Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 461 - 479

 

A REVIEW OF THE CURRENT TREND IN THE SYNTHESIS OF NITROGEN-RICH FUNCTIONAL POLYMERS FOR CARBON DIOXIDE ADSORPTION

 

(Sorotan Terhadap Trend Semasa Dalam Sintesis Polimer Fungsional Kaya Nitrogen Untuk Penjerapan Karbon Dioksida)

 

Noorhidayah Ishak1, Azalina Mohamed Nasir2, Chow Wen Shyang3, Dai Viet N. Vo4, Bassim H. Hameed5,

Mohd Azmier Ahmad1, and Azam Taufik Mohd Din1*

 

1 School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

2 Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Universiti Malaysia Perlis (UniMAP) 02600 Arau, Perlis, Malaysia

3 School of Materials and Mining Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

4 Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.

5 Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar

 

* Corresponding author chazam@usm.my

 

 

Received: 1January 2024; Accepted: 19 March 2024; Published:  29 April 2024

 

 

Abstract

The consumption of fossil fuels (oil, coal, and natural gas) has increased due to the increasing demand for energy from various industries. The International Energy Agency, in its World Energy Outlook 2022, has noted a steady increase in global energy demand from fossil fuels from 350 EJ in 2000 to over 500 EJ in 2030. This increase has contributed significantly to the emission of greenhouse gases, mainly carbon dioxide (CO2), leading to global warming and climate change. Carbon capture by adsorption on polymeric adsorbents is a strategic approach to mitigate climate change by reducing CO2 concentration in the atmosphere. This review focuses on the preparation of various nitrogen-rich functional polymers, mainly polyamine, polyamide/polyimide, and covalent triazine framework. This article provides important information on improving the functionality of nitrogen-rich functional polymers for CO2 adsorption. Brief insights into the CO2 adsorption mechanism and molecular modeling using density functional theory are also included. The challenges and future recommendations are also addressed in this review.

 

Keywords: carbon capture, adsorbent, climate change, density functional theory

 

Abstrak

Penggunaan bahan api (minyak, arang, dan gas asli) telah meningkat kerana pertambahan permintaan untuk tenaga dalam pelbagai sektor industri. Agensi Tenaga Antarabangsa (IEA) dalam Tinjauan Tenaga Dunia 2022 telah mencatatkan pertambahan yang mantap dalam permintaan global tenaga daripada bahan api fosil dari 350 EJ pada tahun 2000 hingga melebihi 500 EJ pada tahun 2030. Peningkatan ini telah menyumbang kesan yang ketara pada pembebasan gas hijau terutamanya karbon dioksida (CO2) yang membawa kepada pemanasan global dan perubahan iklim. Penangkapan karbon menggunakan kaedah penjerapan ke atas bahan penjerap daripada polimer ialah satu strategi bagi mengatasi perubahan iklim dengan cara mengurangkan kepekatan CO2 dalam atmosfera. Sorotan ini memfokuskan kepada penyediaan beberapa jenis polimer fungsional kaya nitrogen, antaranya poliamina, poliamida/poliimida, dan kerangka kovalen triazina. Artikel ini menyediakan maklumat penting bagi menambah baik kefungsian polimer kaya nitrogen bagi tujuan penjerapan CO2. Pemahaman ringkas mengenai mekanisma penjerapan CO2 serta pemodelan molekul menggunakan teori ketumpatan berfungsi turut disertakan. Cabaran dan cadangan masa hadapan turut disampaikan dalam sorotan ini.

 

Kata kunci: penangkapan karbon, bahan penjerap, perubahan iklim, teori ketumpatan berfungsi


References

1.      Martins, T., Barreto, A.C., Souza, F.M. and Souza, A.M. (2021). Fossil fuels consumption and carbon dioxide emissions in G7 countries: Empirical evidence from ARDL bounds testing approach. Environmental Pollution, 291:118093.

2.      Nations, U. (2015) Paris Agreement. Paris.

3.      Vannak, H., Osaka, Y., Tsujiguchi, T. and Kodama, A. (2024). The efficacy of carbon molecular sieve and solid amine for CO2 separation from a simulated wet flue gas by an internally heated/cooled temperature swing adsorption process. Applied Thermal Engineering, 239: 122145.

