Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 423 - 440

 

Fe3O4-DOPED POLYSULFONE MEMBRANE FOR ENHANCED ADSORPTION OF COPPER FROM AQUEOUS SOLUTION

 

(Membran Polisulfon Berdop Fe3O4 untuk Peningkatan Penjerapan Kuprum daripada

Larutan Akues)

 

Wan Khairunnisa Wan Ramli1*, Nur Maisyatul Syalina Abdul Wahab1, Siti Khalijah Mahmad Rozi1,2, Syumayyah Rasis1, Gavin Chew Tiong Chuen1, and Lew Guo Liang1

 

1Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau,Perlis, Malaysia

2Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

 

*Corresponding author: wankhairunnisa@unimap.edu.my

 

 

Received: 3 November 2023; Accepted: 12 February 2024; Published:  29 April 2024

 

 

Abstract

Water pollution, especially from industrial wastewater has become one of the major global environmental problems. As the result of rapid industrialization, the expansion of industries such as the electroplating industry has resulted in an increase in heavy metals effluent, especially copper, in the wastewater, and this poses detrimental effects on the biodiversity and environment. The abatement of copper pollution has received widespread attention, and continuous research advancement has been observed in adsorption and membrane technology. Nanofiltration membranes with nanopores recorded higher suitability to remove ions but at the expense of membrane fouling as a result of the formation of contaminants on the surface layer that blocks the diffusion of contaminants into the membrane substructure. This research highlights the incorporation of Fe3O4 nanoparticles into the polysulfone (PSf) membrane matrix as an adsorptive membrane and their possible adsorption mechanism towards Cu, which can manifest the combined characteristics of both removal techniques. Fe3O4 nanoparticles were synthesized using the co-precipitation method. Fe3O4-doped PSf membranes were then synthesized with various concentrations of Fe via the Non-solvent Induced Phase Separation (NIPS) technique. The physicochemical properties of the Fe nanoparticles and the membranes were evaluated using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), water contact angle and porosity testing. Crystal phase analysis confirmed the formation of magnetite Fe3O4 in a cubic structure. Agglomerations of Fe NPs on the membrane surface were observed for membranes with lower Fe concentrations, suggesting the possibility of poor blending and this contributed to the lower adsorption capability of these membranes. Membranes with 2 wt.% Fe concentration (Fe-2.0) exhibited the highest Cu(II) ions adsorption capacity of 637 mg/g, which is trifold of those recorded for pristine PSF membrane (Fe-0.0). The adsorption data of Cu adsorption were best fitted into the Temkin isotherm and pseudo-second-order models, suggesting an adsorption mechanism involving an exothermic chemical interaction between Cu ions and the Fe3O4 NPs within the membrane. This research confirms the potential of incorporating Fe3O4 in the PSf membrane backbone to enhance Cu removal as an adsorptive membrane, even at lower NP concentrations. 

 

Keywords: adsorptive membrane, copper removal, iron oxide, adsorption kinetics

 

Abstrak

Pencemaran air, terutamanya daripada air sisa industri telah menjadi salah satu masalah alam sekitar yang utama di seluruh dunia. Berikutan pengindustrian yang pesat, peluasan industri seperti industri penyaduran elektrik telah mengakibatkan peningkatan dalam efluen logam berat, terutamanya kuprum, dalam air buangan, dan ini menimbulkan kesan buruk kepada biodiversiti dan alam sekitar. Pengurangan pencemaran kuprum telah mendapat perhatian yang meluas, dan kemajuan penyelidikan berterusan telah diperhatikan dalam teknologi penjerapan dan membran. Membran penapisan nano dengan liang bersaiz nano mencatatkan kesesuaian yang lebih tinggi untuk menyingkirkan ion tetapi dengan mengorbankan penyisikan membran akibat pembentukan lapisan permukaan bahan cemar yang menghalang resapan bahan cemar ke dalam substruktur membran. Penyelidikan ini menekankan penggabungan nanopartikel Fe3O4 ke dalam matriks membran polisulfon (PSf) sebagai membran penjerap dan mekanisme penjerapan yang mungkin terhadap Cu, yang boleh menunjukkan ciri gabungan kedua-dua teknik penyingkiran tersebut. Nanozarah Fe3O4 disintesis menggunakan kaedah pemendakan bersama. Membran PSf terdop Fe kemudiannya disintesis dengan pelbagai kepekatan Fe melalui teknik pemisahan fasa teraruh bukan pelarut (NIPS). Sifat fizikokimia nanopartikel Fe dan membran dinilai menggunakan pembelauan sinar-X (XRD), mikroskop elektron pengimbasan (SEM), sudut sentuhan air dan ujian keliangan. Analisis fasa kristal mengesahkan pembentukan magnetit Fe3O4 dalam struktur kubus. Aglomerasi NP Fe pada permukaan membran diperhatikan untuk membran dengan kepekatan Fe yang lebih rendah, menunjukkan kemungkinan pengadunan yang lemah dan ini menyumbang kepada keupayaan penjerapan yang lebih rendah bagi membran ini. Membran dengan kepekatan Fe 2% berat (Fe-2.0) mempamerkan kapasiti penjerapan ion Cu(II) tertinggi sebanyak 637 mg/g, iaitu tiga kali ganda daripada yang direkodkan untuk membran PSF murni (Fe-0.0). Data penjerapan penjerapan Cu paling baik dipadankan ke dalam model isoterma Temkin dan pseudo-second-order, mencadangkan mekanisme penjerapan yang melibatkan interaksi kimia eksotermik antara ion Cu dan NP Fe3O4 dalam membran. Penyelidikan ini mengesahkan potensi menggabungkan Fe3O4 dalam tulang belakang membran PSf untuk meningkatkan penyingkiran Cu sebagai membran penjerap, walaupun pada kepekatan NP yang lebih rendah.

