Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 441 - 460

 

PRE-CONCENTRATION OF ORGANOCHLORINE PESTICIDES USING MICRO-SOLID PHASE EXTRACTION BASED ON BIO-SORBENT ALGINATE-SILICA BEADS DERIVED FROM OIL PALM FROND

 

(Pra-Kepekatan Racun Organoklorin Menggunakan Pengekstraksi Fasa Mikro-Pepejal Berasaskan Bio-sorben Alginat-Silika Komposit yang Diperoleh daripada Daun Pelepah Kelapa Sawit)

 

Azreen Asyikin Mhd Kamal1, Siti Nur Afiqah Binti Mahazan1, Nur Husna Zainal Abidin1, Fariesha Farha Ramli1,2, and Wan Nazihah Wan Ibrahim1*

 

1Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Applied Science, Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400, Perak

 

*Corresponding author: wannazihah@uitm.edu.my

 

 

Received: 27 September 2023; Accepted: 16 January 2024; Published:  29 April 2024

 

 

Abstract

This study focuses on the extraction of organochlorine pesticides (OCPs) contained in environmental water samples by using encapsulated alginate-silica (Alg-SiO2) composite beads. The composite beads were made by ionic crosslinking interaction between polymeric alginate and silica particles derived from oil palm fronds and were characterized by ATR-FTIR, FESEM, and EDX to study their chemical and physical properties. The Alg-SiO2 composite beads were then used as the sorbent material for the micro-solid phase extraction ( -SPE) to extract OCPs from aqueous samples. Optimization of method development for extraction of targeted analytes (heptachlor, aldrin, and dieldrin) was done by varying the extraction time, extraction solvent, desorption time, and sorbent mass before the gas chromatography-mass spectrometry analysis. Analytical figures of merit for -SPE were calculated under the optimized extraction conditions. Under the optimum conditions of 50 mg of sorbent extracted for 5 mins and desorbed using n-hexane for 7 mins, good linearity was achieved based on the data from method validation, linear ranges of 1–10 mg/L for heptachlor, 0.1–1.0 mg/L for aldrin, and 0.2–1.4 mg/L for dieldrin, with a limit of detection of 0.09–0.85 mg/L. The proposed method was successfully applied to determine organochlorine pesticides in paddy water samples. The wide range of the calibration curves was linear, and the coefficients of regression were all around 0.979-0.993. The recoveries were obtained in a satisfactory range of 82-98%, and the precision RSD value was in the range of 0.19-4.52%.

 

Keywords: alginate, silica sorbent, organochlorine, oil palm, micro solid phase extraction

 

Abstrak

Kajian ini memfokuskan kepada pengekstrakan racun perosak organoklorin (OCP) yang terkandung dalam sampel air persekitaran dengan menggunakan kapsulan manik komposit alginat-silika (Alg-SiO2). Manik komposit dibuat melalui interaksi pertautan silang ion antara polimer alginat dan zarah silika yang diperoleh daripada pelepah kelapa sawit, dan dicirikan oleh ATR-FTIR, FESEM, dan EDX untuk mengkaji sifat kimia dan fizikalnya. Manik komposit Alg-SiO2 kemudiannya digunakan sebagai bahan penjerap untuk pengekstrakan fasa pepejal mikro (μ-SPE) untuk mengekstrak OCP daripada sampel akueus. Pengoptimuman pembangunan kaedah untuk pengekstrakan analit yang disasarkan (heptaklor, aldrin, dan dieldrin) dilakukan dengan mempelbagaikan masa pengekstrakan, pelarut pengekstrakan, masa nyahjerapan dan jisim penjerap sebelum analisis spektrometer jisim gas kromatografi. Angka analisis merit untuk μ-SPE dikira di bawah keadaan pengekstrakan yang dioptimumkan. Di bawah keadaan optimum 50 mg penjerap yang diekstrak selama 5 min dan nyahjerap menggunakan n-heksana selama 7 min telah menghasilkan julat linear yang baik. Berdasarkan data yang diperoleh daripada pengesahan kaedah, julat linear 1–10 mg/L untuk heptaklor, 0.1–1.0 mg/L untuk aldrin, dan 0.2–1.4 mg/L untuk dieldrin, dengan had pengesanan 0.09–0.85 mg/L. Kaedah yang dicadangkan telah berjaya digunakan untuk menentukan racun perosak organoklorin dalam sampel air padi. Julat luas keluk penentukuran adalah linear, dan pekali regresi adalah sekitar 0.979-0.993. Pemulihan diperolehi dalam julat yang memuaskan iaitu 82-98% dan nilai ketepatan RSD dalam julat 0.19-4.52%.