4.      Energy Technology Perspectives 2020 - Special report on carbon capture utilisation and storage. Energy Technology Perspectives 2020 - Special Report on Carbon Capture Utilisation and Storage.

5.      Ma, C., Bai, J., Hu, X., Jiang, Z. and Wang, L. (2023). Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents. Journal of Environmental Sciences (China), 125: 533-543.

6.      Wang, X. and Song, C. (2020). Carbon capture from flue gas and the atmosphere: A perspective. Frontiers in Energy Research, 2020: 560849.

7.      Gelles, T., Lawson, S., Rownaghi, A.A. and Rezaei, F. (2020). Recent advances in development of amine functionalized adsorbents for CO2 capture. Adsorption, 2020: 151.

8.      Borhan, A., Yusup, S., Lim, J.W. and Show, P.L. (2019) Characterization and modelling studies of activated carbon produced from rubber-seed shell using KOH for CO2 Adsorption. Processes, 7: 110855.

9.      Hu, H. and Xu, K. (2020). Physicochemical technologies for HRPs and risk control. High-Risk Pollutants in Wastewater, Elsevier: pp. 169-207.

10.   Kwon, D. il, Kim, J.C., Lee, H., Lee, W. and Jo, C. (2022). Engineering micropore walls of beta zeolites by post-functionalization for CO2 adsorption performance screening under humid conditions. Chemical Engineering Journal, 427: 131461.

11.   Mochizuki, Y., Bud, J., Byambajav, E. and Tsubouchi, N. (2022). Influence of ammonia treatment on the CO2 adsorption of activated carbon. Journal of Environmental Chemical Engineering, 10: 107273.

12.   Ansari, K.B., Gaikar, V.G., Trinh, Q.T., Khan, M.S., Banerjee, A., Kanchan, D.R., Mesfer, M.K. and Danish, M. (2022). Carbon dioxide capture over amine functionalized styrene divinylbenzene copolymer: An experimental batch and continuous studies. Journal of Environmental Chemical Engineering, 10: 106910.

13.   Varghese, A.M. and Karanikolos, G.N. (2020). CO2 capture adsorbents functionalized by amine – bearing polymers: A review. International Journal of Greenhouse Gas Control, Elsevier, 96: 103005.

14.   Hassan, A., Goswami, S., Alam, A., Bera, R. and Das, N. (2021). Triptycene based and nitrogen rich hyper cross linked polymers (TNHCPs) as efficient CO2 and iodine adsorbent. Separation and Purification Technology, 257: 117923.

15.   Chen, J., Jiang, L., Wang, W., Shen, Z., Liu, S., Li, X. and Wang, Y. (2022). Constructing highly porous carbon materials from porous organic polymers for superior CO2 adsorption and separation. Journal of Colloid and Interface Science, 609: 775–784.

16.   Barbarin, I., Politakos, N., Serrano-Cantador, L., Cecilia, J.A., Sanz, O. and Tomovska, R. (2022). Towards functionalized graphene/polymer monolithic structures for selective CO2 capture. Microporous and Mesoporous Materials, 337: 111907.

17.   Liu, X., Du, J., Ye, Y., Liu, Y., Wang, S., Meng, X., Song, X., Liang, Z. and Yan, W. (2022). Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers. Chinese Journal of Chemical Engineering, 42: 64-72.

18.   Shang, Q., Cheng, Y., Gong, Z., Yan, Y., Han, B., Liao, G. and Wang, D. (2022). Constructing novel hyper-crosslinked conjugated polymers through molecular expansion for enhanced gas adsorption performance. Journal of Hazardous Materials, 426: 127850.

19.   Li, L., Luo, Z., Zou, W., Liang, S., Wang, H. and Zhang, C. (2024). Physicochemical synergistic adsorption of CO2 by PEI-impregnated hierarchical porous polymers. Greenhouse Gases: Science and Technology, 2024: 2263.

