Malaysian Journal of Analytical
Sciences, Vol 28
No 2 (2024): 441 -
460
(Pra-Kepekatan
Racun Organoklorin Menggunakan Pengekstraksi Fasa Mikro-Pepejal Berasaskan
Bio-sorben Alginat-Silika Komposit yang Diperoleh daripada Daun Pelepah Kelapa
Sawit)
1Faculty of Applied Science, Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Faculty of Applied Science,
Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400, Perak
*Corresponding author:
wannazihah@uitm.edu.my
Received: 27 September 2023;
Accepted: 16 January 2024; Published: 29
April 2024
Abstract
This study focuses on the
extraction of organochlorine pesticides (OCPs) contained in environmental water
samples by using encapsulated alginate-silica (Alg-SiO2) composite
beads. The composite beads were made by ionic crosslinking interaction between
polymeric alginate and silica particles derived from oil palm fronds and were
characterized by ATR-FTIR, FESEM, and EDX to study their chemical and physical
properties. The Alg-SiO2 composite beads were then used as the
sorbent material for the micro-solid phase extraction (
Keywords: alginate, silica sorbent, organochlorine, oil palm, micro
solid phase extraction
Abstrak
Kajian ini memfokuskan kepada
pengekstrakan racun perosak organoklorin (OCP) yang terkandung dalam sampel air
persekitaran dengan menggunakan kapsulan manik komposit alginat-silika (Alg-SiO2).
Manik komposit dibuat melalui interaksi pertautan silang ion antara polimer
alginat dan zarah silika yang diperoleh daripada pelepah kelapa sawit, dan
dicirikan oleh ATR-FTIR, FESEM, dan EDX untuk mengkaji sifat kimia dan
fizikalnya. Manik komposit Alg-SiO2 kemudiannya digunakan sebagai
bahan penjerap untuk pengekstrakan fasa pepejal mikro (μ-SPE) untuk
mengekstrak OCP daripada sampel akueus. Pengoptimuman pembangunan kaedah untuk
pengekstrakan analit yang disasarkan (heptaklor, aldrin, dan dieldrin)
dilakukan dengan mempelbagaikan masa pengekstrakan, pelarut pengekstrakan, masa
nyahjerapan dan jisim penjerap sebelum analisis spektrometer jisim gas
kromatografi. Angka analisis merit untuk μ-SPE dikira di bawah keadaan
pengekstrakan yang dioptimumkan. Di bawah keadaan optimum 50 mg penjerap yang
diekstrak selama 5 min dan nyahjerap menggunakan n-heksana selama 7 min telah
menghasilkan julat linear yang baik. Berdasarkan data yang diperoleh daripada
pengesahan kaedah, julat linear 1–10 mg/L untuk heptaklor, 0.1–1.0 mg/L untuk
aldrin, dan 0.2–1.4 mg/L untuk dieldrin, dengan had pengesanan 0.09–0.85 mg/L.
Kaedah yang dicadangkan telah berjaya digunakan untuk menentukan racun perosak
organoklorin dalam sampel air padi. Julat luas keluk penentukuran adalah
linear, dan pekali regresi adalah sekitar 0.979-0.993. Pemulihan diperolehi
dalam julat yang memuaskan iaitu 82-98% dan nilai ketepatan RSD dalam julat
0.19-4.52%.
Kata kunci: alginat, silika sorben,
organoklorin, kelapa sawit, pengekstraksi fasa mikro-pepejal
References
1.
Department of Statistics Malaysia (2019). Gross
domestic product.
https://www.dosm.gov.my/portal-main/release-content/e37cf376-8b79-11ed-96a6-1866daa77ef9.
[Access online 02 July 2023].
2.
Marsin, F. M., Wan Ibrahim, W.
A., Nodeh, H. R., and Sanagi, M. M. (2020). New
magnetic oil palm fiber activated carbon-reinforced polypyrrole
solid phase extraction combined with gas chromatography-electron capture detection for determination of
organochlorine pesticides in water samples. Journal of Chromatography
A, 1612: 460638.
3.
Sulaiman, F., Abdullah, N., Gerhauser, H., and
Shariff, A. (2011). An outlook of Malaysian energy, oil palm industry and its
utilization of wastes as useful resources. Biomass and Bioenergy, 35(9):
3775-3786.
4.
