Malaysian Journal of Analytical
Sciences, Vol 28
No 2 (2024): 461 -
479
(Sorotan
Terhadap Trend Semasa Dalam Sintesis Polimer Fungsional Kaya Nitrogen Untuk
Penjerapan Karbon Dioksida)
Noorhidayah Ishak1, Azalina
Mohamed Nasir2, Chow Wen Shyang3, Dai Viet N. Vo4,
Bassim H. Hameed5,
Mohd Azmier Ahmad1,
and Azam Taufik Mohd Din1*
1 School of Chemical Engineering,
Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau
Pinang, Malaysia
2 Faculty of Chemical Engineering
and Technology, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian
Jejawi, Universiti
Malaysia Perlis (UniMAP) 02600 Arau, Perlis, Malaysia
3 School of Materials and Mining
Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300
Nibong Tebal, Pulau Pinang, Malaysia
4 Institute of Environmental
Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A
Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
5 Department of Chemical
Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha,
Qatar
* Corresponding author chazam@usm.my
Received: 1January 2024; Accepted: 19
March 2024; Published: 29 April 2024
Abstract
Keywords: carbon capture, adsorbent, climate change, density
functional theory
Abstrak
Penggunaan bahan api (minyak,
arang, dan gas asli) telah meningkat kerana pertambahan permintaan untuk tenaga
dalam pelbagai sektor industri. Agensi Tenaga Antarabangsa (IEA) dalam Tinjauan
Tenaga Dunia 2022 telah mencatatkan pertambahan yang mantap dalam permintaan
global tenaga daripada bahan api fosil dari 350 EJ pada tahun 2000 hingga
melebihi 500 EJ pada tahun 2030. Peningkatan ini telah menyumbang kesan yang
ketara pada pembebasan gas hijau terutamanya karbon dioksida (CO2)
yang membawa kepada pemanasan global dan perubahan iklim. Penangkapan karbon
menggunakan kaedah penjerapan ke atas bahan penjerap daripada polimer ialah
satu strategi bagi mengatasi perubahan iklim dengan cara mengurangkan kepekatan
CO2 dalam atmosfera. Sorotan ini memfokuskan kepada penyediaan
beberapa jenis polimer fungsional kaya nitrogen, antaranya poliamina,
poliamida/poliimida, dan kerangka kovalen triazina. Artikel ini menyediakan
maklumat penting bagi menambah baik kefungsian polimer kaya nitrogen bagi
tujuan penjerapan CO2. Pemahaman ringkas mengenai mekanisma
penjerapan CO2 serta pemodelan molekul menggunakan teori ketumpatan
berfungsi turut disertakan. Cabaran dan cadangan masa hadapan turut disampaikan
dalam sorotan ini.
Kata kunci: penangkapan karbon, bahan
penjerap, perubahan iklim, teori ketumpatan berfungsi
References
1. Martins, T., Barreto, A.C., Souza, F.M. and Souza,
A.M. (2021). Fossil fuels consumption and carbon dioxide emissions in G7
countries: Empirical evidence from ARDL bounds testing approach. Environmental Pollution, 291:118093.
2. Nations, U. (2015) Paris
Agreement. Paris.
3. Vannak, H., Osaka, Y., Tsujiguchi,
T. and Kodama, A. (2024). The efficacy of carbon molecular sieve and solid
amine for CO2 separation from a simulated wet flue gas by an
internally heated/cooled temperature swing adsorption process. Applied
Thermal Engineering, 239: 122145.
4. Energy Technology Perspectives 2020 - Special report
on carbon capture utilisation and storage. Energy Technology Perspectives
2020 - Special Report on Carbon Capture Utilisation and Storage.
5. Ma, C., Bai, J., Hu, X., Jiang, Z. and Wang, L.
(2023). Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective
CO2 adsorbents. Journal of Environmental Sciences (China),
125: 533-543.
6. Wang, X. and Song, C. (2020). Carbon capture from flue
gas and the atmosphere: A perspective. Frontiers in Energy Research,
2020: 560849.