20.   Liu, Y., Li, S., Pudukudy, M., Lin, L., Yang, H., Li, M., Shan, S., Hu, T. and Zhi, Y. (2024). Melamine-based nitrogen-heterocyclic polymer networks as efficient platforms for CO2 adsorption and conversion. Separation and Purification Technology, 331: 125645.

21.   HaiyanYang, Wang, X., Liu, J., Liu, W., Gong, Y. and Sun, Y. (2022). Amine-impregnated polymeric resin with high CO2 adsorption capacity for biogas upgrading. Chemical Engineering Journal, 430: 132899.

22.   Liu, L., Jin, S., Park, Y., Kim, K.M. and Lee, C.H. (2021). Sorption equilibria, kinetics, and temperature-swing adsorption performance of polyethyleneimine-impregnated silica for post-combustion carbon dioxide capture. Separation and Purification Technology, 266: 118582.

23.   Chen, Z., Lv, Z., Sun, Y., Chi, Z. and Qing, G. (2020). Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. Journal of Materials Chemistry B. 8(15): 2951-2973.

24.   Rosu, C., Narayanan, P., Leisen, J.E. and Jones, C.W. (2022). Sequential polymer infusion into solid substrates (SPISS): Impact of processing on sorbent CO2 adsorption properties. Separation and Purification Technology, 292: 121042.

25.   Wang, S., Liu, H. and Chen, S. (2022). A strategy to synthesis amine-functional poly(divinylbenzene)HIPEs with controllable porous structure for effective CO2 adsorption. Fuel, 322: 124120.

26.   Chen, X., Quan, H., Yu, J., Hu, Y. and Huang, Z. (2024). Development of composite amine functionalized polyester microspheres for efficient CO2 capture. Environmental Science and Pollution Research, 31: 7027–7042.

27.   Meng, Y., Ju, T., Meng, F., Han, S., Song, M. and Jiang, J. (2021). Insights into the critical role of abundant-porosity supports in polyethylenimine functionalization as efficient and stable CO2 adsorbents. ACS Applied Materials & Interfaces, 13: 54018–54031.

28.   Hack, J., Frazzetto, S., Evers, L., Maeda, N. and Meier, D.M. (2022). Branched versus linear structure: Lowering the CO2 desorption temperature of polyethylenimine‐functionalized silica adsorbents. Energies, 15: 31075.

29.   Mohamad, N.A., Nasef, M.M., Nia, P.M., Zubair, N.A., Ahmad, A., Abdullah, T.A.T. and Ali, R.R. (2021). Tetraethylenepentamine-containing adsorbent with optimized amination efficiency based on grafted polyolefin microfibrous substrate for CO2 adsorption. Arabian Journal of Chemistry, 14: 103067.

30.   Li, C., Yan, F., Shen, X., Qu, F., Wang, Y. and Zhang, Z. (2021). Highly efficient and stable PEI@Al2O3 adsorbents derived from coal fly ash for biogas upgrading. Chemical Engineering Journal, 409: 128117.

31.   Irani, V., Khosh, A.G. and Tavasoli, A. (2020). Polyethyleneimine (PEI) functionalized metal oxide nanoparticles recovered from the catalytic converters of spent automotive exhaust systems and application for CO2 adsorption. Frontiers in Energy Research, 8: 196.

32.   Li, C., Wang, X., Yang, A., Chen, P., Zhao, T. and Liu, F. (2021). Polyethyleneimine-modified amorphous silica for the selective adsorption of CO2/N2 at high temperatures. ACS Omega, 6: 35389-35397.

33.   Choi, C., Kadam, R.L., Gaikwad, S., Hwang, K.S. and Han, S. (2020). Metal organic frameworks immobilized polyacrylonitrile fiber mats with polyethyleneimine impregnation for CO2 capture. Microporous and Mesoporous Materials, 296: 110006.

34.   Yin, F., Zhuang, L., Luo, X. and Chen, S. (2018). Simple synthesis of nitrogen-rich polymer network and its further amination with PEI for CO2 adsorption. Applied Surface Science, 434: 514-521.

