, N., Saini, M. K., and Kumar, J. (2021). Magnetic solid-phase extraction (MSPE) using magnetite-based core-shell nanoparticles with silica network (SiO2) coupled with GC-MS/MS analysis for determination of multiclass pesticides in water. Journal of AOAC International, 104(3): 633-644.

13.   Tahiruddin, N. S. M., Abidin, N. H. Z., Kamal. A. A. M., Hanapi. N. S. M., Hadzir. N. S. M., Sheela Chandren S. and Ibrahim. W. N. W., (2023). Optimising the operating parameters of oil palm frond silica-based dispersive solid phase extraction for determination of organochlorine pesticides. Malaysian Journal of Chemistry, 25: 26-35.

14.   Azmiyawati, C., Pratiwi, P. I. and Darmawan, A. (2018). New silica magnetite sorbent: the influence of variations of sodium silicate concentrations on silica magnetite character. In IOP Conference Series: Materials Science and Engineering, 349(1): 012012.

15.   Zhang, Y., Qi, S., Xing, X., Yang, D., Devi, N. L., Qu, C., ... and Zeng, F. M. (2018). Legacies of organochlorine pesticides (OCPs) in soil of China—a review, and cases in Southwest and Southeast China. Environmental Geochemistry, 2018: 543-565.

16.   Tarley, C. R., Scheel, G. L., Ribeiro, E. S., Zappielo, C. D., and Suquila, F. A. (2018). Synthesis of chelating agent free-solid phase extractor (CAF-SPE) based on new SiO2/Al2O3/SnO2 ternary oxide and application for online preconcentration of Pb2+ coupled with FAAS. Journal of the Brazilian Chemical Society29: 1225-1236.

17.   Ansari, S. (2017). Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: Recent developments and trends. TrAC Trends in Analytical Chemistry90: 89-106.

18.   Liu, J. C., Tsai, P. J., Lee, Y. C., and Chen, Y. C. (2008). Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles. Analytical chemistry80(14): 5425-5432.

19.   Duhan, S., Aghamkar, P., and Singh, M. (2008). Synthesis and characterization of neodymium oxide in silica matrix by solgel protocol method. Physics Research International, 4: 1-4.

20.   Cai, L., Gao, Y., Chu, Y., Lin, Y., Liu, L., and Zhang, G. (2023). Green synthesis of silica-coated magnetic nanocarriers for simultaneous purification-immobilization of β-1, 3-xylanase. International Journal of Biological Macromolecules233: 123223.

21.   Wan Ibrahim, W. N., Sanagi, M. M., Mohamad Hanapi, N. S., Kamaruzaman, S., Yahaya, N., and Wan Ibrahim, W. A. (2018). Solid‐phase microextraction based on an agarose‐chitosan‐multiwalled carbon nanotube composite film combined with HPLC–UV for the determination of nonsteroidal anti‐inflammatory drugs in aqueous samples. Journal of Separation Science41(14): 2942-2951.

22.   Merhi, A., Kordahi, R., and Hassan, H. F. (2022). A review on the pesticides in coffee: Usage, health effects, detection, and mitigation. Frontiers in Public Health10: 1004570.

23.   Othman, N. Z., Hanapi, N. S. M., Ibrahim, W. N. W. and Saleh, S. H. (2020). Alginate incorporated multi-walled carbon nanotubes as dispersive micro solid phase extraction sorbent for selective and efficient separation of acidic drugs in water samples. Nature Environment and Pollution Technology19(3): 1155-1162.

24.   Nodeh, H. R., Ibrahim, W. A. W., Kamboh, M. A., and Sanagi, M. M. (2017). New magnetic graphene-based inorganic–organic sol-gel hybrid nanocomposite for simultaneous analysis of polar and non-polar organophosphorus pesticides from water samples using solid-phase extraction. Chemosphere166: 21-30.

25.   Liu, S., Huang, X., Hu, K., Jin, Q., and Zhu, G. (2020). Development of a multiresidue method for endocrine-disrupting pesticides by solid phase extraction and determination by UHPLC-MS/MS from drinking water samples. Journal of Chromatographic Science58(3): 195-202.

26.   Md Badrul Hisham, N. H., Ibrahim, M. F., Ramli, N., and Abd-Aziz, S. (2019). Production of biosurfactant produced from used cooking oil by Bacillus sp. HIP3 for heavy metals removal. Molecules24(14): 2617.

27.   Latif, S., Rehman, R., Imran, M., Hira, U., Iqbal, S., Akram, M., ... and Al-thagafi, Z. T. (2022). Use of green chemistry for amputation of chromium ions from wastewater by alkali-treated composts of fruit peels in economical way. Journal of Chemistry2022: 9924164.