Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 265 - 276

 

CORROSION INHIBITION STUDY OF CARBOXYMETHYL CELLULOSE-IONIC LIQUID VIA ELECTROCHEMICAL AND MACHINE LEARNING TECHNIQUE

 

(Kajian Perencatan Kakisan Menggunakan Karboksimetil Selulosa-Cecairan Ionik Melalui Teknik Elektrokimia dan Pembelajaran Mesin)

 

Adi Hafizamri Ariffin1, Wan Mohd Norsani Wan Nik1, Samsuri Abdullah1, Mohd Ikmar Nizam Mohamad Isa2, Vincent Izionworu3, and Mohammad Fakhratul Ridwan Zulkifli1*

 

1Marine Materials Research Group, Faculty of Ocean Engineering Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Energy Storage Research, Advanced Materials Team, Ionic & Kinetic Materials Research (iKMaR) Laboratory, Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia

3Department of Chemical/Petrochemical Engineering, Rivers State University, Nkpolu-Oroworukwo, Port Harcourt, Nigeria

 

*Corresponding author: fakhratulz@umt.edu.my

 

Received: 5 October 2023; Accepted: 25 February 2024; Published:  29 April 2024

 

 

Abstract

Corrosion is a natural phenomenon defined as the deterioration of a substance or its properties due to interactions between the substance and the environment. Prolonged exposure to corrosive environment had negative consequences, including increased repair and maintenance costs, decreased structural integrity, and fatalities. An approach to address the issue is to use a corrosion inhibitor. Numerous inhibitors have lately been developed or made accessible on the market. However, some could be dangerous or contain of volatile organic compounds (VOCs). Our study introduces carboxymethyl cellulose (CMC) mixed with 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) ionic liquid, also known as CIL, as a corrosion inhibitor on mild steel in seawater. The functional group of combined CIL was examined using Fourier transform infrared spectroscopy (FTIR). The study employed mild steel specimens immersed in varying concentrations of CIL, subject to electrochemical impedance spectroscopy (EIS) measurements at different temperatures. The obtained result of EIS measurement were analyzed to calculate corrosion inhibition efficiency (IE) of CIL. 46 of electrochemical data were fed into a machine learning technique to forecast the effectiveness of the inhibition.  Results indicate when inhibition concentration rises, so does inhibition efficiency (IE). The inhibitory efficiency of CIL decreased as the temperature of the test solution rose. At an ambient temperature of 950 ppm, an IE result of 83% was recorded. Levenberg-Marquardt (LM), Bayesian Regularization (BR), and Scale Conjugate Gradient (SCG) training algorithms were compared via Neural Network Fitting Tool (NNTool). LM was found to be the best backpropagation training algorithm, providing the highest regression value (R) of 0.907 and the lowest mean square error (MSE) of 0.006 when compared to BR and SCG. With R value closer to 1 and MSE close to 0, the use of Artificial Neural Networks (ANN) appears to offer a new insight in predicting methods with the goal of easing the hassle and time-consuming of experimental work.

 

Keywords: carboxymethyl cellulose, corrosion inhibitor, electrochemical, ionic liquid, machine learning

 

 

