Malaysian Journal of Analytical
Sciences, Vol 28
No 2 (2024): 423 -
440
Fe3O4-DOPED
POLYSULFONE MEMBRANE FOR ENHANCED ADSORPTION OF COPPER FROM AQUEOUS SOLUTION
(Membran Polisulfon Berdop Fe3O4 untuk
Peningkatan Penjerapan Kuprum daripada
Larutan Akues)
Wan Khairunnisa Wan Ramli1*,
Nur Maisyatul Syalina Abdul Wahab1, Siti Khalijah Mahmad Rozi1,2,
Syumayyah Rasis1, Gavin Chew Tiong Chuen1, and Lew Guo
Liang1
1Faculty
of Chemical Engineering and Technology, Universiti Malaysia Perlis, Kompleks
Pusat Pengajian Jejawi 3, 02600 Arau,Perlis, Malaysia
2Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
*Corresponding author: wankhairunnisa@unimap.edu.my
Received: 3 November 2023; Accepted: 12
February 2024; Published: 29 April 2024
Abstract
Water pollution, especially from industrial wastewater has
become one of the major global environmental problems. As the result of rapid
industrialization, the expansion of industries such as the electroplating
industry has resulted in an increase in heavy metals effluent, especially
copper, in the wastewater, and this poses detrimental effects on the
biodiversity and environment. The abatement of copper pollution has received
widespread attention, and continuous research advancement has been observed in
adsorption and membrane technology. Nanofiltration membranes with nanopores
recorded higher suitability to remove ions but at the expense of membrane
fouling as a result of the formation of contaminants on the surface layer that
blocks the diffusion of contaminants into the membrane substructure. This
research highlights the incorporation of Fe3O4
nanoparticles into the polysulfone (PSf) membrane matrix as an adsorptive
membrane and their possible adsorption mechanism towards Cu, which can manifest
the combined characteristics of both removal techniques. Fe3O4
nanoparticles were synthesized using the co-precipitation method. Fe3O4-doped PSf
membranes were then synthesized with
various concentrations of Fe via the Non-solvent Induced Phase Separation
(NIPS) technique. The physicochemical properties of the Fe nanoparticles and
the membranes were evaluated using X-ray diffraction (XRD), Scanning Electron
Microscope (SEM), water contact angle and porosity testing. Crystal phase
analysis confirmed the formation of magnetite Fe3O4 in a
cubic structure. Agglomerations of Fe NPs on the membrane surface were observed
for membranes with lower Fe concentrations, suggesting the possibility of poor
blending and this contributed to the lower adsorption capability of these
membranes. Membranes with 2 wt.% Fe concentration (Fe-2.0) exhibited the
highest Cu(II) ions adsorption capacity of 637 mg/g, which is trifold of those
recorded for pristine PSF membrane (Fe-0.0). The adsorption data of Cu
adsorption were best fitted into the Temkin isotherm and pseudo-second-order
models, suggesting an adsorption mechanism involving an exothermic chemical interaction
between Cu ions and the Fe3O4 NPs within the membrane.
This research confirms the potential of incorporating Fe3O4
in the PSf membrane backbone to enhance Cu removal as an adsorptive membrane,
even at lower NP concentrations.
Keywords: adsorptive membrane, copper removal, iron oxide, adsorption
kinetics
Abstrak
Pencemaran air, terutamanya daripada air sisa industri telah
menjadi salah satu masalah alam sekitar yang utama di seluruh dunia. Berikutan
pengindustrian yang pesat, peluasan industri seperti industri penyaduran
elektrik telah mengakibatkan peningkatan dalam efluen logam berat, terutamanya
kuprum, dalam air buangan, dan ini menimbulkan kesan buruk kepada biodiversiti
dan alam sekitar. Pengurangan pencemaran kuprum telah mendapat perhatian yang
meluas, dan kemajuan penyelidikan berterusan telah diperhatikan dalam teknologi
penjerapan dan membran. Membran penapisan nano dengan liang bersaiz nano
mencatatkan kesesuaian yang lebih tinggi untuk menyingkirkan ion tetapi dengan
mengorbankan penyisikan membran akibat pembentukan lapisan permukaan bahan
cemar yang menghalang resapan bahan cemar ke dalam substruktur membran.