Ozturk, M., Saba, N., Altay, V., Iqbal, R., Hakeem,
K.R., Jawaid, M. and Ibrahim, F. H. (2017). Biomass Bioenergy: An overview of
the development potential in Turkey and Malaysia. Renewable Sustainability
Energy Reviews, 79: 1285-1302.
5.
Roslan, A. M., Zahari, M. A. K. M., Hassan, M. A.,
and Shirai, Y. (2014). Investigation of oil palm frond properties for use as
biomaterials and biofuels. Tropical Agriculture and Development, 58(1):
26-29.
6.
Zhong, L. B., Yin, J., Liu, S. G., Liu, Q., Yang,
Y. S., and Zheng, Y. M. (2016). Facile one-pot synthesis of urchin-like Fe–Mn
binary oxide nanoparticles for effective adsorption of Cd(II)
from water. RSC Advances, 6(105): 103438-103445.
7.
Onoja, E., Chandren, S.,
Razak, F. I. A., and Wahab, R. A. (2018). Extraction of nanosilica
from oil palm leaves and its application as support for lipase
immobilization. Journal of Biotechnology, 283: 81-96.
8.
McCarthy, S. A., Davies, G. L., and Gun’ko, Y. K. (2012). Preparation of multifunctional
nanoparticles and their assemblies. Nature Protocols, 7(9):
1677-1693.
9.
Barbé, C. J., Kong, L.,
Finnie, K. S., Calleja, S., Hanna, J. V., Drabarek,
E., … and Blackford, M. G. (2008). Sol–gel matrices for controlled release:
from macro to nano using emulsion polymerization. Journal
of Sol-Gel Science and Technology, 46: 393-409.
10.
Chiew, C. S. C., Yeoh, H. K., Pasbakhsh,
P., Poh, P. E., Tey, B. T.,
and Chan, E. S. (2016). Stability and reusability of alginate-based adsorbents
for repetitive lead (II) removal. Polymer Degradation and Stability, 123:
146-154.
11.
Lee, K. Y. and Mooney, D. J. (2012). Alginate:
properties and biomedical applications. Progress in Polymer Science, 37(1):
106-126.
12.
Crini, G. (2005). Recent
developments in polysaccharide-based materials used as adsorbents in wastewater
treatment. Progress in Polymer Science, 30(1): 38-70.
13.
Vijayalakshmi, K., Devi, B. M., Sudha, P. N.,
Venkatesan, J., and Anil, S. J. J. N. N. (2016). Synthesis, characterization
and applications of nanochitosan/sodium
alginate/microcrystalline cellulose film. Journal Nanomedicine
Nanotechnology, 7(6): 419.
14.
Cataldo, S., Gianguzza,
A., Milea, D., Muratore, N., and Pettignano, A.
(2016). Pb (II) adsorption by a novel activated carbon alginate composite material. A kinetic and
equilibrium study. International Journal of Biological Macromolecules, 92:
769-778.
15.
Thakur, S., Pandey, S., and Arotiba,
O. A. (2016). Development of a sodium alginate-based organic/inorganic
superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydrate
Polymers, 153: 34-46.
16.
Pannier, A., Soltmann, U., Soltmann, B.,
Altenburger, R., and Schmitt-Jansen, M. (2014). Alginate/silica hybrid
materials for immobilization of green microalgae Chlorella vulgaris for
cell-based sensor arrays. Journal of Materials Chemistry B, 2(45):
7896-7909.
17.
Singh, V., Srivastava, P., Singh, A., Singh, D.,
and Malviya, T. (2016). Polysaccharide-silica hybrids: design and
applications. Polymer Reviews, 56(1): 113-136.
18.
Jaganathan, H., and Godin, B. (2012).
Biocompatibility assessment of Si-based nano-and micro-particles. Advanced
Drug Delivery Reviews, 64(15): 1800-1819.
19.
Choudhari, S. K., Premakshi,
H. G., and Kariduraganavar, M. Y. (2016). Development
of novel alginate–silica hybrid membranes for pervaporation dehydration of
isopropanol. Polymer Bulletin, 73: 743-762.
20.
Shi, J., Zhang, H., Yu, Y., Zou, X., Zhou, W., Guo,
J., ... and Zhao, Y. (2020). Adsorption properties of calcium alginate-silica
dioxide hybrid adsorbent to methylene blue. Journal of Inorganic and
Organometallic Polymers and Materials, 30: 2114-2125.
21.
Santhi, V. A., and Mustafa, A. M. (2013).