7. Gelles, T., Lawson, S., Rownaghi,
A.A. and Rezaei, F. (2020). Recent advances in development of amine
functionalized adsorbents for CO2 capture. Adsorption, 2020:
151.
8. Borhan, A., Yusup, S., Lim, J.W. and Show, P.L. (2019)
Characterization and modelling studies of activated carbon produced from
rubber-seed shell using KOH for CO2 Adsorption. Processes, 7:
110855.
9. Hu, H. and Xu, K. (2020). Physicochemical technologies
for HRPs and risk control. High-Risk Pollutants in Wastewater, Elsevier:
pp. 169-207.
10. Kwon, D. il, Kim, J.C., Lee, H., Lee, W. and Jo, C.
(2022). Engineering micropore walls of beta zeolites by post-functionalization
for CO2 adsorption performance screening under humid conditions. Chemical
Engineering Journal, 427: 131461.
11. Mochizuki, Y., Bud, J., Byambajav, E. and Tsubouchi, N. (2022). Influence of ammonia treatment on the
CO2 adsorption of activated carbon. Journal of Environmental
Chemical Engineering, 10: 107273.
12. Ansari, K.B., Gaikar, V.G.,
Trinh, Q.T., Khan, M.S., Banerjee, A., Kanchan, D.R., Mesfer, M.K. and Danish,
M. (2022). Carbon dioxide capture over amine
functionalized styrene divinylbenzene copolymer: An experimental batch and
continuous studies. Journal of Environmental Chemical Engineering, 10:
106910.
13. Varghese, A.M. and Karanikolos,
G.N. (2020). CO2 capture adsorbents functionalized by amine –
bearing polymers: A review. International Journal of Greenhouse Gas Control,
Elsevier, 96: 103005.
14. Hassan, A., Goswami, S., Alam, A., Bera, R. and Das,
N. (2021). Triptycene based and nitrogen rich hyper cross
linked polymers (TNHCPs) as efficient CO2 and iodine
adsorbent. Separation and Purification Technology, 257: 117923.
15. Chen, J., Jiang, L., Wang, W., Shen, Z., Liu, S., Li,
X. and Wang, Y. (2022). Constructing highly porous carbon materials from porous
organic polymers for superior CO2 adsorption and separation. Journal
of Colloid and Interface Science, 609: 775–784.
16. Barbarin, I., Politakos, N.,
Serrano-Cantador, L., Cecilia, J.A., Sanz, O. and Tomovska, R. (2022). Towards functionalized
graphene/polymer monolithic structures for selective CO2 capture. Microporous
and Mesoporous Materials, 337: 111907.
17. Liu, X., Du, J., Ye, Y., Liu, Y., Wang, S., Meng, X.,
Song, X., Liang, Z. and Yan, W. (2022). Boosting selective C2H2/CH4,
C2H4/CH4 and CO2/CH4
adsorption performance via 1,2,3-triazole functionalized triazine-based porous
organic polymers. Chinese Journal of Chemical Engineering, 42: 64-72.
18. Shang, Q., Cheng, Y., Gong, Z., Yan, Y., Han, B.,
Liao, G. and Wang, D. (2022). Constructing novel hyper-crosslinked conjugated
polymers through molecular expansion for enhanced gas adsorption performance. Journal
of Hazardous Materials, 426: 127850.
19. Li, L., Luo, Z., Zou, W., Liang, S., Wang, H. and
Zhang, C. (2024). Physicochemical synergistic adsorption of CO2 by
PEI-impregnated hierarchical porous polymers. Greenhouse Gases: Science and
Technology, 2024: 2263.
20. Liu, Y., Li, S., Pudukudy,
M., Lin, L., Yang, H., Li, M., Shan, S., Hu, T. and Zhi, Y. (2024).
Melamine-based nitrogen-heterocyclic polymer networks as efficient platforms
for CO2 adsorption and conversion. Separation and Purification
Technology, 331: 125645.
21. HaiyanYang, Wang, X., Liu, J., Liu, W., Gong, Y. and Sun, Y.
(2022). Amine-impregnated polymeric resin with high CO2 adsorption
capacity for biogas upgrading. Chemical Engineering Journal, 430:
132899.