Penyelidikan ini menekankan penggabungan nanopartikel Fe3O4
ke dalam matriks membran polisulfon (PSf) sebagai membran penjerap dan
mekanisme penjerapan yang mungkin terhadap Cu, yang boleh menunjukkan ciri
gabungan kedua-dua teknik penyingkiran tersebut. Nanozarah Fe3O4
disintesis menggunakan kaedah pemendakan bersama. Membran PSf terdop Fe
kemudiannya disintesis dengan pelbagai kepekatan Fe melalui teknik pemisahan
fasa teraruh bukan pelarut (NIPS). Sifat fizikokimia nanopartikel Fe dan membran
dinilai menggunakan pembelauan sinar-X (XRD), mikroskop elektron pengimbasan
(SEM), sudut sentuhan air dan ujian keliangan. Analisis fasa kristal
mengesahkan pembentukan magnetit Fe3O4 dalam struktur
kubus. Aglomerasi NP Fe pada permukaan membran diperhatikan untuk membran
dengan kepekatan Fe yang lebih rendah, menunjukkan kemungkinan pengadunan yang
lemah dan ini menyumbang kepada keupayaan penjerapan yang lebih rendah bagi
membran ini. Membran dengan kepekatan Fe 2% berat (Fe-2.0) mempamerkan kapasiti
penjerapan ion Cu(II) tertinggi sebanyak 637 mg/g, iaitu tiga kali ganda
daripada yang direkodkan untuk membran PSF murni (Fe-0.0). Data penjerapan
penjerapan Cu paling baik dipadankan ke dalam model isoterma Temkin dan
pseudo-second-order, mencadangkan mekanisme penjerapan yang melibatkan
interaksi kimia eksotermik antara ion Cu dan NP Fe3O4
dalam membran. Penyelidikan ini mengesahkan potensi menggabungkan Fe3O4
dalam tulang belakang membran PSf untuk meningkatkan penyingkiran Cu sebagai
membran penjerap, walaupun pada kepekatan NP yang lebih rendah.
Kata kunci:
membran penjerap, penyingkiran kuprum, ferum oksida, isoterma penjerapan,
kinetik penjerapan
References
1.
Ahmed Basha, C., Bhadrinarayana, N. S., Anantharaman,
N., and Meera Sheriffa Begum, K. M. (2008). Heavy metal removal from copper
smelting effluent using electrochemical cylindrical flow reactor. Journal of
Hazardous Materials, 152(1): 71-78.
2.
Bai, D.-K., Ying, Q.-H., Wang, N., and Lin, J.-H.
(2016). Copper removal from electroplating wastewater by coprecipitation of
copper-based supramolecular materials: Preparation and application study. Journal
of Chemistry, 2016: 5281561.
3.
Nasir, A. M., Goh, P. S., and Ismail, A. F. (2019).
Highly adsorptive polysulfone/hydrous iron-nickel-manganese (PSF/HINM)
nanocomposite hollow fiber membrane for synergistic arsenic removal. Separation
and Purification Technology, 213, 162–175.
4.
Liu, Y., Wang, H., Cui, Y., and Chen, N. (2023).
Removal of copper ıons from wastewater: A review. International Journal
of Environmental Research and Public Health, 20(5): 3885.
5.
Dashtbozorg, A., Saljoughi, E., Mousavi, S. M., &
Kiani, S. (2022). High-performance and robust polysulfone nanocomposite
membrane containing 2D functionalized MXene nanosheets for the nanofiltration
of salt and dye solutions. Desalination, 527: 115600.
6.