Abstrak

Kakisan adalah fenomena semula jadi yang ditakrifkan sebagai kemerosotan bahan atau sifatnya akibat interaksi antara bahan dan persekitaran. Pendedahan yang berpanjangan kepada persekitaran yang mengkakis memberi kesan yang negatif, termasuk peningkatan kos pembaikan dan penyelenggaraan, penurunan integriti keatas struktur dan mengakibatkan kemusnahan. Salah satu penyelesaian kepada isu ini ialah menggunakan perencat kakisan. Banyak perencat kakisan telah dibangunkan atau boleh didapati di pasaran. Namun, sebahagian daripadanya mungkin berbahaya atau mengandungi banyak sebatian organik meruap (VOC). Kajian ini memperkenalkan karboksimetil selulosa (CMC) dalam 1-etil-3-metilimidazolium asetat ([EMIM][Ac]) cecair ionik, juga dikenali sebagai CIL, sebagai perencat kakisan pada keluli lembut dalam air laut untuk menangani isu alam sekitar. Kumpulan berfungsi kimia hasil dr campuran CIL ini telah diperiksa menggunakan spektroskopi inframerah transformasi Fourier (FTIR). Kajian ini menggunakan spesimen keluli lembut yang direndam dalam kepekatan CIL yang berbeza, diuji menggunakan spektroskopi impedans elektrokimia (EIS) pada suhu yang berbeza. data pengukuran EIS yang diperolehi dianalisis untuk mengira kecekapan perencatan kakisan (IE) CIL. 46 data elektrokimia digunakan di dalam teknik pembelajaran mesin (ML) untuk meramalkan keberkesanan perencatan. Keputusan menunjukkan bahawa apabila kepekatan perencatan meningkat, kecekapan perencatan juga menunjukkan peningkatan. Kecekapan perencatan CIL menurun apabila suhu larutan ujian meningkat. Pada kepekatan 950 ppm pada suhu ambang, keputusan kecekapan perencatan dengan peratusan 83% telah direkodkan. Algoritma latihan Levenberg-Marquardt (LM), Bayesian Regulisasi (BR), dan Gradien Konjugasi Skala (SCG) telah dibandingkan melalui aplikasi Ketepatan Jaringan Saraf (NNtool). LM didapati sebagai algoritma latihan rambatan belakang terbaik, memberikan nilai regresi (R) tertinggi 0.9072580 dan ralat min kuasa dua (MSE) terendah sebanyak 0.0054787 jika dibandingkan dengan BR dan SCG. Dengan nilai R yang menghampiri 1 dan MSE menghampiri 0, penggunaan Rangkaian Saraf Tiruan (ANN) memberi pandangan baharu dalam kaedah peramalam dengan matlamat untuk mengurangkan kerumitan dan penghambatan kerja eksperimen yang memakan masa.

 

Kata kunci: karboksimetil selulosa, penghambat pengaratan, elektrokimia, cairan ionik, pembelajaran mesin

 


References

1.      Odio, B. O., Chinwuko, E. C., Chukwuneke, J. L. and Sinebe, J. E. (2014). Investigation of the effect of corrosion on mild steel in five different environments. International Journal Science Technology Research, 3: 306-310.

2.      Li, Z. Liang, Xiao, K., Dong, C. Fang, Cheng, X. qun, Xue, W. and Yu, W. (2019). Atmospheric corrosion behavior of low-alloy steels in a tropical marine environment. Journal of Iron and Steel Research International, 26(12): 1315-1328.

3.      Hussain, R. R., Alhozaimy, A., Al-Negheimish, A. and Singh, D. D. N. (2022). Role of phosphorus as micro alloying element and its effect on corrosion characteristics of steel rebars in concrete environment. Scientific Reports, 12(1): 1-23.

4.      Chigondo, M. and Chigondo, F. (2016). Recent natural corrosion inhibitors for mild steel: an overview. Journal of Chemistry, 2016: 6208937

5.      Kadhim, A., Al-Amiery, A. A., Alazawi, R., Al-Ghezi, M. K. S. and Abass, R. H. (2021). Corrosion inhibitors. A review. International Journal of Corrosion and Scale Inhibition, 10(1): 54-67.

6.      Zakeri, A., Bahmani, E. and Aghdam, A. S. R. (2022). Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review. Corrosion Communications, 5: 25-38.

7.      Medupin, R. O., Ukoba, K. O., Yoro, K. O. and Jen, T. C. (2023). Sustainable approach for corrosion control in mild steel using plant-based inhibitors: a review. Materials Today Sustainability, 22: 100373.

8.      Badawi, A. K. and Fahim, I. S. (2021). A critical review on green corrosion inhibitors based on plant extracts: Advances and potential presence in the market. International Journal of Corrosion and Scale Inhibition, 10(4): 1385-1406.