 

Kata kunci: membran penjerap, penyingkiran kuprum, ferum oksida, isoterma penjerapan, kinetik penjerapan

 


References

1.      Ahmed Basha, C., Bhadrinarayana, N. S., Anantharaman, N., and Meera Sheriffa Begum, K. M. (2008). Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. Journal of Hazardous Materials, 152(1): 71-78.

2.      Bai, D.-K., Ying, Q.-H., Wang, N., and Lin, J.-H. (2016). Copper removal from electroplating wastewater by coprecipitation of copper-based supramolecular materials: Preparation and application study. Journal of Chemistry, 2016: 5281561.

3.      Nasir, A. M., Goh, P. S., and Ismail, A. F. (2019). Highly adsorptive polysulfone/hydrous iron-nickel-manganese (PSF/HINM) nanocomposite hollow fiber membrane for synergistic arsenic removal. Separation and Purification Technology, 213, 162–175.

4.      Liu, Y., Wang, H., Cui, Y., and Chen, N. (2023). Removal of copper ıons from wastewater: A review. International Journal of Environmental Research and Public Health, 20(5): 3885.

5.      Dashtbozorg, A., Saljoughi, E., Mousavi, S. M., & Kiani, S. (2022). High-performance and robust polysulfone nanocomposite membrane containing 2D functionalized MXene nanosheets for the nanofiltration of salt and dye solutions. Desalination, 527: 115600.

6.      Qalyoubi, L., Al-Othman, A. and Al-Asheh, S. (2021). Recent progress and challenges on adsorptive membranes for the removal of pollutants from wastewater. Part I: Fundamentals and classification of membranes. Case Studies in Chemical and Environmental Engineering, 3: 100086.

7.      Ayaz, M., Muhammad, A., Younas, M., Khan, A. L., and Rezakazemi, M. (2019). Enhanced water flux by fabrication of polysulfone/alumina nanocomposite membrane for copper(II) removal. Macromolecular Research, 27(6): 565-571.

8.      Hamid, S. A., Azha, S. F., Sellaoui, L., Bonilla-Petriciolet, A., and Ismail, S. (2020). Adsorption of copper (II) cation on polysulfone/zeolite blend sheet membrane: Synthesis, characterization, experiments and adsorption modelling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 601: 124980.

9.      Abdullah, N., Gohari, R. J., Yusof, N., Ismail, A. F., Juhana, J., Lau, W. J., and Matsuura, T. (2016). Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: Preparation, characterization and its adsorptive removal of lead (II) from aqueous solution. Chemical Engineering Journal, 289: 28-37.

10.   Zainol Abidin, M. N., Goh, P. S., Ismail, A. F., Said, N., Othman, M. H. D., Hasbullah, H., Abdullah, M. S., Ng, B. C., Sheikh Abdul Kadir, S. H., and Kamal, F. (2019). Polysulfone/ıron oxide nanoparticles ultrafltration membrane for adsorptive removal of phosphate from aqueous solution. Journal of Membrane Science and Research, 5(1): 20-24.