Qalyoubi, L., Al-Othman, A. and Al-Asheh, S. (2021).
Recent progress and challenges on adsorptive membranes for the removal of
pollutants from wastewater. Part I: Fundamentals and classification of
membranes. Case Studies in Chemical and Environmental Engineering, 3:
100086.
7.
Ayaz, M., Muhammad, A., Younas, M., Khan, A. L., and
Rezakazemi, M. (2019). Enhanced water flux by fabrication of
polysulfone/alumina nanocomposite membrane for copper(II) removal. Macromolecular
Research, 27(6): 565-571.
8.
Hamid, S. A., Azha, S. F., Sellaoui, L.,
Bonilla-Petriciolet, A., and Ismail, S. (2020). Adsorption of copper (II)
cation on polysulfone/zeolite blend sheet membrane: Synthesis,
characterization, experiments and adsorption modelling. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 601: 124980.
9. Abdullah, N., Gohari, R. J.,
Yusof, N., Ismail, A. F., Juhana, J., Lau, W. J., and Matsuura, T. (2016).
Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane:
Preparation, characterization and its adsorptive removal of lead (II) from aqueous
solution. Chemical Engineering Journal, 289: 28-37.
10.
Zainol Abidin, M. N., Goh, P. S., Ismail, A. F., Said,
N., Othman, M. H. D., Hasbullah, H., Abdullah, M. S., Ng, B. C., Sheikh Abdul
Kadir, S. H., and Kamal, F. (2019). Polysulfone/ıron oxide nanoparticles
ultrafltration membrane for adsorptive removal of phosphate from aqueous
solution. Journal of Membrane Science and Research, 5(1): 20-24.
11.
Said, N., Mansur, S., Zainol Abidin, M. N., and
Ismail, A. F. (2023). Fabrication and characterization of polysulfone/ıron
oxide nanoparticle mixed matrix hollow fiber membranes for hemodialysis: Effect
of dope extrusion rate and air gap. Journal of Membrane Science and Research,
9(1): 1972553.
12.
Rosli, A., Ahmad, A. L., and Low, S. C. (2019).
Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic
polyethylene-functionalized-silica to improve CO2 removal in
membrane gas absorption. Separation and Purification Technology, 221:
275-285.
13.
Wan Ramli, W. K., Liang, L. G., Othman, S., Yusri, N.
A. M., and Che Lah, N. F. (2022). Phase separation behaviour modification using
co-solvents on PVDF membranes for water filtration. AIP Conference
Proceedings, 2541(1): 040012.
14.
Jannah, N. R., and Onggo, D. (2019). Synthesis of Fe3O4
nanoparticles for colour removal of printing ink solution. Journal of
Physics: Conference Series, 1245(1): 12040.
15.
Mansur, S., Othman, M. H. D., Abidin, M. N. Z.,
Ismail, A. F., Abdul Kadir, S. H. S., Goh, P. S., Hasbullah, H., Ng, B. C.,
Abdullah, M. S., and Mustafar, R. (2021). Enhanced adsorption and
biocompatibility of polysulfone hollow fibre membrane via the addition of
silica/alpha-mangostin hybrid nanoparticle for uremic toxins removal. Journal
of Environmental Chemical Engineering, 9(5): 106141.
16.
Dawn, R., Zzaman, M., Faizal, F., Kiran, C., Kumari,
A., Shahid, R., Panatarani, C., Joni, I. M., Verma, V. K., Sahoo, S. K.,
Amemiya, K., and Singh, V. R. (2022). Origin of magnetization in silica-coated
Fe3O4 nanoparticles revealed by soft X-ray magnetic
circular dichroism. Brazilian Journal of Physics, 52: 99.
17.
Upadhyay, S., Parekh, K., and Pandey, B. (2016).
Influence of crystallite size on the magnetic properties of Fe3O4
nanoparticles. Journal of Alloys and Compounds, 678: 478-485.
18.
