Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 257 - 264

 

SCREENING OF PROMOTED CeO2/Al2O3 CATALYSTS IN AQUEOUS PHASE GLYCEROL REFORMING AND HYDROGENOLYSIS INTO 1,2-PROPANEDIOL

 

(Penyaringan Mangkin Penggalak CeO2/Al2O3 dalam Fasa Akueus Pembaharuan dan Hidrogenolisis Gliserol Kepada 1,2-Propanadiol)

 

Norsahida Azri1,2,3*, Ramli Irmawati 2,3,5*, Rudy Hakim Danial Leong2,3, Usman Idris Nda-Umar2,3,4, Mohd Izham Saiman2,3, Yun Hin Taufiq-Yap 2,3 and G. Abdulkareem-Alsultan2,3.

 

1Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Catalysis Science and Technology Research Centre (PutraCat), Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

4Department of Chemical Sciences, Federal Polytechnic, PMB 55, Bida, Niger State, Nigeria

5Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: norsahidaazri@ums.edu.my; irmawati@upm.edu.my

 

 

Received: 3 November 2023; Accepted: 16 January 2024; Published:  29 April 2024

 

 

Abstract

A series of promoted CeO2/Al2O3 catalysts (10Cu-90CeO2/Al2O3, 10Ni-90CeO2/Al2O3, 10Co-90CeO2/Al2O3) were synthesized via method of impregnation and later calcined at 600 ℃. Those catalysts were formerly tested for their physico-chemical properties by X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), and NH3-temperature programmed desorption (NH3–TPD). After characterized, it was then evaluated in the performance of catalytic glycerol conversion into 1,2-propanediol; propylene glycol (1,2-PDO; PG) via aqueous phase glycerol reforming and hydrogenolysis route under inert N2 flow. Among the examined catalysts, CeO2/Al2O3 with 10wt% Cu loading (10Cu-90CeO2/Al2O3) showed optimum catalytic activity with 88.5% glycerol conversion (GC) and 35.5% PG selectivity at 300 ℃ reaction temperature, 2 h duration test, 30 cc/min of N2 initial pressure, 0.1 g catalyst dosage and 10wt% glycerol concentration. The high catalytic performance of 10Cu-90CeO2/Al2O3 was owing to the good copper-cerium-alumina interaction via its good metal reducibility at low temperature along with good acid capacity for the reaction.

 

Keywords: copper, cerium, alumina, acid capacity, glycerol conversion

 

Abstrak

Satu siri mangkin penggalak CeO2/Al2O3 (10Cu-90CeO2/Al2O3, 10Ni-90CeO2/Al2O3, 10Co-90CeO2/Al2O3) telah disintesis menggunakan kaedah pegisitepuan lalu dikalsinkan pada 600 ℃. Kesemua mangkin telah dikaji sifat fiziko-kimia dengan menggunakan pembelauan sinar-X (XRD), penuruan suhu terprogram H2 (H2-TPR), dan nyahjerapan suhu terprogram NH3 (NH3-TPD). Ia kemudian dinilai dalam penukaran pemangkinan gliserol kepada 1,2-propanadiol; propilena glikol (1,2-PDO; PG) melalui pendekatan pembaharuan dan hidrogenolisis fasa akueus dibawah aliran N2. Diantara mangkin yang diuji, CeO2/Al2O3 dengan 10wt% muatan Cu (10Cu-90CeO2/Al2O3) telah menunjukkan aktiviti pemangkinan yang optimum dengan 88.5% penukaran gliserol (GC) dan 35.5% keterpilihan PG pada suhu tindak balas 300 ℃, tempoh masa 2 jam, 30 cc/min tekanan awal N2 dan 0.1 g dos mangkin dan 10wt% kepekatan gliserol. Prestasi pemangkinan yang tinggi oleh 10Cu-90CeO2/Al2O3 didorong oleh interaksi baik antara kuprum-ceria-alumina melalui penurunan logam yang baik pada suhu rendah dan kapasiti asid yang sesuai untuk tindak balas. 

 

Kata kunci: kuprum, serium, alumina, kapasiti asid, penukaran gliserol

 


References

1.      Attarbachi, T., Kingsley, Martin.D. and Spallina, V. (2023). New trends on crude glycerol purification: A review. Fuel, 340: 127485.

2.      Ali, S.S., Elsamahy, T., Abdelkarim., E.A. Al-Tohamy., R., Kornaros., M., Ruiz., H. A. Zhao, T., Li, F. and Sun. J. (2022). Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept. Bioresource Technology, 363: 127869.

3.      Yuan, J., Li, S., Yu, L., Liu. Y. and Cao, Y. (2013). Efficient catalytic hydrogenolysis of glycerol using formic acid as hydrogen source. Chinese Journal of Catalysis, 342: 2066-2074.

4.      Roy, D., Subramaniam, B. and Chaudhari, R.V. (2010). Aqueous phase hydrogenolysis of glycerol to 1, 2-propanediol without external hydrogen addition. Catalysis Today, 156: 31-37. 

