Malaysian Journal of Analytical
Sciences, Vol 28
No 2 (2024): 265 - 276
CORROSION INHIBITION STUDY OF
CARBOXYMETHYL CELLULOSE-IONIC LIQUID VIA ELECTROCHEMICAL AND MACHINE LEARNING
TECHNIQUE
(Kajian Perencatan Kakisan Menggunakan Karboksimetil Selulosa-Cecairan
Ionik Melalui Teknik Elektrokimia dan Pembelajaran Mesin)
Adi Hafizamri Ariffin1,
Wan Mohd Norsani Wan Nik1, Samsuri Abdullah1, Mohd Ikmar
Nizam Mohamad Isa2, Vincent Izionworu3, and Mohammad
Fakhratul Ridwan Zulkifli1*
1Marine Materials Research Group,
Faculty of Ocean Engineering Technology, Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia
2Energy Storage Research, Advanced
Materials Team, Ionic & Kinetic Materials Research (iKMaR) Laboratory,
Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800
Nilai, Negeri Sembilan, Malaysia
3Department of
Chemical/Petrochemical Engineering, Rivers State University, Nkpolu-Oroworukwo,
Port Harcourt, Nigeria
*Corresponding author: fakhratulz@umt.edu.my
Received: 5 October 2023; Accepted: 25
February 2024; Published: 29 April 2024
Abstract
Corrosion is a natural phenomenon defined as the
deterioration of a substance or its properties due to interactions between the
substance and the environment. Prolonged exposure to corrosive environment had
negative consequences, including increased repair and maintenance costs,
decreased structural integrity, and fatalities. An approach to address the issue
is to use a corrosion inhibitor. Numerous inhibitors have lately been developed
or made accessible on the market. However, some could be dangerous or contain
of volatile organic compounds (VOCs). Our study introduces carboxymethyl
cellulose (CMC) mixed with 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac])
ionic liquid, also known as CIL, as a corrosion inhibitor on mild steel in
seawater. The functional group of combined CIL was examined using Fourier transform infrared
spectroscopy (FTIR). The study employed mild steel
specimens immersed in varying concentrations of CIL, subject to electrochemical
impedance spectroscopy (EIS) measurements at different temperatures. The
obtained result of EIS measurement were analyzed to calculate corrosion inhibition efficiency (IE) of
CIL. 46 of electrochemical data were fed into a machine learning
technique to forecast the effectiveness of the inhibition. Results indicate when inhibition
concentration rises, so does inhibition efficiency (IE). The inhibitory
efficiency of CIL decreased as the temperature of the test solution rose. At an
ambient temperature of 950 ppm, an IE result of 83% was recorded.
Levenberg-Marquardt (LM), Bayesian Regularization (BR), and Scale Conjugate
Gradient (SCG) training algorithms were compared via Neural Network Fitting
Tool (NNTool). LM was found to be the best
backpropagation training algorithm, providing the highest regression value (R)
of 0.907 and the lowest mean square error (MSE) of 0.006 when compared to BR
and SCG. With R value closer to 1 and MSE close to 0, the use of Artificial
Neural Networks (ANN) appears to offer a new insight in predicting methods with
the goal of easing the hassle and time-consuming of experimental work.
Keywords: carboxymethyl
cellulose, corrosion inhibitor, electrochemical, ionic liquid, machine learning
Abstrak
Kakisan adalah
fenomena semula jadi yang ditakrifkan sebagai kemerosotan bahan atau sifatnya
akibat interaksi antara bahan dan persekitaran. Pendedahan yang berpanjangan
kepada persekitaran yang mengkakis memberi kesan yang negatif, termasuk
peningkatan kos pembaikan dan penyelenggaraan, penurunan integriti keatas
struktur dan mengakibatkan kemusnahan. Salah satu penyelesaian kepada isu ini
ialah menggunakan perencat kakisan. Banyak perencat kakisan telah dibangunkan
atau boleh didapati di pasaran. Namun, sebahagian daripadanya mungkin berbahaya
atau mengandungi banyak sebatian organik meruap (VOC). Kajian ini
memperkenalkan karboksimetil selulosa (CMC) dalam 1-etil-3-metilimidazolium
asetat ([EMIM][Ac]) cecair ionik, juga dikenali sebagai CIL, sebagai perencat
kakisan pada keluli lembut dalam air laut untuk menangani isu alam sekitar.