Assessment of organochlorine pesticides and plasticisers
in the Selangor River basin and possible pollution sources. Environmental
Monitoring and Assessment, 185: 1541-1554.
22.
Borrell, A., and Aguilar, A. (2007). Organochlorine
concentrations declined during 1987–2002 in western Mediterranean bottlenose
dolphins, a coastal top predator. Chemosphere, 66(2): 347-352.
23.
Hernandez, F., Bakker, J., Bijlsma, L., De Boer,
J., Botero-Coy, A. M., de Bruin, Y. B., and Hogendoorn,
E. A. (2019). The role of analytical chemistry in exposure science: Focus on
the aquatic environment. Chemosphere, 222: 564-583.
24.
Abdullah, M. P., Abdul Aziz, Y. F., Rozali Othman, M., and Wan Mohd Khalik, W. M. A. (2015).
Organochlorine pesticides residue level in surface water of Cameron Highlands,
Malaysia. Iranica Journal of Energy
& Environment, 6(2): 141-146.
25.
Osman, B. E., and Khalik, W. M. A. W. M. (2018).
Data on organochlorine concentration levels in soil of lowland paddy field,
Kelantan, Malaysia. Data in Brief, 20: 999-1003.
26.
Mat Saad, A., and Hassan Asari, F. F. A. (2019).
Distributions of organochlorine pesticides in sediment and aquatic biota: Benzenehexachlorides (BHCS). Proceedings of the
International Conference on Design Industries & Creative Culture: pp.
28-39.
27.
Nascimento, M. M., da Rocha, G. O., and de Andrade,
J. B. (2021). Customized dispersive micro-solid-phase extraction device
combined with micro-desorption for the simultaneous determination of 39
multiclass pesticides in environmental water samples. Journal of
Chromatography A, 1639: 461781.
28.
Gorji, S., Bahram, M., and Biparva,
P. (2019). Optimized stir bar sorptive extraction
based on self-magnetic nanocomposite monolithic kit for determining bisphenol A
in bottled mineral water and bottled milk samples. Analytical and
Bioanalytical Chemistry Research, 6(1): 137-156.
29.
Amiri, A., Tayebee, R.,
Abdar, A., and Sani, F. N. (2019). Synthesis of a zinc-based metal-organic
framework with histamine as an organic linker for the dispersive solid-phase
extraction of organophosphorus pesticides in water and fruit juice
samples. Journal of Chromatography A, 1597: 39-45.
30.
Wang, D. D., Lu, Z. H., Guan, X. Y., Yang, M. N.
O., Guo, H. M., and Yang, Z. H. (2021). Magnetic polydopamine modified with
choline-based deep eutectic solvent for the magnetic solid-phase extraction of
sulfonylurea herbicides in water samples. Journal of Chromatographic
Science, 59(1): 95-102.
31.
Zhang, M., Mei, J., Lv,
S., Lai, J., Zheng, X., Yang, J., and Cui, S. (2020). Simultaneous extraction
of permethrin diastereomers and deltamethrin in environmental water samples
based on aperture regulated magnetic mesoporous silica. New Journal of
Chemistry, 44(37): 16152-16162.
32.
Arias, P. G., Martínez-Pérez-Cejuela, H., Combès, A., Pichon, V., Pereira, E., Herrero-Martínez,
J. M., and Bravo, M. (2020). Selective solid-phase extraction of
organophosphorus pesticides and their oxon-derivatives
from water samples using molecularly imprinted polymer followed by
high-performance liquid chromatography with UV detection. Journal of
Chromatography A, 1626: 461346.
33.
Shakourian, M., Yamini, Y., and
Safari, M. (2020). Facile magnetization of metal–organic framework TMU-6 for
magnetic solid-phase extraction of organophosphorus pesticides in water and
rice samples. Talanta, 218:
121139.
34.
Özer, E. T., Osman, B., and Parlak, B. (2020). An
experimental design approach for the solid phase extraction of some
organophosphorus pesticides from water samples with polymeric microbeads. Microchemical
Journal, 154: 104537.
35.
Amiri, A., Baghayeri, M.,
and Vahdati-Nasab, N. (2020). Effective extraction of
organophosphorus pesticides using sol–gel based coated stainless-steel mesh as
novel solid-phase extraction sorbent. Journal of Chromatography
A, 1620: 461020.
36.
