Malaysian Journal of Analytical
Sciences, Vol 28
No 2 (2024): 257 - 264
SCREENING OF PROMOTED CeO2/Al2O3
CATALYSTS IN AQUEOUS PHASE GLYCEROL REFORMING AND HYDROGENOLYSIS INTO 1,2-PROPANEDIOL
(Penyaringan
Mangkin Penggalak CeO2/Al2O3 dalam Fasa Akueus Pembaharuan dan Hidrogenolisis Gliserol Kepada 1,2-Propanadiol)
Norsahida
Azri1,2,3*, Ramli Irmawati 2,3,5*,
Rudy Hakim Danial Leong2,3, Usman Idris Nda-Umar2,3,4,
Mohd Izham Saiman2,3, Yun Hin Taufiq-Yap 2,3 and G. Abdulkareem-Alsultan2,3.
1Preparatory Centre for
Science and Technology, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah,
Malaysia
2Department
of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
3Catalysis Science and Technology
Research Centre (PutraCat), Faculty of Science, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia
4Department
of Chemical Sciences, Federal Polytechnic, PMB 55, Bida, Niger State, Nigeria
5Laboratory
of Processing and Product Development, Institute of Plantation Studies, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Corresponding author: norsahidaazri@ums.edu.my; irmawati@upm.edu.my
Received: 3 November 2023; Accepted: 16
January 2024; Published: 29 April 2024
Abstract
A
series of promoted CeO2/Al2O3 catalysts
(10Cu-90CeO2/Al2O3, 10Ni-90CeO2/Al2O3,
10Co-90CeO2/Al2O3)
were synthesized via method of impregnation and later calcined at 600 ℃.
Those catalysts were formerly tested for their physico-chemical properties by
X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR),
and NH3-temperature programmed desorption (NH3–TPD).
After characterized, it was then evaluated in the performance of catalytic
glycerol conversion into 1,2-propanediol; propylene glycol (1,2-PDO; PG) via aqueous
phase glycerol reforming and hydrogenolysis route under
inert N2 flow. Among the examined catalysts, CeO2/Al2O3
with 10wt% Cu loading (10Cu-90CeO2/Al2O3)
showed optimum catalytic activity with 88.5% glycerol conversion (GC) and 35.5%
PG selectivity at 300 ℃ reaction temperature, 2 h duration test, 30 cc/min of N2 initial
pressure, 0.1 g
catalyst dosage and 10wt% glycerol concentration. The high catalytic
performance of 10Cu-90CeO2/Al2O3
was owing to the good copper-cerium-alumina interaction via its good
metal reducibility at low temperature along with good
acid capacity for the reaction.
Keywords: copper, cerium, alumina, acid capacity, glycerol
conversion
Abstrak
Satu siri mangkin penggalak CeO2/Al2O3
(10Cu-90CeO2/Al2O3,
10Ni-90CeO2/Al2O3,
10Co-90CeO2/Al2O3)
telah disintesis menggunakan kaedah pegisitepuan lalu dikalsinkan pada 600
℃. Kesemua mangkin telah dikaji sifat fiziko-kimia dengan menggunakan
pembelauan sinar-X (XRD), penuruan suhu terprogram H2 (H2-TPR),
dan nyahjerapan suhu terprogram NH3 (NH3-TPD). Ia
kemudian dinilai dalam penukaran pemangkinan gliserol kepada 1,2-propanadiol;
propilena glikol (1,2-PDO; PG) melalui pendekatan pembaharuan dan
hidrogenolisis fasa akueus dibawah aliran N2. Diantara mangkin yang
diuji, CeO2/Al2O3
dengan 10wt% muatan Cu (10Cu-90CeO2/Al2O3)
telah menunjukkan aktiviti pemangkinan yang optimum dengan 88.5% penukaran
gliserol (GC) dan 35.5%
keterpilihan PG pada suhu tindak balas 300 ℃, tempoh masa 2
jam, 30
cc/min tekanan awal N2 dan 0.1 g dos mangkin dan
10wt% kepekatan gliserol. Prestasi pemangkinan yang
tinggi oleh 10Cu-90CeO2/Al2O3
didorong
oleh interaksi baik antara kuprum-ceria-alumina melalui
penurunan logam yang baik pada suhu rendah dan kapasiti asid yang sesuai untuk
tindak balas.
Kata kunci:
kuprum, serium, alumina, kapasiti asid, penukaran gliserol
References
1.
Attarbachi, T., Kingsley, Martin.D.
and Spallina, V. (2023). New trends on crude glycerol purification: A review. Fuel,
340: 127485.
2.
Ali, S.S., Elsamahy, T., Abdelkarim., E.A. Al-Tohamy., R.,
Kornaros., M., Ruiz., H. A. Zhao, T., Li, F. and Sun. J. (2022). Biowastes for biodegradable
bioplastics production and end-of-life scenarios in circular bioeconomy and
biorefinery concept. Bioresource Technology, 363: 127869.
3.
Yuan, J., Li, S., Yu, L., Liu. Y. and
Cao, Y. (2013). Efficient catalytic
hydrogenolysis of glycerol using formic acid as hydrogen source. Chinese
Journal of Catalysis, 342: 2066-2074.
4.
Roy, D., Subramaniam, B. and
Chaudhari, R.V. (2010). Aqueous phase hydrogenolysis of glycerol to 1,
2-propanediol without external hydrogen addition. Catalysis Today, 156:
31-37.
5.
Soares, A.V.H. Atia, H., Armbruster,
U., Passos, F.B. and Martin, A. (2017). Platinum, palladium and nickel
supported on Fe3O4 as catalysts for glycerol
aqueous-phase hydrogenolysis and reforming. Applied Catalysis A, General,
548: 179-190.