35.   Wang, H., Chen, C., Chen, Y., Wan, H., Dong, L. and Guan, G. (2021). Construction of ultramicropore-enriched N-doped carbons for CO2 capture: Self-decomposition of polyethyleneimine-based precursor to promote pore formation and surface polarity. Journal of Environmental Chemical Engineering, 9: 105046.

36.   Yang, C., Xiong, Y., Chen, J., Jin, J. and Mi, J. (2021) Amine-functionalized micron-porous polymer foams with high CO2 adsorption efficiency and exceptional stability in PSA process. Chemical Engineering Journal, Elsevier, 420: 129555.

37.   Wang, S., Qiu, X., Chen, Y. and Chen, S. (2022). Preparation and structure tuning of CO2 adsorbent based on in-situ amine-functionalized hierarchical porous polymer. Microporous and Mesoporous Materials, 330: 111585.

38.   Wang, S., Wu, J., Ma, N. and Chen, S. (2021). High molecular weight polyethylenimine encapsulated into a porous polymer monolithic by one-step polymerization for CO2 capture. New Journal of Chemistry, 45: 12538-12548.

39.   Liu, H., Wang, X., Chen, S. and Chen, S. (2024). Sponge-like polyethyleneimine adsorbents with interconnected open channels enabling ultra-high CO2 adsorption and separation capacity. Separation and Purification Technology, 330: 125528.

40.   Choi, W., Park, J., Kim, C. and Choi, M. (2021). Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2 capture. Chemical Engineering Journal, 408: 127289.

41.   Wu, J., Zhu, X., Yang, F., Ge, T. and Wang, R. (2021). Easily-synthesized and low-cost amine-functionalized silica sol-coated structured adsorbents for CO2 capture. Chemical Engineering Journal, 425: 131409.

42.   Mohamad, N.A., Nasef, M.M., Nia, P.M., Zubair, N.A., Ahmad, A., Abdullah, T.A.T. and Ali, R.R. (2021). Tetraethylenepentamine-containing adsorbent with optimized amination efficiency based on grafted polyolefin microfibrous substrate for CO2 adsorption. Arabian Journal of Chemistry, 14: 103067.

43.   Tiainen, T., Mannisto, J.K., Tenhu, H. and Hietala, S. (2022). CO2 capture and low-temperature release by poly(aminoethyl methacrylate) and derivatives. Langmuir, 38: 5197-5208.

44.   Deng, J., Liu, Z., Du, Z., Zou, W. and Zhang, C. (2019). Fabrication of PEI-grafted porous polymer foam for CO2 capture. Journal of Applied Polymer Science, 136: 2-8.

45.   Liu, F., Kuang, Y., Wang, S., Chen, S. and Fu, W. (2018). Preparation and characterization of molecularly imprinted solid amine adsorbent for CO2 adsorption. New Journal of Chemistry, 42: 10016-10023.

46.   Liu, H., Wang, S., Wang, X., Feng, X.J. and Chen, S. (2022). A stable solid amine adsorbent with interconnected open-cell structure for rapid CO2 adsorption and CO2/CH4 separation. Energy, 258: 124899.

47.   Nabavi, S.A., Vladisavljević, G.T., Wicaksono, A., Georgiadou, S. and Manović, V. (2017). Production of molecularly imprinted polymer particles with amide-decorated cavities for CO2 capture using membrane emulsification/suspension polymerisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 521: 231-238.

48.   Nabavi, S.A., Vladisavljević, G.T., Wicaksono, A., Georgiadou, S. and Manović, V. (2017). Production of molecularly imprinted polymer particles with amide-decorated cavities for CO2 capture using membrane emulsification/suspension polymerisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 521, 231-238.

49.   Yoo, D.K., Yoon, T.U., Bae, Y.S. and Jhung, S.H. (2020). Metal-Organic Framework MIL-101 loaded with polymethacrylamide with or without further reduction: Effective and selective CO2 adsorption with amino or amide functionality. Chemical Engineering Journal, 380: 122496.