Senosy, I. A., Guo, H. M.,
Ouyang, M. N., Lu, Z. H., Yang, Z. H., and Li, J. H. (2020). Magnetic
solid-phase extraction based on nano-zeolite imidazolate
framework-8-functionalized magnetic graphene oxide for the quantification of
residual fungicides in water, honey and fruit
juices. Food Chemistry, 325: 126944.
37.
Huang, Z., and Lee, H. K. (2015). Micro-solid-phase
extraction of organochlorine pesticides using porous metal-organic framework
MIL-101 as sorbent. Journal of Chromatography A, 1401: 9-16.
38.
Chahkandi, M., and Amiri, A.
(2019). Hydroxyapatite/Fe3O4 nanocomposite as efficient sorbent for the extraction of phthalate esters
from water samples. Inorganic Chemistry Research, 3(1): 50-64.
39.
Sajid, M., Khaled Nazal, M., Rutkowska, M.,
Szczepańska, N., Namieśnik, J., and Płotka-Wasylka, J. (2019). Solid phase
microextraction: apparatus, sorbent materials, and application. Critical
Reviews in Analytical Chemistry, 49(3): 271-288.
40.
Naing, N. N., Tan, S. C., and Lee, H. K. (2019).
Micro-solid-phase extraction 16. Solid-Phase Extraction, 443.
41.
Basheer, C., Alnedhary,
A. A., Rao, B. M., Valliyaveettil, S., and Lee, H. K.
(2006). Development and application of porous membrane-protected carbon
nanotube micro-solid-phase extraction combined with gas chromatography/mass
spectrometry. Analytical Chemistry, 78(8): 2853-2858.
42.
Abidin, N. H. Z., Ibrahim, W. N. W., Raharjo, Y.,
Nodeh, H. R., Wahab, R. A., Yaakob, M. K., and Hanapi,
N. S. M. (2024). Microextraction experimental and forcefield theoretical
modelling study on exploring a silica-enriched oil palm frond biomass for the
determination of polycyclic aromatic hydrocarbons in Psidium guajava. Microchemical
Journal, 197: 109885.
43.
Zaini, N., Hanapi, N. S.
M., Ibrahim, W. N. W., and Anis, A. L. (2020). Selective determination of
acidic drugs in water samples using online solid phase extraction liquid
chromatography with alginate incorporated multi-walled carbon nanotubes as
extraction sorbent. Indonesian Journal of Chemistry, 20(5):
987-999.
44.
Othman, N. Z., Hanapif,
N. S. M., Ibrahim, W. N. W., and Saleh, S. H. (2020). Alginate incorporated
multi-walled carbon nanotubes as dispersive micro solid phase extraction
sorbent for selective and efficient separation of acidic drugs in water
samples. Nature Environment and Pollution Technology, 19(3):
1155-1162.
45.
Rajendran, S. (2022). Formulating and evaluation of
magnetic effervescent tablets containing ionic liquid used as microextraction
tool for multi-analytes pharmaceutical active compounds analysis. Thesis of
Master of Science, Universiti Malaysia Terengganu.
46.
Pena-Pereira, F., Wojnowski, W., and Tobiszewski, M. (2020). AGREE—Analytical GREEnness metric approach and software. Analytical
Chemistry, 92(14): 10076-10082.
47.
Yang, M., Xia, Y., Wang, Y., Zhao, X., Xue, Z.,
Quan, F. and Zhao, Z. (2016). Preparation and property investigation of
crosslinked alginate/silicon dioxide nanocomposite films. Journal of
Applied Polymer Science, 133(22).
48.
Xu, S. W., Jiang, Z. Y., Lu, Y., Wu, H., and Yuan,
W. K. (2006). Preparation and catalytic properties of novel alginate−
silica− dehydrogenase hybrid biocomposite
beads. Industrial & Engineering Chemistry Research, 45(2):
511-517.
49.
Draget, K. I., Stokke, B. T., Yuguchi, Y., Urakawa, H., and Kajiwara, K. (2003).
Small-angle X-ray scattering and rheological characterization of alginate gels.
3. Alginic acid gels. Biomacromolecules, 4(6): 1661-1668.
50.
Amouzgar, P., Chan, E. S., and Salamatinia, B. (2017). Effects of ultrasound on
development of Cs/NAC nano composite beads through extrusion dripping for
acetaminophen removal from aqueous solution. Journal of Cleaner
Production, 165: 537-551.