Kumpulan berfungsi kimia hasil dr campuran CIL ini telah diperiksa menggunakan
spektroskopi inframerah transformasi Fourier (FTIR). Kajian ini menggunakan
spesimen keluli lembut yang direndam dalam kepekatan CIL yang berbeza, diuji
menggunakan spektroskopi impedans elektrokimia (EIS) pada suhu yang berbeza.
data pengukuran EIS yang diperolehi dianalisis untuk mengira kecekapan
perencatan kakisan (IE) CIL. 46 data elektrokimia digunakan di dalam teknik
pembelajaran mesin (ML) untuk meramalkan keberkesanan perencatan. Keputusan
menunjukkan bahawa apabila kepekatan perencatan meningkat, kecekapan perencatan
juga menunjukkan peningkatan. Kecekapan perencatan CIL menurun apabila suhu
larutan ujian meningkat. Pada kepekatan 950 ppm pada suhu ambang, keputusan
kecekapan perencatan dengan peratusan 83% telah direkodkan. Algoritma latihan
Levenberg-Marquardt (LM), Bayesian Regulisasi (BR), dan Gradien Konjugasi Skala
(SCG) telah dibandingkan melalui aplikasi Ketepatan Jaringan Saraf (NNtool). LM
didapati sebagai algoritma latihan rambatan belakang terbaik, memberikan nilai
regresi (R) tertinggi 0.9072580 dan ralat min kuasa dua (MSE) terendah sebanyak
0.0054787 jika dibandingkan dengan BR dan SCG. Dengan nilai R yang menghampiri
1 dan MSE menghampiri 0, penggunaan Rangkaian Saraf Tiruan (ANN) memberi
pandangan baharu dalam kaedah peramalam dengan matlamat untuk mengurangkan
kerumitan dan penghambatan kerja eksperimen yang memakan masa.
Kata kunci: karboksimetil
selulosa, penghambat pengaratan, elektrokimia, cairan ionik, pembelajaran mesin
References
1. Odio,
B. O., Chinwuko, E. C., Chukwuneke,
J. L. and Sinebe, J. E. (2014). Investigation of the
effect of corrosion on mild steel in five different environments. International
Journal Science Technology Research, 3:
306-310.
2. Li, Z. Liang, Xiao, K., Dong, C. Fang, Cheng, X. qun, Xue, W. and Yu, W. (2019). Atmospheric corrosion
behavior of low-alloy steels in a tropical marine environment. Journal of Iron and Steel Research
International, 26(12): 1315-1328.
3. Hussain, R. R., Alhozaimy,
A., Al-Negheimish, A. and Singh, D. D. N. (2022).
Role of phosphorus as micro alloying element and its effect on corrosion
characteristics of steel rebars in concrete environment. Scientific Reports, 12(1): 1-23.
4. Chigondo, M. and Chigondo, F.
(2016). Recent natural corrosion inhibitors for mild steel: an overview. Journal of Chemistry, 2016: 6208937
5. Kadhim, A., Al-Amiery, A.
A., Alazawi, R., Al-Ghezi,
M. K. S. and Abass, R. H. (2021). Corrosion inhibitors. A review. International Journal of Corrosion and Scale
Inhibition, 10(1): 54-67.
6. Zakeri, A., Bahmani, E. and
Aghdam, A. S. R. (2022). Plant
extracts as sustainable and green corrosion inhibitors for protection of
ferrous metals in corrosive media: A mini review. Corrosion Communications, 5: 25-38.
7. Medupin, R. O., Ukoba, K. O.,
Yoro, K. O. and Jen, T. C. (2023). Sustainable
approach for corrosion control in mild steel using plant-based inhibitors: a
review. Materials Today Sustainability,
22: 100373.
8. Badawi, A. K. and Fahim, I. S. (2021). A critical
review on green corrosion inhibitors based on plant extracts: Advances and
potential presence in the market. International
Journal of Corrosion and Scale Inhibition, 10(4): 1385-1406.