22. Liu, L., Jin, S., Park, Y., Kim, K.M. and Lee, C.H.
(2021). Sorption equilibria, kinetics, and temperature-swing adsorption
performance of polyethyleneimine-impregnated silica for post-combustion carbon
dioxide capture. Separation and Purification Technology, 266: 118582.
23. Chen, Z., Lv, Z., Sun, Y.,
Chi, Z. and Qing, G. (2020). Recent advancements in polyethyleneimine-based
materials and their biomedical, biotechnology, and biomaterial applications. Journal
of Materials Chemistry B. 8(15): 2951-2973.
24. Rosu, C., Narayanan, P., Leisen, J.E. and Jones, C.W.
(2022). Sequential polymer infusion into solid substrates (SPISS): Impact of
processing on sorbent CO2 adsorption properties. Separation and
Purification Technology, 292: 121042.
25. Wang, S., Liu, H. and Chen, S. (2022). A strategy to
synthesis amine-functional poly(divinylbenzene)HIPEs with controllable porous
structure for effective CO2 adsorption. Fuel, 322: 124120.
26. Chen, X., Quan, H., Yu, J., Hu, Y. and Huang, Z.
(2024). Development of composite amine functionalized polyester microspheres
for efficient CO2 capture. Environmental Science and Pollution
Research, 31: 7027–7042.
27. Meng, Y., Ju, T., Meng, F., Han, S., Song, M. and
Jiang, J. (2021). Insights into the critical role of abundant-porosity
supports in polyethylenimine functionalization as
efficient and stable CO2 adsorbents. ACS Applied Materials &
Interfaces, 13: 54018–54031.
28. Hack, J., Frazzetto, S.,
Evers, L., Maeda, N. and Meier, D.M. (2022). Branched
versus linear structure: Lowering the CO2 desorption temperature of polyethylenimine‐functionalized silica adsorbents. Energies,
15: 31075.
29. Mohamad, N.A., Nasef, M.M.,
Nia, P.M., Zubair, N.A., Ahmad, A., Abdullah, T.A.T. and Ali, R.R. (2021). Tetraethylenepentamine-containing adsorbent with optimized
amination efficiency based on grafted polyolefin microfibrous
substrate for CO2 adsorption. Arabian Journal of Chemistry,
14: 103067.
30. Li, C., Yan, F., Shen, X., Qu, F., Wang, Y. and Zhang,
Z. (2021). Highly efficient and stable PEI@Al2O3
adsorbents derived from coal fly ash for biogas upgrading. Chemical
Engineering Journal, 409: 128117.
31. Irani, V., Khosh, A.G. and Tavasoli,
A. (2020). Polyethyleneimine (PEI) functionalized metal oxide nanoparticles
recovered from the catalytic converters of spent automotive exhaust systems and
application for CO2 adsorption. Frontiers in Energy Research,
8: 196.
32. Li, C., Wang, X., Yang, A., Chen, P., Zhao, T. and
Liu, F. (2021). Polyethyleneimine-modified amorphous silica for the selective
adsorption of CO2/N2 at high temperatures. ACS Omega,
6: 35389-35397.
33. Choi, C., Kadam, R.L., Gaikwad, S., Hwang, K.S. and
Han, S. (2020). Metal organic frameworks immobilized polyacrylonitrile fiber
mats with polyethyleneimine impregnation for CO2 capture. Microporous
and Mesoporous Materials, 296: 110006.
34. Yin, F., Zhuang, L., Luo, X. and Chen, S. (2018).
Simple synthesis of nitrogen-rich polymer network and its further amination
with PEI for CO2 adsorption. Applied Surface Science, 434:
514-521.
35. Wang, H., Chen, C., Chen, Y., Wan, H., Dong, L. and
Guan, G. (2021). Construction of ultramicropore-enriched
N-doped carbons for CO2 capture: Self-decomposition of
polyethyleneimine-based precursor to promote pore formation and surface
polarity. Journal of Environmental Chemical Engineering, 9: 105046.