51.
Pawar, S. N., and Edgar, K. J. (2012). Alginate
derivatization: A review of chemistry, properties and
applications. Biomaterials, 33(11): 3279-3305.
52.
Fosu-Mensah, B. Y., Okoffo,
E. D., Darko, G., and Gordon, C. (2016). Assessment of organochlorine pesticide
residues in soils and drinking water sources from cocoa farms in Ghana. SpringerPlus, 5: 1-13.
53.
Asgharinezhad, A. A., Ebrahimzadeh,
H., Mirbabaei, F., Mollazadeh, N., and Shekari, N.
(2014). Dispersive micro-solid-phase extraction of benzodiazepines from
biological fluids based on polyaniline/magnetic nanoparticles composite. Analytica
Chimica Acta, 844: 80-89.
54.
Zaini, N., Hanapi, N. S.
M., Ibrahim, W. N. W., Osman, R., Kamaruzaman, S., Yahaya, N., and Anis, A. L.
(2022). Dispersive micro-solid-phase extraction (D-µ-SPE) with polypyrrole-graphene oxide (PPy-GO)
nanocomposite sorbent for the determination of tetracycline antibiotics in
water samples. Malaysian Journal of Analytical Sciences, 26(5):
953-964.
55.
Hernando, M. D., Mezcua,
M., Fernández-Alba, A. R., and Barceló, D. (2006). Environmental risk
assessment of pharmaceutical residues in wastewater effluents, surface waters
and sediments. Talanta, 69(2):
334-342.
56.
Abidin, N. N. Z., Sanagi,
M. M., Ibrahim, W. A. W., Endud, S., and Shukri, D.
S. M. (2014). Portable micro-solid phase extraction for the determination of
polycyclic aromatic hydrocarbons in water samples. Analytical Methods, 6(15):
5512-5518.
57.
Deshmukh, S., Kumar, R., and Bala, K. (2019).
Microalgae biodiesel: A review on oil extraction, fatty acid composition,
properties and effect on engine performance and emissions. Fuel
Processing Technology, 191: 232-247.
58.
Zarrinmehr, M. J., Daneshvar, E.,
Nigam, S., Gopinath, K. P., Biswas, J. K., Kwon, E. E., ... and Bhatnagar, A.
(2022). The effect of solvents polarity and extraction conditions on the
microalgal lipids yield, fatty acids profile, and biodiesel properties. Bioresource
Technology, 344: 126303.
59.
Hamdaoui,
O., Naffrechoux, E., Tifouti, L., and Pétrier, C. (2003). Effects of ultrasound on
adsorption–desorption of p-chlorophenol on granular activated carbon. Ultrasonics
Sonochemistry, 10(2): 109-114.
60.
Breitbach, M., and Bathen, D. (2001). Influence of
ultrasound on adsorption processes. Ultrasonics Sonochemistry, 8(3):
277-283.
61.
Rozaini, M. N. H., Yahaya, N.,
Saad, B., Kamaruzaman, S., and Hanapi, N. S. M.
(2017). Rapid ultrasound assisted emulsification micro-solid phase extraction
based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol
A in aqueous matrices. Talanta, 171:
242-249.
62.
Dahane, S., García, M. G., Bueno, M. M., Moreno, A.
U., Galera, M. M., and Derdour, A. (2013). Determination of drugs in
river and wastewaters using solid-phase extraction by packed multi-walled
carbon nanotubes and liquid chromatography–quadrupole-linear ion trap-mass
spectrometry. Journal of Chromatography A, 1297: 17-28.
63.
Batt, A. L., Furlong, E. T., Mash, H. E.,
Glassmeyer, S. T., and Kolpin, D. W. (2017). The importance of quality control
in validating concentrations of contaminants of emerging concern in source and
treated drinking water samples. Science of the Total Environment, 579:
1618-1628.
64.
Huang, Z., and Lee, H. K. (2015). Micro-solid-phase
extraction of organochlorine pesticides using porous metal-organic framework
MIL-101 as sorbent. Journal of Chromatography A, 1401: 9-16.
65.
Ponnuchamy, M., Kapoor, A.,
Senthil Kumar, P., Vo, D. V. N., Balakrishnan, A., Mariam Jacob, M., and
Sivaraman, P. (2021). Sustainable adsorbents for the removal of pesticides from
water: a review. Environmental Chemistry Letters, 19:
2425-2463.