50.   Fayemiwo, K.A., Chiarasumran, N., Nabavi, S.A., Manović, V., Benyahia, B. and Vladisavljević, G.T. (2020). CO2 capture performance and environmental impact of copolymers of ethylene glycol dimethacrylate with acrylamide, methacrylamide and triallylamine. Journal of Environmental Chemical Engineering, 103536.

51.   Su, W., Wang, R. and Zhao, T. (2020). CO2-imprinted sustainable carbon derived from sunflower heads for highly effective capture of CO2 from flue gas. Aerosol and Air Quality Research, 20: 180-192.

52.   Liu, Y., Zhao, X.-Y., Sun, Y.-G., Li, W.-Z., Zhang, X.-S. and Luan, J. (2023). Synthesis and applications of low dielectric polyimide. Resources Chemicals and Materials, 2: 49-62.

53.   Ning, H., Yang, Z., Yin, Z., Wang, D., Meng, Z., Wang, C., Zhang, Y. and Chen, Z. (2021). A novel strategy to enhance the performance of CO2 adsorption separation: grafting hyper-cross-linked polyimide onto composites of UiO-66-NH2 and GO. ACS Applied Materials & Interfaces, 13: 17781-17790.

54.   Song, N., Ma, T., Wang, T., Li, Z., Yao, H. and Guan, S. (2020). Microporous polyimides with high surface area and CO2 selectivity fabricated from cross-linkable linear polyimides. Journal of Colloid and Interface Science, 573: 328-335.

55.   Song, N., Wang, T., Ma, T., Li, J., Yao, H. and Guan, S. (2022). Microporous polyimide networks with tunable micropore size constructed through side-chain engineering of linear precursors. Polymer, 255: 125161.

56.   Wang, T., Yang, Y., Song, N., Zhu, S., Yao, H., Zhang, Y. and Guan, S. (2021). Thermal crosslinking polymerization of aromatic alkynyl monomers to microporous polyimides in diphenyl sulfone. Microporous and Mesoporous Materials, 328: 111447.

57.   Wang, T., Yao, H., Song, N., Yang, Y., Shi, K. and Guan, S. (2021). Microporous polymer networks constructed from cross-linkable linear polyimides for CO2 adsorption. Microporous and Mesoporous Materials, 311: 110708.

58.   Huang, Q., Zhan, Z., Sun, R., Mu, J., Tan, B. and Wu, C. (2023). Light triggered pore size tuning in photoswitching covalent triazine frameworks for low energy CO2 capture. Angewandte Chemie - International Edition, 62: 5500.

59.   Ping, R., Ma, C., Shen, Z., Zhang, G., Wang, D., Liu, F. and Liu, M. (2023). Metalloporphyrin and triazine integrated nitrogen-rich frameworks as high-performance platform for CO2 adsorption and conversion under ambient pressure. Separation and Purification Technology, 310: 123151.

60.   Pourebrahimi, S. and Pirooz, M. (2022). Functionalized covalent triazine frameworks as promising platforms for environmental remediation: A review. Cleaner Chemical Engineering, 2: 100012.

61.   Ngo, H.M., Pal, U., Kang, Y.S. and Ok, K.M. (2023). DFT-based study for the enhancement of CO2 adsorption on metal-doped nitrogen-enriched polytriazines. ACS Omega, 8: 8876-8884.

62.   Chen, Y., Hu, X., Guo, J., Guo, Z., Zhan, H. and Du, S. (2022). Optimizing CO2 capture and separation in pyrene derived covalent triazine frameworks. European Polymer Journal, 171: 111215.

63.   Li, G., Zhou, X. and Wang, Z. (2020). Highly nitrogen-rich microporous polyaminals using n, n-dimethylformamide and formamide as the starting monomers for CO2 adsorption and separation. Journal of Physical Chemistry C, 124: 3087-3094.

64.   Zhang, B., Yan, J., Li, G. and Wang, Z. (2019). Cost-effective preparation of microporous polymers from formamide derivatives and adsorption of CO2 under dry and humid conditions. Polymer Chemistry, 10: 3371-3379.

65.   Alkorta, I. and Legon, A.C. (2018) An ab initio investigation of the geometries and binding strengths of tetrel-, pnictogen-, and chalcogen-bonded complexes of CO2, N2O, and CS2 with simple Lewis bases: some generalizations. Molecules, 23: 92250.