11.   Said, N., Mansur, S., Zainol Abidin, M. N., and Ismail, A. F. (2023). Fabrication and characterization of polysulfone/ıron oxide nanoparticle mixed matrix hollow fiber membranes for hemodialysis: Effect of dope extrusion rate and air gap. Journal of Membrane Science and Research, 9(1): 1972553.

12.   Rosli, A., Ahmad, A. L., and Low, S. C. (2019). Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Separation and Purification Technology, 221: 275-285.

13.   Wan Ramli, W. K., Liang, L. G., Othman, S., Yusri, N. A. M., and Che Lah, N. F. (2022). Phase separation behaviour modification using co-solvents on PVDF membranes for water filtration. AIP Conference Proceedings, 2541(1): 040012.

14.   Jannah, N. R., and Onggo, D. (2019). Synthesis of Fe3O4 nanoparticles for colour removal of printing ink solution. Journal of Physics: Conference Series, 1245(1): 12040.

15.   Mansur, S., Othman, M. H. D., Abidin, M. N. Z., Ismail, A. F., Abdul Kadir, S. H. S., Goh, P. S., Hasbullah, H., Ng, B. C., Abdullah, M. S., and Mustafar, R. (2021). Enhanced adsorption and biocompatibility of polysulfone hollow fibre membrane via the addition of silica/alpha-mangostin hybrid nanoparticle for uremic toxins removal. Journal of Environmental Chemical Engineering, 9(5): 106141.

16.   Dawn, R., Zzaman, M., Faizal, F., Kiran, C., Kumari, A., Shahid, R., Panatarani, C., Joni, I. M., Verma, V. K., Sahoo, S. K., Amemiya, K., and Singh, V. R. (2022). Origin of magnetization in silica-coated Fe3O4 nanoparticles revealed by soft X-ray magnetic circular dichroism. Brazilian Journal of Physics, 52: 99.

17.   Upadhyay, S., Parekh, K., and Pandey, B. (2016). Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. Journal of Alloys and Compounds, 678: 478-485.

18.   Singh, K., Devi, S., Bajaj, H. C., Ingole, P., Choudhari, J., and Bhrambhatt, H. (2014). Optical resolution of racemic mixtures of amino acids through nanofiltration membrane process. Separation Science and Technology, 49(17): 2630-2641.

19.   Mansur, S., Othman, M. H. D., Abidin, M. N. Z., Ismail, A. F., Abdul Kadir, S. H. S., Goh, P. S., Hasbullah, H., Ng, B. C., Abdullah, M. S., and Mustafar, R. (2021). Enhanced adsorption and biocompatibility of polysulfone hollow fibre membrane via the addition of silica/alpha-mangostin hybrid nanoparticle for uremic toxins removal. Journal of Environmental Chemical Engineering, 9(5): 106141.

20.   Gohain, M. B., Pawar, R. R., Karki, S., Hazarika, A., Hazarika, S., and Ingole, P. G. (2020). Development of thin film nanocomposite membrane incorporated with mesoporous synthetic hectorite and MSH@UiO-66-NH2 nanoparticles for efficient targeted feeds separation, and antibacterial performance. Journal of Membrane Science, 609: 118212.

21.   Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S. A., and Matsuura, T. (2013). Polysulfone–chitosan blend ultrafiltration membranes: preparation, characterization, permeation and antifouling properties. RSC Advances, 3(21): 7855-7861.

22.   Muntha, S. T., Ajmal, M., Naeem, H., Kausar, A., Zia, M. A., and Siddiq, M. (2019). Synthesis, properties, and applications of polysulfone/polyimide nanocomposite membrane reinforced with silica nanoparticles. Polymer Composites, 40(5): 1897-1910.

23.   Rozi, S. K. M., Berhanundin, K. M., Ishak, A. R., Mohd, F. L., Rasdi, N. C. D., Rahim, N. Y., Aziz, M. Y., Shafie, F. A., and Abdullah, A. M. (2023). Novel magnetıc eggshell membrane functıonalızed wıth waste palm fatty acıd for selectıve adsorptıon of oıl from aqueous solutıon. Malaysian Journal of Analytical Sciences, 27(1): 74-86.

24.   Mansur, S., Othman, M. H., Ismail, A., Zainol Abidin, M. N., Said, N., Goh, P., Hasbullah, H., Sheikh Abdul Kadir, S. H., and Kamal, F. (2018). Study on the effect of spinning conditions on the performance of PSf/PVP ultrafiltration hollow fiber membrane. Malaysian Journal of Fundamental and Applied Sciences, 14: 343-347.