9.      Sovizi, M. R. and Abbasi, R. (2020). Effect of carboxymethyl cellulose on the corrosion behavior of aluminum in H2SO4 solution and synergistic effect of potassium iodide. Journal of Adhesion Science and Technology, 34(15): 1664-1678.

10.   Magalhăes, S., Fernandes, C., Pedrosa, J. F. S., Alves, L., Medronho, B., Ferreira, P. J. T. and Rasteiro, M. da G. (2023). Eco-friendly methods for extraction and modification of cellulose: An overview. Polymers, 15(14): 1-25.

11.   Arefian, M., Hojjati, M., Tajzad, I., Mokhtarzade, A., Mazhar, M. and Jamavari, A. (2020). A review of Polyvinyl alcohol/Carboxymethyl cellulose (PVA/CMC) composites for various applications. Journal of Composites and Compounds, 2(3): 69-76.

12.   Umoren, S. A., AlAhmary, A. A., Gasem, Z. M. and Solomon, M. M. (2018). Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. International Journal of Biological Macromolecules, 117(2017): 1017-1028.

13.   Verma, C., Mishra, A., Chauhan, S., Verma, P., Srivastava, V., Quraishi, M. A. And Ebenso, E. E. (2019). Dissolution of cellulose in ionic liquids and their mixed cosolvents: A review. Sustainable Chemistry and Pharmacy, 13(7): 100162.

14.   Sundjono, S., Priyotomo, G., Nuraini, L. and Prifiharni, S. (2017). Corrosion behavior of mild steel in seawater from northern coast of java and southern coast of Bali, Indonesia. Journal of Engineering and Technological Sciences, 49(6): 770-784.

15.   Gabriela, R., Araújo, M. De, Marques, N. and Tonholo, J. (2019). Water-soluble carboxymethylchitosan used as corrosion inhibitor for carbon steel in saline medium. Carbohydrate Polymers, 205(6): 371-376.

16.   Al-rubaiey, N. A., Kadhim, F. S. and Albrazanjy, M. G. (2019). The effect of adding carboxymethyl cellulose and zinc sulfate on the corrosion characteristics of the drilling fluid. Al-Khwarizmi Engineering Journal, 15(1): 125-133.

17.   Manimaran, N., Rajendran, S., Manivannan, M., Thangakani, J. A. and Prabha, A. S. (2013). Corrosion inhibition by carboxymethyl cellulose. European Chemical Bulletin, 2(7): 494-498.

18.   Azeez, R. A., Alrubaiey, N. and Gazi, M. (2022). Investigation of carboxymethyl cellulose and barite additives on the corrosion characteristics of water-based drilling mud. Engineering and Technology Journal, 40(3): 451-458.

19.   Solomon, M. M., Gerengi, H. and Umoren, S. A. (2017). Carboxymethyl cellulose/silver nanoparticles composite: synthesis, characterization and application as a benign corrosion inhibitor for St37 steel in 15% H2SO4 medium. ACS Applied Materials and Interfaces, 9(7): 6376-6389.

20.   Nwanonenyi, S. C., Obasi, H. C. and Chidiebere, A. M. (2018). Inhibitive performance of carboxymethyl cellulose and additives on corrosion of carbon steel in acidic and alkaline environments. Journal of Bio- and Tribo-Corrosion, 4(3): 1-12.

21.   Umoren, S. A., Solomon, M. M., Madhankumar, A. and Obot, I. B. (2020). Exploration of natural polymers for use as green corrosion inhibitors for AZ31 magnesium alloy in saline environment. Carbohydrate Polymers, 230: 115466.

22.   Bayol, E., Gürten, A. A., Dursun, M. and Kayakirilmaz, K. (2008). Adsorption behavior and inhibition corrosion effect of sodium carboxymethyl cellulose on mild steel in acidic medium. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 24(12): 2236-2243.

23.   Umoren, S. A., Solomon, M. M., Udosoro, I. I. and Udoh, A. P. (2010). Synergistic and antagonistic effects between halide ions and carboxymethyl cellulose for the corrosion inhibition of mild steel in sulphuric acid solution. Cellulose, 17(3): 635-648.