9. Sovizi, M. R. and Abbasi, R. (2020). Effect of carboxymethyl
cellulose on the corrosion behavior of aluminum in H2SO4
solution and synergistic effect of potassium iodide. Journal of Adhesion Science and Technology, 34(15): 1664-1678.
10. Magalhăes, S., Fernandes, C., Pedrosa, J. F. S.,
Alves, L., Medronho, B., Ferreira, P. J. T. and Rasteiro,
M. da G. (2023). Eco-friendly methods for extraction and modification of
cellulose: An overview. Polymers,
15(14): 1-25.
11. Arefian, M., Hojjati, M., Tajzad, I., Mokhtarzade, A.,
Mazhar, M. and Jamavari, A. (2020). A review of
Polyvinyl alcohol/Carboxymethyl cellulose (PVA/CMC) composites for various
applications. Journal of Composites and
Compounds, 2(3): 69-76.
12. Umoren, S. A., AlAhmary,
A. A., Gasem, Z. M. and Solomon, M. M. (2018). Evaluation of chitosan and
carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. International Journal of Biological
Macromolecules, 117(2017): 1017-1028.
13.
Verma, C., Mishra, A., Chauhan, S., Verma, P., Srivastava,
V., Quraishi, M. A. And Ebenso, E. E. (2019). Dissolution of cellulose in ionic liquids and their mixed
cosolvents: A review. Sustainable
Chemistry and Pharmacy, 13(7): 100162.
14.
Sundjono, S.,
Priyotomo, G., Nuraini, L. and Prifiharni, S. (2017). Corrosion behavior of
mild steel in seawater from northern coast of java and southern coast of Bali,
Indonesia. Journal of Engineering and Technological Sciences, 49(6): 770-784.
15.
Gabriela, R., Araújo, M. De, Marques,
N. and Tonholo, J. (2019). Water-soluble carboxymethylchitosan used as corrosion
inhibitor for carbon steel in saline medium. Carbohydrate Polymers, 205(6): 371-376.
16.
Al-rubaiey, N. A., Kadhim, F. S. and Albrazanjy, M. G.
(2019). The effect of adding
carboxymethyl cellulose and zinc sulfate on the corrosion characteristics of
the drilling fluid. Al-Khwarizmi
Engineering Journal, 15(1):
125-133.
17.
Manimaran, N., Rajendran, S., Manivannan, M., Thangakani, J.
A. and Prabha, A. S. (2013). Corrosion inhibition by carboxymethyl cellulose. European Chemical Bulletin, 2(7):
494-498.
18.
Azeez, R. A., Alrubaiey, N. and Gazi, M. (2022).
Investigation of carboxymethyl cellulose and barite additives on the corrosion
characteristics of water-based drilling mud. Engineering and Technology Journal, 40(3): 451-458.
19.
Solomon, M. M., Gerengi, H. and Umoren, S. A. (2017).
Carboxymethyl cellulose/silver nanoparticles composite: synthesis,
characterization and application as a benign corrosion inhibitor for St37 steel
in 15% H2SO4 medium. ACS Applied Materials and
Interfaces, 9(7):
6376-6389.
20.
Nwanonenyi, S. C., Obasi, H. C. and Chidiebere, A. M. (2018).
Inhibitive performance of carboxymethyl cellulose and additives on corrosion of
carbon steel in acidic and alkaline environments. Journal of Bio- and
Tribo-Corrosion, 4(3):
1-12.
21.
Umoren, S. A., Solomon, M. M., Madhankumar, A. and Obot, I.
B. (2020). Exploration of natural polymers for use as green corrosion
inhibitors for AZ31 magnesium alloy in saline environment. Carbohydrate
Polymers, 230: 115466.
22.
Bayol, E., Gürten, A. A., Dursun, M. and Kayakirilmaz, K.
(2008). Adsorption behavior and inhibition corrosion effect of sodium
carboxymethyl cellulose on mild steel in acidic medium. Wuli Huaxue Xuebao/
Acta Physico - Chimica Sinica, 24(12):
2236-2243.
23.
Umoren, S. A., Solomon, M. M.,
Udosoro, I. I. and Udoh, A. P. (2010). Synergistic and antagonistic
effects between halide ions and carboxymethyl cellulose for the corrosion
inhibition of mild steel in sulphuric acid solution. Cellulose, 17(3): 635-648.
24.