25.   Kim, J. H., Kim, Y., Kim, C. K., Lee, J. W., and Seo, S. B. (2003). Miscibility of polysulfone blends with poly(1-vinylpyrrolidone-co-styrene) copoly mers and their interaction energies. Journal of Polymer Science Part B: Polymer Physics, 41(12): 1401-1411.

26.   Said, N., Abidin, M. N. Z., Hasbullah, H., Ismail, A. F., Goh, P. S., Othman, M. H. D., Abdullah, M. S., Ng, B. C., Kadir, S. H. S. A., and Kamal, F. (2019). Iron oxide nanoparticles improved biocompatibility and removal of middle molecule uremic toxin of polysulfone hollow fiber membranes. Journal of Applied Polymer Science, 136(48): 48234.

27.   Makhetha, T. A., and Moutloali, R. M. (2018). Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye rejection. Journal of Membrane Science, 554: 195-210.

28.   Said, N., Hasbullah, H., Ismail, A. F., Othman, M. H. D., Goh, P. S., Zainol Abidin, M. N., Sheikh Abdul Kadir, S. H., Kamal, F., Abdullah, M. S., and Ng, B. C. (2017). Enhanced hydrophilic polysulfone hollow fiber membranes with addition of iron oxide nanoparticles. Polymer International, 66(11): 1424-1429.

29.   Salar-García, M. J., Walter, X. A., Gurauskis, J., de Ramón Fernández, A., and Ieropoulos, I. (2021). Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators. Electrochimica Acta, 367: 137385.

30.   Mondal, M., Dutta, M., and De, S. (2017). A novel ultrafiltration grade nickel iron oxide doped hollow fiber mixed matrix membrane: Spinning, characterization and application in heavy metal removal. Separation and Purification Technology, 188: 155-166.

31.   Chan, K. H., Wong, E. T., Idris, A., and Yusof, N. M. (2015). Modification of PES membrane by PEG-coated cobalt doped iron oxide for improved Cu(II) removal. Journal of Industrial and Engineering Chemistry, 27: 283-290.

32.   Daraei, P., Madaeni, S. S., Ghaemi, N., Salehi, E., Khadivi, M. A., Moradian, R., and Astinchap, B. (2012). Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. Journal of Membrane Science, 415: 250-259.

33.   Mandal, S., Calderon, J., Marpu, S. B., Omary, M. A., and Shi, S. Q. (2021). Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. Journal of Contaminant Hydrology, 243: 103869.

34.   Fita, G., Djakba, R., Mouhamadou, S., Duc, M., Rao, S., Popoola, L. T., Harouna, M., and Benoit, L. B. (2023). Adsorptive efficiency of hull-based activated carbon toward copper ions (Cu2+) removal from aqueous solution: Kinetics, modelling and statistical analysis. Diamond and Related Materials, 139: 110421.

35.   Subhransu Sahoo Uma, S. B. and Sharma, Y. C. (2014). Application of natural clay as a potential adsorbent for the removal of a toxic dye from aqueous solutions. Desalination and Water Treatment, 52(34–36): 6703-6711.

36.   Elzain, A. A., El-Aassar, M. R., Hashem, F. S., Mohamed, F. M., and Ali, A. S. M. (2019). Removal of methylene dye using composites of poly (styrene-co-acrylonitrile) nanofibers impregnated with adsorbent materials. Journal of Molecular Liquids, 291: 111335.

37.   Zand, A. D., and Abyaneh, M. R. (2020). Adsorption of Lead, manganese, and copper onto biochar in landfill leachate: implication of non-linear regression analysis. Sustainable Environment Research, 30(1): 18.

38.   Boparai, H. K., Joseph, M., and O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186(1): 458-465.

39.   Nandiyanto, A. B. D., Girsang, G. C. S., Maryanti, R., Ragadhita, R., Anggraeni, S., Fauzi, F., Sakinah, P., Astuti, A. P., Usdiyana, D., Fiandini, M., Dewi, M. W., and Al-Obaidi, A. S. M. (2020). Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste. Communications in Science and Technology, 5(1): 31-39.

40.   Karim, K. H. (2020). Copper adsorption behavior in some calcareous soils using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. Journal of Soil Sciences and Agricultural Engineering, 11(1): 27-34.

41.   van den Berg, T. and Ulbricht, M. (2020). Polymer nanocomposite ultrafiltration membranes: The influence of polymeric additive, dispersion quality and particle modification on the integration of zinc oxide nanoparticles into polyvinylidene difluoride membranes. Membranes, 10(9): 197.