5.      Soares, A.V.H. Atia, H., Armbruster, U., Passos, F.B. and Martin, A. (2017). Platinum, palladium and nickel supported on Fe3O4 as catalysts for glycerol aqueous-phase hydrogenolysis and reforming. Applied Catalysis A, General, 548: 179-190.

6.      Zhou, C.H., Denga, K., Serio, M.D., Xiao. S., Tong, D.S., Li, L., Lin, C.X., Beltramini, J., Zhang, H. and Yua, W.H. (2017). Cleaner hydrothermal hydrogenolysis of glycerol to 1,2-propanediol over Cu/oxide catalysts without addition of external hydrogen. Molecular Catalysis, 432: 274-284.

7.      Roy., D, Subramaniam, B. and Chaudhari, R.V. (2010). Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition. Catalysis Today, 156: 31-37.

8.      Mallesham. B., Sudarsanam, P., Reddya, B.V.S. and Reddya, B.M. (2016). Development of cerium promoted copper–magnesium catalysts for biomass valorization: Selective hydrogenolysis of bioglycerol. Applied Catalysis B: Environmental, 181: 47-57.

9.      Zhou, C.H., Deng, K., Serio, M.D., Xiao, Sa., Shen, D., Li, T.Li., Lin, C.X., Beltramini, J., Zhang, H. and Yu, W.H. (2017). Cleaner hydrothermal hydrogenolysis of glycerol to 1,2-propanediol over Cu/oxide catalysts without addition of external hydrogen. Molecular Catalysis, 432: 274-284.

10.   Yu. W., Zhao. J., Ma. H., Miao, H., Song. Q. and Xu, J. (2010). Aqueous hydrogenolysis of glycerol over Ni–Ce/AC catalyst: Promoting effect of Ce on catalytic performance. Applied Catalysis A: General, 383: 73-78.  

11.   Ye, L., Duan, X., Lin, H. and Yuan, Y. (2012). Improved performance of magnetically recoverable Ce-promoted Ni/Al2O3 catalysts for aqueous phase hydrogenolysis of sorbitol to glycols. Catalysis Today, 183: 65-71.

12.   Jiang, T., Kong, D., Xu, K. and Cao, F. (2016). Hydrogenolysis of glycerol aqueous solution to glycols over Ni–Co bimetallic catalyst: Effect of ceria promoting. Applied Petrochemical Research, 6(2): 135-144.

13.   Freitas, I.C., Manfro, R.L. and Souza, M.M.V.M. (2018). Hydrogenolysis of glycerol to propylene glycol in continuous system without hydrogen addition over Cu-Ni catalysts. Applied Catalysis B: Environmental, 220: 31-41.

14.   Azri, N., Ramli, I., Nda-Umar, U.I., Shamsuddin, M. Razali., Saiman, M. I. and Taufiq-Yap, Y. H. (2020). Copper-dolomite as effective catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of Taiwan Institute and Chemical Engineering, 112: 34-51.

15.   Marinho, A.L.A., Toniolo, F.S., Noronha, F.B., Epron, F., Duprez, D. and Bion, N. (2021). Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane. Applied Catalysis B: Environmental, 281: 119459.

16.   Finger, P.H., Osmari, T.A., Cabral, N.M., Bueno, J.M.C. and Gallo, J.M.R. (2021). Direct synthesis of Cu supported on mesoporous silica: Tailoring the Cu loading and the activity for ethanol dehydrogenation. Catalysis Today, 381: 26-33.

17.   Xiao, Z., Wang, X., Xiu, J., Wang, Y., Williams, C.T. and Liang, C. (2014). Synergetic effect between Cu0 and Cu+ in the Cu-Cr catalysts for hydrogenolysis of glycerol. Catalysis Today, 234: 200-207.

18.   Soares, A.V.H., Salazar, J.B., Falcone, D.D., Vasconcellos, F.A., Davis, R.J. and Passos, F.B.A. (2016). Study of glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. Journal of Molecular Catalysis A: Chemical, 415: 27-36.

19.   Zhao, Y., Zhang, Y., Wang,Y., Zhang, J., Xu, Y., Wang, S. and Ma, X. (2017). Structural evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Applied Catalysis A General, 539: 59–69.

20.   Vargas-Hernández, D., Rubio-Caballero, J.M., Santamaría-González, J., Moreno-Tost, R., Mérida-Robles, J.M., Pérez-Cruz, M.A., Jiménez-López, A., Hernández-Huesca, R. and Maireles-Torres, P. (2014). Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. Journal Molecular Catalysis A Chemical, 383-384: 106-113.

21.   Zhu, S., Gao, X., Zhu, Y., Zhu, Y., Zheng, H. and Li, Y. (2013). Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of Catalysis, 303: 70-79.

22.   Pudi, S.M., Biswa, P., Kumar, S. and Sarkar, B. (2015). Selective hydrogenolysis of glycerol to 1,2 propanediol over bimetallic Cu-Ni catalysts supported on γ-Al2O3. Journal of the Brazilian Chemical Society, 268 (8): 1551-1564.

23.   Seretis, A. and Tsiakaras, P. (2016). Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2–Al2O3 supported nickel catalyst. Fuel Processing Technology, 142: 135-146.