36. Yang, C., Xiong, Y., Chen, J., Jin, J. and Mi, J.
(2021) Amine-functionalized micron-porous polymer foams with high CO2
adsorption efficiency and exceptional stability in PSA process. Chemical
Engineering Journal, Elsevier, 420: 129555.
37. Wang, S., Qiu, X., Chen, Y. and Chen, S. (2022).
Preparation and structure tuning of CO2 adsorbent based on in-situ
amine-functionalized hierarchical porous polymer. Microporous and Mesoporous
Materials, 330: 111585.
38. Wang, S., Wu, J., Ma, N. and Chen, S. (2021). High
molecular weight polyethylenimine encapsulated into a
porous polymer monolithic by one-step polymerization for CO2 capture.
New Journal of Chemistry, 45: 12538-12548.
39. Liu, H., Wang, X., Chen, S. and Chen, S. (2024).
Sponge-like polyethyleneimine adsorbents with interconnected open channels
enabling ultra-high CO2 adsorption and separation capacity. Separation
and Purification Technology, 330: 125528.
40. Choi, W., Park, J., Kim, C. and Choi, M. (2021).
Structural effects of amine polymers on stability and energy efficiency of
adsorbents in post-combustion CO2 capture. Chemical
Engineering Journal, 408: 127289.
41. Wu, J., Zhu, X., Yang, F., Ge, T. and Wang, R. (2021).
Easily-synthesized and low-cost amine-functionalized
silica sol-coated structured adsorbents for CO2 capture. Chemical
Engineering Journal, 425: 131409.
42. Mohamad, N.A., Nasef, M.M.,
Nia, P.M., Zubair, N.A., Ahmad, A., Abdullah, T.A.T. and Ali, R.R. (2021). Tetraethylenepentamine-containing adsorbent with optimized
amination efficiency based on grafted polyolefin microfibrous
substrate for CO2 adsorption. Arabian Journal of Chemistry,
14: 103067.
43. Tiainen, T., Mannisto, J.K., Tenhu,
H. and Hietala, S. (2022). CO2 capture and low-temperature release
by poly(aminoethyl methacrylate) and derivatives. Langmuir,
38: 5197-5208.
44. Deng, J., Liu, Z., Du, Z., Zou, W. and Zhang, C.
(2019). Fabrication of PEI-grafted porous polymer foam for CO2 capture.
Journal of Applied Polymer Science, 136: 2-8.
45. Liu, F., Kuang, Y., Wang, S., Chen, S. and Fu, W.
(2018). Preparation and characterization of molecularly imprinted solid amine
adsorbent for CO2 adsorption. New Journal of Chemistry, 42:
10016-10023.
46. Liu, H., Wang, S., Wang, X., Feng, X.J. and Chen, S.
(2022). A stable solid amine adsorbent with interconnected open-cell structure
for rapid CO2 adsorption and CO2/CH4
separation. Energy, 258: 124899.
47. Nabavi, S.A., Vladisavljević,
G.T., Wicaksono, A., Georgiadou, S. and Manović, V. (2017). Production of molecularly
imprinted polymer particles with amide-decorated cavities for CO2
capture using membrane emulsification/suspension polymerisation.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 521:
231-238.
48. Nabavi, S.A., Vladisavljević,
G.T., Wicaksono, A., Georgiadou, S. and Manović, V. (2017). Production of molecularly
imprinted polymer particles with amide-decorated cavities for CO2
capture using membrane emulsification/suspension polymerisation.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 521,
231-238.
49. Yoo, D.K., Yoon, T.U., Bae, Y.S. and Jhung, S.H. (2020). Metal-Organic Framework MIL-101 loaded
with polymethacrylamide with or without further
reduction: Effective and selective CO2 adsorption with amino or
amide functionality. Chemical Engineering Journal, 380: 122496.
50. Fayemiwo, K.A., Chiarasumran, N.,
Nabavi, S.A., Manović, V., Benyahia, B. and Vladisavljević, G.T. (2020). CO2 capture performance and environmental impact of copolymers
of ethylene glycol dimethacrylate with acrylamide, methacrylamide and triallylamine.
Journal of Environmental Chemical Engineering, 103536.