Singh, K., Devi, S., Bajaj, H. C., Ingole, P.,
Choudhari, J., and Bhrambhatt, H. (2014). Optical resolution of racemic
mixtures of amino acids through nanofiltration membrane process. Separation
Science and Technology, 49(17): 2630-2641.
19.
Mansur, S., Othman, M. H. D., Abidin, M. N. Z.,
Ismail, A. F., Abdul Kadir, S. H. S., Goh, P. S., Hasbullah, H., Ng, B. C.,
Abdullah, M. S., and Mustafar, R. (2021). Enhanced adsorption and
biocompatibility of polysulfone hollow fibre membrane via the addition of
silica/alpha-mangostin hybrid nanoparticle for uremic toxins removal. Journal
of Environmental Chemical Engineering, 9(5): 106141.
20.
Gohain, M. B., Pawar, R. R., Karki, S., Hazarika, A.,
Hazarika, S., and Ingole, P. G. (2020). Development of thin film nanocomposite
membrane incorporated with mesoporous synthetic hectorite and MSH@UiO-66-NH2
nanoparticles for efficient targeted feeds separation, and antibacterial
performance. Journal of Membrane Science, 609: 118212.
21.
Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S.
A., and Matsuura, T. (2013). Polysulfone–chitosan blend ultrafiltration
membranes: preparation, characterization, permeation and antifouling
properties. RSC Advances, 3(21): 7855-7861.
22.
Muntha, S. T., Ajmal, M., Naeem, H., Kausar, A., Zia,
M. A., and Siddiq, M. (2019). Synthesis, properties, and applications of
polysulfone/polyimide nanocomposite membrane reinforced with silica
nanoparticles. Polymer Composites, 40(5): 1897-1910.
23. Rozi, S. K. M., Berhanundin, K.
M., Ishak, A. R., Mohd, F. L., Rasdi, N. C. D., Rahim, N. Y., Aziz, M. Y.,
Shafie, F. A., and Abdullah, A. M. (2023). Novel magnetıc eggshell
membrane functıonalızed wıth waste palm fatty acıd for selectıve
adsorptıon of oıl from aqueous solutıon. Malaysian Journal of
Analytical Sciences, 27(1): 74-86.
24.
Mansur, S., Othman, M. H., Ismail, A., Zainol Abidin,
M. N., Said, N., Goh, P., Hasbullah, H., Sheikh Abdul Kadir, S. H., and Kamal,
F. (2018). Study on the effect of spinning conditions on the performance of
PSf/PVP ultrafiltration hollow fiber membrane. Malaysian Journal of
Fundamental and Applied Sciences, 14: 343-347.
25.
Kim, J. H., Kim, Y., Kim, C. K., Lee, J. W., and Seo,
S. B. (2003). Miscibility of polysulfone blends with poly(1-vinylpyrrolidone-co-styrene)
copoly mers and their interaction energies. Journal of Polymer Science Part
B: Polymer Physics, 41(12): 1401-1411.
26.
Said, N., Abidin, M. N. Z., Hasbullah, H., Ismail, A.
F., Goh, P. S., Othman, M. H. D., Abdullah, M. S., Ng, B. C., Kadir, S. H. S.
A., and Kamal, F. (2019). Iron oxide nanoparticles improved biocompatibility
and removal of middle molecule uremic toxin of polysulfone hollow fiber
membranes. Journal of Applied Polymer Science, 136(48): 48234.
27.
Makhetha, T. A., and Moutloali, R. M. (2018).
Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye
rejection. Journal of Membrane Science, 554: 195-210.
28.
Said, N., Hasbullah, H., Ismail, A. F., Othman, M. H.
D., Goh, P. S., Zainol Abidin, M. N., Sheikh Abdul Kadir, S. H., Kamal, F.,
Abdullah, M. S., and Ng, B. C. (2017). Enhanced hydrophilic polysulfone hollow
fiber membranes with addition of iron oxide nanoparticles. Polymer
International, 66(11): 1424-1429.