Khairou, K. S. and El-Sayed, A. (2003). Inhibition effect of
some polymers on the corrosion of cadmium in a hydrochloric acid solution. Journal
of Applied Polymer Science, 88(4):
866-871.
25.
Hu, H., Dong, Y., Li, J., Xiong, C. and Hurley, M. (2018). Investigating electrochemical impedance
spectroscopic (EIS) measurement of surrogate oxide at high temperatures.
(No. INL/EXT-18-45047-Rev000). Idaho National Lab.(INL), Idaho Falls, ID
(United States).
26.
Gopiraman, M., Selvakumaran, N.,
Kesavan, D. and Karvembu, R. (2012). Adsorption and corrosion inhibition behaviour of
N-(phenylcarbamothioyl) benzamide on mild steel in acidic medium. Progress
in Organic Coatings, 73(1):
104-111.
27.
Akbarzade, K.
and Danaee, I. (2018). Nyquist plots prediction using neural networks in
corrosion inhibition of steel by schiff base. Iranian Journal of Chemistry and Chemical Engineering, 37(3):
135-143.
28.
Millán-Ocampo,
D. E., Parrales-Bahena, A., González-Rodríguez, J. G., Silva-Martínez, S.,
Porcayo-Calderón, J. and Hernández-Pérez, J. A. (2018). Modelling of behavior
for inhibition corrosion of bronze using artificial neural network (ANN). Entropy,
20(6): 409
29.
Russo, D., & Zou, J. (2020). How much does your data
exploration overfit? controlling bias via information usage. IEEE
Transactions on Information Theory, 66(1):
302-323.
30. Zulkifli, F., Abdullah, S.,
Suriani, M. J., Kamaludin, M. I. A. and Wan Nik, W. B. (2021). Multilayer perceptron model for the prediction of
corrosion rate of aluminium alloy 5083 in seawater
via different training algorithms. IOP
Conference Series: Earth and Environmental Science, 646(1): 012058.
31. Leppänen, I., Vikman, M.,
Harlin, A. and Orelma, H. (2020). Enzymatic
degradation and pilot-scale composting of cellulose-based films with different
chemical structures. Journal of Polymers
and the Environment, 28(2): 458–470.
32.
Mateyawa, S., Fengwei, D., Truss, R. W., Halley, P. J.,
Nicholson, T. M., Shamshina, J. L., Rogers, R. D., Boehm, M. W. and Mcnally, T.
(2013). Effect of the ionic liquid
1-ethyl-3-methylimidazolium acetate on the phase transition of starch :
Dissolution or gelatinization ? Carbohydrate Polymers, 94:
520-530.
33. Rajkumar, T. and Ranga Rao, G.
(2008). Synthesis
and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid. Materials
Chemistry and Physics, 112(3): 853-857.
34. Yesudass, S., Olasunkanmi, L. O., Bahadur, I., Kabanda, M.
M., Obot, I. B. and Ebenso, E. E. (2016).
Experimental and theoretical studies on some selected ionic liquids with
different cations/anions as corrosion inhibitors for mild steel in acidic
medium. Journal of the Taiwan Institute
of Chemical Engineers, 64: 252-268.
35. Lan, W., Zhang, R., Ji, T., Sameen, D. E., Ahmed,
S., Qin, W., Dai, J., He, L. and Liu, Y. (2021). Improving nisin production by
encapsulated Lactococcus lactis with starch/carboxymethyl cellulose edible
films. Carbohydrate Polymers, 251(9):
117062.
36. Haruna, K., Saleh, T. A. and
Quraishi, M. A. (2020). Expired
metformin drug as green corrosion inhibitor for simulated oil/gas well
acidizing environment. Journal of
Molecular Liquids, 315: 113716.
37. Al-Amiery, A. A., Shaker,
L. M., Kadhum, A. H. and Takriff, M. S. (2021).
Exploration of furan derivative for application as corrosion inhibitor for mild
steel in hydrochloric acid solution: Effect of immersion time and temperature
on efficiency. Materials Today:
Proceedings, 42: 2968-2973.
38. Mammadli, S. (2017). Financial time series
prediction using artificial neural network based on Levenberg-Marquardt
algorithm. Procedia Computer Science,
120: 602-607.