51. Su, W., Wang, R. and Zhao, T. (2020). CO2-imprinted
sustainable carbon derived from sunflower heads for highly effective capture of
CO2 from flue gas. Aerosol and Air Quality Research, 20:
180-192.
52. Liu, Y., Zhao, X.-Y., Sun, Y.-G., Li, W.-Z., Zhang,
X.-S. and Luan, J. (2023). Synthesis and applications of low dielectric
polyimide. Resources Chemicals and Materials, 2: 49-62.
53. Ning, H., Yang, Z., Yin, Z., Wang, D., Meng, Z., Wang,
C., Zhang, Y. and Chen, Z. (2021). A novel strategy to enhance the performance
of CO2 adsorption separation: grafting hyper-cross-linked polyimide
onto composites of UiO-66-NH2 and GO. ACS Applied Materials
& Interfaces, 13: 17781-17790.
54. Song, N., Ma, T., Wang, T., Li, Z., Yao, H. and Guan,
S. (2020). Microporous polyimides with high surface area and CO2
selectivity fabricated from cross-linkable linear polyimides. Journal of
Colloid and Interface Science, 573: 328-335.
55. Song, N., Wang, T., Ma, T., Li, J., Yao, H. and Guan,
S. (2022). Microporous polyimide networks with tunable micropore size
constructed through side-chain engineering of linear precursors. Polymer,
255: 125161.
56. Wang, T., Yang, Y., Song, N., Zhu, S., Yao, H., Zhang,
Y. and Guan, S. (2021). Thermal crosslinking polymerization of aromatic alkynyl
monomers to microporous polyimides in diphenyl sulfone. Microporous and
Mesoporous Materials, 328: 111447.
57. Wang, T., Yao, H., Song, N., Yang, Y., Shi, K. and
Guan, S. (2021). Microporous polymer networks constructed from cross-linkable
linear polyimides for CO2 adsorption. Microporous and Mesoporous
Materials, 311: 110708.
58. Huang, Q., Zhan, Z., Sun, R., Mu, J., Tan, B. and Wu,
C. (2023). Light triggered pore size tuning in photoswitching
covalent triazine frameworks for low energy CO2 capture. Angewandte Chemie -
International Edition, 62: 5500.
59. Ping, R., Ma, C., Shen, Z., Zhang, G., Wang, D., Liu,
F. and Liu, M. (2023). Metalloporphyrin and triazine integrated nitrogen-rich
frameworks as high-performance platform for CO2 adsorption and
conversion under ambient pressure. Separation and Purification Technology,
310: 123151.
60. Pourebrahimi, S. and Pirooz, M. (2022). Functionalized covalent
triazine frameworks as promising platforms for environmental remediation: A
review. Cleaner Chemical Engineering, 2: 100012.
61. Ngo, H.M., Pal, U., Kang, Y.S. and Ok, K.M. (2023).
DFT-based study for the enhancement of CO2 adsorption on metal-doped
nitrogen-enriched polytriazines. ACS Omega, 8:
8876-8884.
62. Chen, Y., Hu, X., Guo, J., Guo, Z., Zhan, H. and Du,
S. (2022). Optimizing CO2 capture and separation in pyrene derived
covalent triazine frameworks. European Polymer Journal, 171: 111215.
63. Li, G., Zhou, X. and Wang, Z. (2020). Highly
nitrogen-rich microporous polyaminals using n,
n-dimethylformamide and formamide as the starting monomers for CO2
adsorption and separation. Journal of Physical Chemistry C, 124:
3087-3094.
64. Zhang, B., Yan, J., Li, G. and Wang, Z. (2019).
Cost-effective preparation of microporous polymers from formamide derivatives
and adsorption of CO2 under dry and humid conditions. Polymer
Chemistry, 10: 3371-3379.
65. Alkorta, I. and Legon, A.C. (2018) An ab initio investigation
of the geometries and binding strengths of tetrel-,
pnictogen-, and chalcogen-bonded complexes of CO2, N2O,
and CS2 with simple Lewis bases: some generalizations. Molecules,
23: 92250.