 

Kata kunci: alginat, silika sorben, organoklorin, kelapa sawit, pengekstraksi fasa mikro-pepejal


References

1.      Department of Statistics Malaysia (2019). Gross domestic product. https://www.dosm.gov.my/portal-main/release-content/e37cf376-8b79-11ed-96a6-1866daa77ef9. [Access online 02 July 2023].

2.      Marsin, F. M., Wan Ibrahim, W. A., Nodeh, H. R., and Sanagi, M. M. (2020). New magnetic oil palm fiber activated carbon-reinforced polypyrrole solid phase extraction combined with gas chromatography-electron    capture detection for determination of organochlorine pesticides in water samples. Journal of Chromatography A, 1612: 460638.

3.      Sulaiman, F., Abdullah, N., Gerhauser, H., and Shariff, A. (2011). An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources. Biomass and Bioenergy, 35(9): 3775-3786.

4.      Ozturk, M., Saba, N., Altay, V., Iqbal, R., Hakeem, K.R., Jawaid, M. and Ibrahim, F. H. (2017). Biomass Bioenergy: An overview of the development potential in Turkey and Malaysia. Renewable Sustainability Energy Reviews, 79: 1285-1302.

5.      Roslan, A. M., Zahari, M. A. K. M., Hassan, M. A., and Shirai, Y. (2014). Investigation of oil palm frond properties for use as biomaterials and biofuels. Tropical Agriculture and Development, 58(1): 26-29.

6.      Zhong, L. B., Yin, J., Liu, S. G., Liu, Q., Yang, Y. S., and Zheng, Y. M. (2016). Facile one-pot synthesis of urchin-like Fe–Mn binary oxide nanoparticles for effective adsorption of Cd(II) from water. RSC Advances, 6(105): 103438-103445.

7.      Onoja, E., Chandren, S., Razak, F. I. A., and Wahab, R. A. (2018). Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Journal of Biotechnology, 283: 81-96.

8.      McCarthy, S. A., Davies, G. L., and Gun’ko, Y. K. (2012). Preparation of multifunctional nanoparticles and their assemblies. Nature Protocols, 7(9): 1677-1693.

9.      Barbé, C. J., Kong, L., Finnie, K. S., Calleja, S., Hanna, J. V., Drabarek, E., … and Blackford, M. G. (2008). Sol–gel matrices for controlled release: from macro to nano using emulsion polymerization. Journal of Sol-Gel Science and Technology, 46: 393-409.

10.   Chiew, C. S. C., Yeoh, H. K., Pasbakhsh, P., Poh, P. E., Tey, B. T., and Chan, E. S. (2016). Stability and reusability of alginate-based adsorbents for repetitive lead (II) removal. Polymer Degradation and Stability, 123: 146-154.

11.   Lee, K. Y. and Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in Polymer Science, 37(1): 106-126.

12.   Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30(1): 38-70.

13.   Vijayalakshmi, K., Devi, B. M., Sudha, P. N., Venkatesan, J., and Anil, S. J. J. N. N. (2016). Synthesis, characterization and applications of nanochitosan/sodium alginate/microcrystalline cellulose film. Journal Nanomedicine Nanotechnology, 7(6): 419.

14.   Cataldo, S., Gianguzza, A., Milea, D., Muratore, N., and Pettignano, A. (2016). Pb (II) adsorption by a novel activated carbon⿿ alginate composite material. A kinetic and equilibrium study. International Journal of Biological Macromolecules, 92: 769-778.

15.   Thakur, S., Pandey, S., and Arotiba, O. A. (2016). Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydrate Polymers, 153: 34-46.