24.   Khairou, K. S. and El-Sayed, A. (2003). Inhibition effect of some polymers on the corrosion of cadmium in a hydrochloric acid solution. Journal of Applied Polymer Science, 88(4): 866-871.

25.   Hu, H., Dong, Y., Li, J., Xiong, C. and Hurley, M. (2018). Investigating electrochemical impedance spectroscopic (EIS) measurement of surrogate oxide at high temperatures. (No. INL/EXT-18-45047-Rev000). Idaho National Lab.(INL), Idaho Falls, ID (United States).

26.   Gopiraman, M., Selvakumaran, N., Kesavan, D. and Karvembu, R. (2012). Adsorption and corrosion inhibition behaviour of N-(phenylcarbamothioyl) benzamide on mild steel in acidic medium. Progress in Organic Coatings, 73(1): 104-111.

27.   Akbarzade, K. and Danaee, I. (2018). Nyquist plots prediction using neural networks in corrosion inhibition of steel by schiff base. Iranian Journal of Chemistry and Chemical Engineering, 37(3): 135-143.

28.   Millán-Ocampo, D. E., Parrales-Bahena, A., González-Rodríguez, J. G., Silva-Martínez, S., Porcayo-Calderón, J. and Hernández-Pérez, J. A. (2018). Modelling of behavior for inhibition corrosion of bronze using artificial neural network (ANN). Entropy, 20(6): 409

29.   Russo, D., & Zou, J. (2020). How much does your data exploration overfit? controlling bias via information usage. IEEE Transactions on Information Theory, 66(1): 302-323.

30.   Zulkifli, F., Abdullah, S., Suriani, M. J., Kamaludin, M. I. A. and Wan Nik, W. B. (2021). Multilayer perceptron model for the prediction of corrosion rate of aluminium alloy 5083 in seawater via different training algorithms. IOP Conference Series: Earth and Environmental Science, 646(1): 012058.

31.   Leppänen, I., Vikman, M., Harlin, A. and Orelma, H. (2020). Enzymatic degradation and pilot-scale composting of cellulose-based films with different chemical structures. Journal of Polymers and the Environment, 28(2): 458–470.

32.   Mateyawa, S., Fengwei, D., Truss, R. W., Halley, P. J., Nicholson, T. M., Shamshina, J. L., Rogers, R. D., Boehm, M. W. and Mcnally, T. (2013). Effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on the phase transition of starch : Dissolution or gelatinization ? Carbohydrate Polymers, 94: 520-530.

33.   Rajkumar, T. and Ranga Rao, G. (2008). Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid. Materials Chemistry and Physics, 112(3): 853-857.

34.   Yesudass, S., Olasunkanmi, L. O., Bahadur, I., Kabanda, M. M., Obot, I. B. and Ebenso, E. E. (2016). Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium. Journal of the Taiwan Institute of Chemical Engineers, 64: 252-268.

35.   Lan, W., Zhang, R., Ji, T., Sameen, D. E., Ahmed, S., Qin, W., Dai, J., He, L. and Liu, Y. (2021). Improving nisin production by encapsulated Lactococcus lactis with starch/carboxymethyl cellulose edible films. Carbohydrate Polymers, 251(9): 117062.

36.   Haruna, K., Saleh, T. A. and Quraishi, M. A. (2020). Expired metformin drug as green corrosion inhibitor for simulated oil/gas well acidizing environment. Journal of Molecular Liquids, 315: 113716.

37.   Al-Amiery, A. A., Shaker, L. M., Kadhum, A. H. and Takriff, M. S. (2021). Exploration of furan derivative for application as corrosion inhibitor for mild steel in hydrochloric acid solution: Effect of immersion time and temperature on efficiency. Materials Today: Proceedings, 42: 2968-2973.

38.   Mammadli, S. (2017). Financial time series prediction using artificial neural network based on Levenberg-Marquardt algorithm. Procedia Computer Science, 120: 602-607.