6.
Zhou, C.H., Denga, K., Serio, M.D., Xiao. S., Tong, D.S., Li, L.,
Lin, C.X., Beltramini, J., Zhang, H. and Yua, W.H. (2017). Cleaner hydrothermal
hydrogenolysis of glycerol to 1,2-propanediol over Cu/oxide catalysts without
addition of external hydrogen. Molecular Catalysis, 432: 274-284.
7.
Roy., D, Subramaniam, B. and
Chaudhari, R.V. (2010). Aqueous phase hydrogenolysis of glycerol to
1,2-propanediol without external hydrogen addition. Catalysis Today,
156: 31-37.
8.
Mallesham. B., Sudarsanam, P.,
Reddya, B.V.S. and Reddya, B.M. (2016). Development of cerium promoted
copper–magnesium catalysts for biomass valorization: Selective hydrogenolysis
of bioglycerol. Applied Catalysis B: Environmental, 181: 47-57.
9.
Zhou, C.H., Deng, K., Serio, M.D.,
Xiao, Sa., Shen, D., Li, T.Li., Lin, C.X., Beltramini, J., Zhang, H. and Yu,
W.H. (2017). Cleaner hydrothermal hydrogenolysis of glycerol to 1,2-propanediol
over Cu/oxide catalysts without addition of external hydrogen. Molecular
Catalysis, 432: 274-284.
10.
Yu. W., Zhao. J., Ma. H., Miao, H.,
Song. Q. and Xu, J. (2010). Aqueous hydrogenolysis of glycerol over Ni–Ce/AC
catalyst: Promoting effect of Ce on catalytic performance. Applied Catalysis
A: General, 383: 73-78.
11.
Ye, L., Duan, X., Lin, H. and Yuan,
Y. (2012). Improved performance of magnetically recoverable Ce-promoted Ni/Al2O3
catalysts for aqueous phase hydrogenolysis of sorbitol to glycols. Catalysis
Today, 183: 65-71.
12.
Jiang, T., Kong, D., Xu, K. and Cao,
F. (2016). Hydrogenolysis of glycerol aqueous solution to glycols over Ni–Co
bimetallic catalyst: Effect of ceria promoting. Applied Petrochemical
Research, 6(2): 135-144.
13.
Freitas, I.C., Manfro, R.L. and Souza,
M.M.V.M. (2018). Hydrogenolysis of glycerol to propylene glycol in continuous
system without hydrogen addition over Cu-Ni catalysts. Applied Catalysis B:
Environmental, 220: 31-41.
14.
Azri,
N., Ramli, I., Nda-Umar, U.I., Shamsuddin, M. Razali., Saiman, M. I. and
Taufiq-Yap, Y. H. (2020). Copper-dolomite as effective catalyst for glycerol
hydrogenolysis to 1,2-propanediol. Journal of Taiwan Institute and Chemical
Engineering, 112: 34-51.
15.
Marinho, A.L.A., Toniolo, F.S.,
Noronha, F.B., Epron, F., Duprez, D. and Bion, N. (2021). Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts
for production of syngas by dry reforming of methane. Applied Catalysis B:
Environmental, 281: 119459.
16.
Finger, P.H., Osmari, T.A., Cabral,
N.M., Bueno, J.M.C. and Gallo, J.M.R. (2021). Direct synthesis of Cu supported
on mesoporous silica: Tailoring the Cu loading and the activity for ethanol
dehydrogenation. Catalysis Today, 381: 26-33.
17.
Xiao, Z., Wang, X., Xiu, J., Wang,
Y., Williams, C.T. and Liang, C. (2014). Synergetic effect between Cu0
and Cu+ in the Cu-Cr catalysts for hydrogenolysis of glycerol. Catalysis
Today, 234: 200-207.
18.
Soares, A.V.H., Salazar, J.B., Falcone,
D.D., Vasconcellos, F.A., Davis, R.J. and Passos, F.B.A. (2016). Study of
glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2
catalysts. Journal of Molecular Catalysis A: Chemical, 415: 27-36.
19.
Zhao, Y., Zhang, Y., Wang,Y., Zhang, J., Xu, Y., Wang, S. and Ma, X.
(2017). Structural evolution of mesoporous silica supported copper catalyst for
dimethyl oxalate hydrogenation. Applied Catalysis A General, 539: 59–69.
20.
Vargas-Hernández,
D., Rubio-Caballero, J.M., Santamaría-González, J., Moreno-Tost, R.,
Mérida-Robles, J.M., Pérez-Cruz, M.A., Jiménez-López, A., Hernández-Huesca, R.
and Maireles-Torres, P. (2014). Furfuryl alcohol from furfural hydrogenation
over copper supported on SBA-15 silica catalysts. Journal Molecular
Catalysis A Chemical, 383-384:
106-113.
21.
Zhu, S., Gao, X., Zhu, Y., Zhu, Y., Zheng, H. and Li, Y. (2013). Promoting
effect of boron oxide on Cu/SiO2 catalyst for glycerol
hydrogenolysis to 1,2-propanediol. Journal of Catalysis, 303: 70-79.
22.
Pudi, S.M., Biswa, P., Kumar, S. and
Sarkar, B. (2015). Selective hydrogenolysis of glycerol to 1,2 propanediol over
bimetallic Cu-Ni catalysts supported on γ-Al2O3. Journal
of the Brazilian Chemical Society, 268 (8): 1551-1564.
23.
Seretis, A. and Tsiakaras, P.
(2016). Hydrogenolysis of glycerol to propylene glycol by
in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2–Al2O3
supported nickel catalyst. Fuel Processing Technology, 142: 135-146.