16.   Pannier, A., Soltmann, U., Soltmann, B., Altenburger, R., and Schmitt-Jansen, M. (2014). Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays. Journal of Materials Chemistry B, 2(45): 7896-7909.

17.   Singh, V., Srivastava, P., Singh, A., Singh, D., and Malviya, T. (2016). Polysaccharide-silica hybrids: design and applications. Polymer Reviews, 56(1): 113-136.

18.   Jaganathan, H., and Godin, B. (2012). Biocompatibility assessment of Si-based nano-and micro-particles. Advanced Drug Delivery Reviews, 64(15): 1800-1819.

19.   Choudhari, S. K., Premakshi, H. G., and Kariduraganavar, M. Y. (2016). Development of novel alginate–silica hybrid membranes for pervaporation dehydration of isopropanol. Polymer Bulletin, 73: 743-762.

20.   Shi, J., Zhang, H., Yu, Y., Zou, X., Zhou, W., Guo, J., ... and Zhao, Y. (2020). Adsorption properties of calcium alginate-silica dioxide hybrid adsorbent to methylene blue. Journal of Inorganic and Organometallic Polymers and Materials, 30: 2114-2125.

21.   Santhi, V. A., and Mustafa, A. M. (2013). Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources. Environmental Monitoring and Assessment, 185: 1541-1554.

22.   Borrell, A., and Aguilar, A. (2007). Organochlorine concentrations declined during 1987–2002 in western Mediterranean bottlenose dolphins, a coastal top predator. Chemosphere, 66(2): 347-352.

23.   Hernandez, F., Bakker, J., Bijlsma, L., De Boer, J., Botero-Coy, A. M., de Bruin, Y. B., and Hogendoorn, E. A. (2019). The role of analytical chemistry in exposure science: Focus on the aquatic environment. Chemosphere, 222: 564-583.

24.   Abdullah, M. P., Abdul Aziz, Y. F., Rozali Othman, M., and Wan Mohd Khalik, W. M. A. (2015). Organochlorine pesticides residue level in surface water of Cameron Highlands, Malaysia. Iranica Journal of Energy & Environment, 6(2): 141-146.

25.   Osman, B. E., and Khalik, W. M. A. W. M. (2018). Data on organochlorine concentration levels in soil of lowland paddy field, Kelantan, Malaysia. Data in Brief, 20: 999-1003.

26.   Mat Saad, A., and Hassan Asari, F. F. A. (2019). Distributions of organochlorine pesticides in sediment and aquatic biota: Benzenehexachlorides (BHCS). Proceedings of the International Conference on Design Industries & Creative Culture: pp. 28-39.

27.   Nascimento, M. M., da Rocha, G. O., and de Andrade, J. B. (2021). Customized dispersive micro-solid-phase extraction device combined with micro-desorption for the simultaneous determination of 39 multiclass pesticides in environmental water samples. Journal of Chromatography A, 1639: 461781.

28.   Gorji, S., Bahram, M., and Biparva, P. (2019). Optimized stir bar sorptive extraction based on self-magnetic nanocomposite monolithic kit for determining bisphenol A in bottled mineral water and bottled milk samples. Analytical and Bioanalytical Chemistry Research, 6(1): 137-156.

29.   Amiri, A., Tayebee, R., Abdar, A., and Sani, F. N. (2019). Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. Journal of Chromatography A, 1597: 39-45.

30.   Wang, D. D., Lu, Z. H., Guan, X. Y., Yang, M. N. O., Guo, H. M., and Yang, Z. H. (2021). Magnetic polydopamine modified with choline-based deep eutectic solvent for the magnetic solid-phase extraction of sulfonylurea herbicides in water samples. Journal of Chromatographic Science, 59(1): 95-102.

31.   Zhang, M., Mei, J., Lv, S., Lai, J., Zheng, X., Yang, J., and Cui, S. (2020). Simultaneous extraction of permethrin diastereomers and deltamethrin in environmental water samples based on aperture regulated magnetic mesoporous silica. New Journal of Chemistry, 44(37): 16152-16162.

32.   Arias, P. G., Martínez-Pérez-Cejuela, H., Combès, A., Pichon, V., Pereira, E., Herrero-Martínez, J. M., and Bravo, M. (2020). Selective solid-phase extraction of organophosphorus pesticides and their oxon-derivatives from water samples using molecularly imprinted polymer followed by high-performance liquid chromatography with UV detection. Journal of Chromatography A, 1626: 461346.