66. Dash, B. (2018). Carbon dioxide capture using covalent
organic frameworks (COFs) type material-a theoretical investigation. Journal
of Molecular Modeling, 24: 3646.
67. Faisal, M., Pamungkas, A.Z.
and Krisnandi, Y.K. (2021). Study of amine
functionalized mesoporous carbon as CO2 storage materials. Processes,
9: 1-13.
68. Wang, F., Yu, L., Li, Y. and Huang, D. (2021). CO2
adsorption capacity of organic alkali sorbent CPEI from
polyethyleneimine. Adsorption Science and Technology, 2021: 6629365.
69. Caplow, M. (2002). Kinetics of carbamate formation and
breakdown. Journal of the American Chemical Society, 90: 6795-6803.
70. Said, R. ben, Kolle, J.M., Essalah,
K., Tangour, B. and Sayari, A. (2020). A unified
approach to CO2 −amine reaction mechanisms. ACS Omega,
5: 44.
71. v. Kortunov, P., Siskin, M.,
Saunders Baugh, L. and C. Calabro, D. (2015). In situ
nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with
liquid amines in aqueous systems: New insights on carbon capture reaction
pathways. Energy & Fuels, 29: 5919-5939.
72. Suresh, V. M., Bonakala, S., Atreya, H. S., Balasubramanian, S., and
Maji, T. K. (2014). Amide functionalized microporous organic polymer
(Am-MOP) for selective CO2 sorption and catalysis. ACS Applied
Materials & Interfaces, 6(7): 4630-4637.
73. Lee, H.M., Youn, I.S., Saleh, M., Lee, J.W. and Kim,
K.S. (2015). Interactions of CO2 with various functional molecules. Physical
Chemistry Chemical Physics, 17: 673.
74. Tan, M.X., Zhang, Y. and
Ying, J.Y. (2013). Mesoporous poly(melamine-formaldehyde) solid sorbent for
carbon dioxide capture. ChemSusChem, 6: 107.
75. Tumnantong, D., Panploo, K., Chalermsinsuwan, B., Prasassarakich,
P. and Poompradub, S. (2021). Carbon dioxide adsorption of diallylamine-modified
natural rubber with modified silica particles. Express Polymer Letters,
15: 899-909.
76. Schukraft, G.E.M., Itskou,
I., Woodward, R.T., Van Der Linden, B., Petit, C. and Urakawa, A. (2022).
Evaluation of CO2 and H2O adsorption on a porous polymer
using DFT and in situ DRIFT spectroscopy. Journal of Physical Chemistry B,
126: 3912.
77. Xu, Y., Zhou, Z., Guo, Y., Liu, L., Xu, Y., Qiao, C.
and Jia, Y. (2022). Carbon dioxide detection using polymer-coated fiber bragg grating based on volume dilation mechanism and
molecular dynamics simulation. Applied Surface Science, 584: 152616.
78. Zang, P., Tang, J., Zhang, H., Wang, X., Zhao, P.,
Cui, L., Chen, J., Zhao, P. and Dong, Y. (2024). Insights into amine-resin
matching strategy for CO2 capture: Adsorption performance tests and
mechanistic investigation. Separation and Purification Technology, 331:
125622.
79. Mehrdad, A. and Noorani, N. (2019). Study of co2
adsorption onto poly(1–vinylimidazole) using quartz
crystal microbalance and density functional theory methods. Journal of
Molecular Liquids, 291:111288.
80. Sarkar, R. and Kundu, T.K. (2021). Density Functional
theory-based analyses on selective gas separation by β-PVDF-supported
ionic liquid membranes. Journal of Molecular
Graphics and Modelling, 108: 108004.
81. Noorani, N. and Mehrdad, A. (2019). Adsorption,
permeation, and DFT studies of PVC/PVIm blends for
separation of CO2/CH4. Journal of Molecular Liquids,
292: 111410.
82. Stankovic, B., Barbarin, I., Sanz, O. and Tomovska, R. (2022). Experimental and theoretical study of
the effect of different functionalities of graphene oxide / polymer composites
on selective CO2 capture. Scientific Reports, 2022: 1-13.