66.   Dash, B. (2018). Carbon dioxide capture using covalent organic frameworks (COFs) type material-a theoretical investigation. Journal of Molecular Modeling, 24: 3646.

67.   Faisal, M., Pamungkas, A.Z. and Krisnandi, Y.K. (2021). Study of amine functionalized mesoporous carbon as CO2 storage materials. Processes, 9: 1-13.

68.   Wang, F., Yu, L., Li, Y. and Huang, D. (2021). CO2 adsorption capacity of organic alkali sorbent CPEI from polyethyleneimine. Adsorption Science and Technology, 2021: 6629365.

69.   Caplow, M. (2002). Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society, 90: 6795-6803.

70.   Said, R. ben, Kolle, J.M., Essalah, K., Tangour, B. and Sayari, A. (2020). A unified approach to CO2 −amine reaction mechanisms. ACS Omega, 5: 44.

71.   v. Kortunov, P., Siskin, M., Saunders Baugh, L. and C. Calabro, D. (2015). In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in aqueous systems: New insights on carbon capture reaction pathways. Energy & Fuels, 29: 5919-5939.

72.   Suresh, V. M., Bonakala, S., Atreya, H. S., Balasubramanian, S., and Maji, T. K. (2014). Amide functionalized microporous organic polymer (Am-MOP) for selective CO2 sorption and catalysis. ACS Applied Materials & Interfaces, 6(7): 4630-4637.

73.   Lee, H.M., Youn, I.S., Saleh, M., Lee, J.W. and Kim, K.S. (2015). Interactions of CO2 with various functional molecules. Physical Chemistry Chemical Physics, 17: 673.

74.   Tan, M.X., Zhang, Y. and Ying, J.Y. (2013). Mesoporous poly(melamine-formaldehyde) solid sorbent for carbon dioxide capture. ChemSusChem, 6: 107.

75.   Tumnantong, D., Panploo, K., Chalermsinsuwan, B., Prasassarakich, P. and Poompradub, S. (2021). Carbon dioxide adsorption of diallylamine-modified natural rubber with modified silica particles. Express Polymer Letters, 15: 899-909.

76.   Schukraft, G.E.M., Itskou, I., Woodward, R.T., Van Der Linden, B., Petit, C. and Urakawa, A. (2022). Evaluation of CO2 and H2O adsorption on a porous polymer using DFT and in situ DRIFT spectroscopy. Journal of Physical Chemistry B, 126: 3912.

77.   Xu, Y., Zhou, Z., Guo, Y., Liu, L., Xu, Y., Qiao, C. and Jia, Y. (2022). Carbon dioxide detection using polymer-coated fiber bragg grating based on volume dilation mechanism and molecular dynamics simulation. Applied Surface Science, 584: 152616.

78.   Zang, P., Tang, J., Zhang, H., Wang, X., Zhao, P., Cui, L., Chen, J., Zhao, P. and Dong, Y. (2024). Insights into amine-resin matching strategy for CO2 capture: Adsorption performance tests and mechanistic investigation. Separation and Purification Technology, 331: 125622.

79.   Mehrdad, A. and Noorani, N. (2019). Study of co2 adsorption onto poly(1–vinylimidazole) using quartz crystal microbalance and density functional theory methods. Journal of Molecular Liquids, 291:111288.

80.   Sarkar, R. and Kundu, T.K. (2021). Density Functional theory-based analyses on selective gas separation by β-PVDF-supported ionic liquid membranes. Journal of Molecular Graphics and Modelling, 108: 108004.

81.   Noorani, N. and Mehrdad, A. (2019). Adsorption, permeation, and DFT studies of PVC/PVIm blends for separation of CO2/CH4. Journal of Molecular Liquids, 292: 111410.

82.   Stankovic, B., Barbarin, I., Sanz, O. and Tomovska, R. (2022). Experimental and theoretical study of the effect of different functionalities of graphene oxide / polymer composites on selective CO2 capture. Scientific Reports, 2022: 1-13.