33.   Shakourian, M., Yamini, Y., and Safari, M. (2020). Facile magnetization of metal–organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples. Talanta, 218: 121139.

34.   Özer, E. T., Osman, B., and Parlak, B. (2020). An experimental design approach for the solid phase extraction of some organophosphorus pesticides from water samples with polymeric microbeads. Microchemical Journal, 154: 104537.

35.   Amiri, A., Baghayeri, M., and Vahdati-Nasab, N. (2020). Effective extraction of organophosphorus pesticides using sol–gel based coated stainless-steel mesh as novel solid-phase extraction sorbent. Journal of Chromatography A, 1620: 461020.

36.   Senosy, I. A., Guo, H. M., Ouyang, M. N., Lu, Z. H., Yang, Z. H., and Li, J. H. (2020). Magnetic solid-phase extraction based on nano-zeolite imidazolate framework-8-functionalized magnetic graphene oxide for the quantification of residual fungicides in water, honey and fruit juices. Food Chemistry, 325: 126944.

37.   Huang, Z., and Lee, H. K. (2015). Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. Journal of Chromatography A, 1401: 9-16.

38.   Chahkandi, M., and Amiri, A. (2019). Hydroxyapatite/Fe3O4 nanocomposite as efficient sorbent for the extraction of phthalate esters from water samples. Inorganic Chemistry Research, 3(1): 50-64.

39.   Sajid, M., Khaled Nazal, M., Rutkowska, M., Szczepańska, N., Namieśnik, J., and Płotka-Wasylka, J. (2019). Solid phase microextraction: apparatus, sorbent materials, and application. Critical Reviews in Analytical Chemistry, 49(3): 271-288.

40.   Naing, N. N., Tan, S. C., and Lee, H. K. (2019). Micro-solid-phase extraction 16. Solid-Phase Extraction, 443.

41.   Basheer, C., Alnedhary, A. A., Rao, B. M., Valliyaveettil, S., and Lee, H. K. (2006). Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Analytical Chemistry, 78(8): 2853-2858.

42.   Abidin, N. H. Z., Ibrahim, W. N. W., Raharjo, Y., Nodeh, H. R., Wahab, R. A., Yaakob, M. K., and Hanapi, N. S. M. (2024). Microextraction experimental and forcefield theoretical modelling study on exploring a silica-enriched oil palm frond biomass for the determination of polycyclic aromatic hydrocarbons in Psidium guajavaMicrochemical Journal, 197: 109885.

43.   Zaini, N., Hanapi, N. S. M., Ibrahim, W. N. W., and Anis, A. L. (2020). Selective determination of acidic drugs in water samples using online solid phase extraction liquid chromatography with alginate incorporated multi-walled carbon nanotubes as extraction sorbent. Indonesian Journal of Chemistry, 20(5): 987-999.

44.   Othman, N. Z., Hanapif, N. S. M., Ibrahim, W. N. W., and Saleh, S. H. (2020). Alginate incorporated multi-walled carbon nanotubes as dispersive micro solid phase extraction sorbent for selective and efficient separation of acidic drugs in water samples. Nature Environment and Pollution Technology, 19(3): 1155-1162.

45.   Rajendran, S. (2022). Formulating and evaluation of magnetic effervescent tablets containing ionic liquid used as microextraction tool for multi-analytes pharmaceutical active compounds analysis. Thesis of Master of Science, Universiti Malaysia Terengganu.

46.   Pena-Pereira, F., Wojnowski, W., and Tobiszewski, M. (2020). AGREE—Analytical GREEnness metric approach and software. Analytical Chemistry, 92(14): 10076-10082.

47.   Yang, M., Xia, Y., Wang, Y., Zhao, X., Xue, Z., Quan, F. and Zhao, Z. (2016). Preparation and property investigation of crosslinked alginate/silicon dioxide nanocomposite films. Journal of Applied Polymer Science, 133(22).