29.
Salar-García,
M. J., Walter, X. A., Gurauskis, J., de Ramón Fernández, A., and Ieropoulos, I.
(2021). Effect of iron oxide content
and microstructural porosity on the performance of ceramic membranes as
microbial fuel cell separators. Electrochimica Acta, 367: 137385.
30.
Mondal, M., Dutta, M., and De, S. (2017). A novel
ultrafiltration grade nickel iron oxide doped hollow fiber mixed matrix
membrane: Spinning, characterization and application in heavy metal removal. Separation
and Purification Technology, 188: 155-166.
31.
Chan, K. H., Wong, E. T., Idris, A., and Yusof, N. M.
(2015). Modification of PES membrane by PEG-coated cobalt doped iron oxide for
improved Cu(II) removal. Journal of Industrial and Engineering Chemistry,
27: 283-290.
32.
Daraei, P., Madaeni, S. S., Ghaemi, N., Salehi, E.,
Khadivi, M. A., Moradian, R., and Astinchap, B. (2012). Novel polyethersulfone
nanocomposite membrane prepared by PANI/Fe3O4
nanoparticles with enhanced performance for Cu(II) removal from water. Journal
of Membrane Science, 415: 250-259.
33.
Mandal, S., Calderon, J., Marpu, S. B., Omary, M. A.,
and Shi, S. Q. (2021). Mesoporous activated carbon as a green adsorbent for the
removal of heavy metals and Congo red: Characterization, adsorption kinetics,
and isotherm studies. Journal of Contaminant Hydrology, 243: 103869.
34.
Fita, G., Djakba, R., Mouhamadou, S., Duc, M., Rao,
S., Popoola, L. T., Harouna, M., and Benoit, L. B. (2023). Adsorptive
efficiency of hull-based activated carbon toward copper ions (Cu2+)
removal from aqueous solution: Kinetics, modelling and statistical analysis. Diamond
and Related Materials, 139: 110421.
35.
Subhransu Sahoo Uma, S. B. and Sharma, Y. C. (2014).
Application of natural clay as a potential adsorbent for the removal of a toxic
dye from aqueous solutions. Desalination and Water Treatment, 52(34–36):
6703-6711.
36.
Elzain, A. A., El-Aassar, M. R., Hashem, F. S.,
Mohamed, F. M., and Ali, A. S. M. (2019). Removal of methylene dye using
composites of poly (styrene-co-acrylonitrile) nanofibers impregnated with
adsorbent materials. Journal of Molecular Liquids, 291: 111335.
37.
Zand, A. D., and Abyaneh, M. R. (2020). Adsorption of
Lead, manganese, and copper onto biochar in landfill leachate: implication of
non-linear regression analysis. Sustainable Environment Research, 30(1):
18.
38.
Boparai, H. K., Joseph, M., and O’Carroll, D. M.
(2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto
nano zerovalent iron particles. Journal of Hazardous Materials, 186(1):
458-465.
39. Nandiyanto, A. B. D., Girsang, G.
C. S., Maryanti, R., Ragadhita, R., Anggraeni, S., Fauzi, F., Sakinah, P.,
Astuti, A. P., Usdiyana, D., Fiandini, M., Dewi, M. W., and Al-Obaidi, A. S. M.
(2020). Isotherm adsorption characteristics of carbon microparticles prepared
from pineapple peel waste. Communications in Science and Technology,
5(1): 31-39.
40.
Karim,
K. H. (2020). Copper adsorption behavior in some calcareous soils using
Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. Journal of
Soil Sciences and Agricultural Engineering, 11(1): 27-34.
41.
van
den Berg, T. and Ulbricht, M. (2020). Polymer nanocomposite ultrafiltration
membranes: The influence of polymeric additive, dispersion quality and particle
modification on the integration of zinc oxide nanoparticles into polyvinylidene
difluoride membranes. Membranes, 10(9): 197.