48.   Xu, S. W., Jiang, Z. Y., Lu, Y., Wu, H., and Yuan, W. K. (2006). Preparation and catalytic properties of novel alginate− silica− dehydrogenase hybrid biocomposite beads. Industrial & Engineering Chemistry Research, 45(2): 511-517.

49.   Draget, K. I., Stokke, B. T., Yuguchi, Y., Urakawa, H., and Kajiwara, K. (2003). Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels. Biomacromolecules, 4(6): 1661-1668.

50.   Amouzgar, P., Chan, E. S., and Salamatinia, B. (2017). Effects of ultrasound on development of Cs/NAC nano composite beads through extrusion dripping for acetaminophen removal from aqueous solution. Journal of Cleaner Production, 165: 537-551.

51.   Pawar, S. N., and Edgar, K. J. (2012). Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 33(11): 3279-3305.

52.   Fosu-Mensah, B. Y., Okoffo, E. D., Darko, G., and Gordon, C. (2016). Assessment of organochlorine pesticide residues in soils and drinking water sources from cocoa farms in Ghana. SpringerPlus, 5: 1-13.

53.   Asgharinezhad, A. A., Ebrahimzadeh, H., Mirbabaei, F., Mollazadeh, N., and Shekari, N. (2014). Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. Analytica Chimica Acta, 844: 80-89.

54.   Zaini, N., Hanapi, N. S. M., Ibrahim, W. N. W., Osman, R., Kamaruzaman, S., Yahaya, N., and Anis, A. L. (2022). Dispersive micro-solid-phase extraction (D-µ-SPE) with polypyrrole-graphene oxide (PPy-GO) nanocomposite sorbent for the determination of tetracycline antibiotics in water samples. Malaysian Journal of Analytical Sciences, 26(5): 953-964.

55.   Hernando, M. D., Mezcua, M., Fernández-Alba, A. R., and Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2): 334-342.

56.   Abidin, N. N. Z., Sanagi, M. M., Ibrahim, W. A. W., Endud, S., and Shukri, D. S. M. (2014). Portable micro-solid phase extraction for the determination of polycyclic aromatic hydrocarbons in water samples. Analytical Methods, 6(15): 5512-5518.

57.   Deshmukh, S., Kumar, R., and Bala, K. (2019). Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Processing Technology, 191: 232-247.

58.   Zarrinmehr, M. J., Daneshvar, E., Nigam, S., Gopinath, K. P., Biswas, J. K., Kwon, E. E., ... and Bhatnagar, A. (2022). The effect of solvents polarity and extraction conditions on the microalgal lipids yield, fatty acids profile, and biodiesel properties. Bioresource Technology, 344: 126303.

59.   Hamdaoui, O., Naffrechoux, E., Tifouti, L., and Pétrier, C. (2003). Effects of ultrasound on adsorption–desorption of p-chlorophenol on granular activated carbon. Ultrasonics Sonochemistry, 10(2): 109-114.

60.   Breitbach, M., and Bathen, D. (2001). Influence of ultrasound on adsorption processes. Ultrasonics Sonochemistry, 8(3): 277-283.

61.   Rozaini, M. N. H., Yahaya, N., Saad, B., Kamaruzaman, S., and Hanapi, N. S. M. (2017). Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices. Talanta, 171: 242-249.

62.   Dahane, S., García, M. G., Bueno, M. M., Moreno, A. U., Galera, M. M., and Derdour, A. (2013). Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography–quadrupole-linear ion trap-mass spectrometry. Journal of Chromatography A, 1297: 17-28.

63.   Batt, A. L., Furlong, E. T., Mash, H. E., Glassmeyer, S. T., and Kolpin, D. W. (2017). The importance of quality control in validating concentrations of contaminants of emerging concern in source and treated drinking water samples. Science of the Total Environment, 579: 1618-1628.

64.   Huang, Z., and Lee, H. K. (2015). Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. Journal of Chromatography A, 1401: 9-16.

65.   Ponnuchamy, M., Kapoor, A., Senthil Kumar, P., Vo, D. V. N., Balakrishnan, A., Mariam Jacob, M., and Sivaraman, P. (2021). Sustainable adsorbents for the removal of pesticides from water: a review. Environmental Chemistry Letters, 19: 2425-2463.