Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 412 - 422

DETERMINATION OF CELECOXIB IN HUMAN PLASMA BY EFFERVESCENCE-ASSISTED DISPERSIVE LIQUID–LIQUID MICROEXTRACTION AND HPLC/UV

 
(Penentuan Celecoxib dalam Plasma Manusia dengan Bantuan Buih Berbuak Pengekstrakan Mikro Penyebaran Cecair-ke-Cecair dan HPLC/UV)
 

Zahra Saharkhiz1*, Mohammad Reza Hadjmohammadi1, and Pourya Biparva2

 

1Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, NirooHavayii Boulevard, 47416-95447 Babolsar, Iran

2Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, India

 

*Corresponding author: z_saharkhiz@yahoo.com

 

 

Received: 15 November 2023; Accepted: 29 February 2024; Published:  29 April 2024

 

 

Abstract

In this study, effervescence-assisted dispersive liquid–liquid microextraction was utilized for rapid, simple, and inexpensive microextraction of celecoxib followed by HPLC/UV. In the proposed method, carbon dioxide microbubbles were produced by the reaction between oxalic acid and sodium bicarbonate. Various factors such as type and volume of extraction solvent, pH of the sample solution, content of the acidic and basic promoters, and type and volume of auxiliary solvent were optimized. Under optimum conditions, 60 μL chloroform (as an extraction solvent) was added to 2 mL methanol and 0.4g oxalic acid. The mixture was added to the test tube containing 0.8g sodium bicarbonate and 10 mL of sample solution (pH 6). The presented method offered wide linear dynamic range of 0.5-1000 μg L-1 with satisfactory extraction recovery of 94.4%, high pre-concentration factor of 206, and normal RSD% (2.15, n=3). Finally, the proposed method was successfully applied for the analysis of celecoxib in plasma samples.

 

Keywords: effervescence-assisted liquid-microextraction, celecoxib, plasma, acid-base reaction, carbon dioxide microbubbles

 

Abstrak

Dalam kajian ini, pengekstrakan mikro cecair-ke-cecair yang dibantu buih berbuak telah digunakan untuk pengekstrakan celecoxib yang cepat, mudah, dan murah diikuti oleh HPLC/UV. Dalam kaedah yang dicadangkan, buih mikro karbon dioksida dihasilkan oleh tindak balas antara asid oksalik dan natrium bikarbonat. Pelbagai faktor seperti jenis dan isipadu pelarut pengekstrakan, pH larutan sampel, kandungan penggalak asid dan bes, dan jenis dan isipadu pelarut bantu telah dioptimumkan. Di bawah keadaan optimum, 60 μL kloroform (sebagai pelarut pengekstrakan) ditambahkan ke dalam 2 mL metanol dan 0.4g asid oksalik. Campuran tersebut ditambahkan ke dalam tabung uji yang mengandungi 0.8g natrium bikarbonat dan 10 mL larutan sampel (pH 6). Kaedah yang dikemukakan menawarkan julat dinamik linear yang luas dari 0.5-1000 μg L-1 dengan pulihkan pengekstrakan yang memuaskan sebanyak 94.4%, faktor pra-pemekatan tinggi sebanyak 206, dan RSD% normal (2.15, n=3). Akhirnya, kaedah yang dicadangkan telah berjaya digunakan untuk analisis celecoxib dalam sampel plasma.

 

Kata kunci: pengekstrakan cecair-mikro yang dibantu buih berbuak, celecoxib, plasma, tindak balas asid-bes, buih mikro karbon dioksida


References

1.        Clemett, D. and Goa, K. L. (2000). Celecoxib: a review of its use in osteoarthritis, rheumatoid arthritis and acute pain. Drugs, 59: 957-980.

2.        Abdel-Hamid, M., Novotny, L. and Hamza, H. (2001). Liquid chromatographic–mass spectrometric determination of celecoxib in plasma using single-ion monitoring and its use in clinical pharmacokinetics. Journal Chromatography B Biomedical Applied, 753(2): 401-408.

3.        Knoppert, D. C., Stempak, D., Baruchel, S. and Koren, G. (2003). Celecoxib in human milk: a case report. Pharmacotherapy, 23(1): 97-100.

4.        Hale, T. W., McDonald, R. and Boger, J. (2004). Transfer of celecoxib into human milk. Journal Human Lactose, 20(4): 397-403.

5.        Ansari, S., and Ghorbani, A. (2017). Molecularly imprinted polymers (MIP) for selective solid phase extraction of celecoxib in urine samples followed by high performance liquid chromatography. Journal Chemical Health Risks, 7(3): 225-237.

6.        Chamkouri, N., Zare-Shahabadi, V., Niazi, A. and Ramezani, M. (2004). Ibuprophen, diclofenac, and celecoxib quantification in human urine samples with ultrasound assisted emulsification microextraction–HPLC and chemometrics. Bulgaria Chemical Communication, 49: 281-289.

7.        Jalalizadeh, H., Amini, M., Ziaee, V., Safa, A., Farsam, H. and Shafiee, A. (2004). Determination of celecoxib in human plasma by high-performance liquid chromatography. Journal Pharmaceutical Biomedical Analysis, 35(3): 665-670.

8.        Zhang, M., Moore, G. A., Gardiner, S. J. and Begg, E. J. (2006). Determination of celecoxib in human plasma and breast milk by high-performance liquid chromatographic assay. Journal Chromatography B, 830(2): 245-248.

9.        Zhao, E., Zhao, W., Han, L., Jiang, S. and Zhou, Z. (2007). Application of dispersive liquid–liquid microextraction for the analysis of organophosphorus pesticides in watermelon and cucumber. Journal Chromatography A, 1175(1): 137-140.

10.     Ranjbari, E., and Hadjmohammadi, M. R. (2012). Magnetic stirring-assisted dispersive liquid–liquid microextraction followed by high performance liquid chromatography for determination of phthalate esters in drinking and environmental water samples. Talanta, 100: 447-453.

11.     Jayachandran, J., and Dhadke, P. M. (1997). Liquid-liquid extraction separation of iron (III) with 2-ethyl hexyl phosphonic acid mono 2-ethyl hexyl ester. Talanta. 44(7): 1285-1290.

12.     Thurman, E. M., and Mills, M. S. (1998). Solid-phase extraction. Principles and Practice, Wiley, New York, 1998.

13.     Korta, E., Bakkali, A., Berrueta, L. A., Gallo, B. and Vicente, F. (2001). Study of semi-automated solid-phase extraction for the determination of acaricide residues in honey by liquid chromatography. Journal of Chromatography A, 930 (1-2): 21-29.

14.     Jeannot, M. A., and Cantwell, F. F. (1996). Solvent microextraction into a single drop. Analytical Chemistry, 68(13): 2236-2240.

15.     Pedersen-Bjergaard, S., and Rasmussen, K. E. (1999). Liquid− liquid− liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Analytical Chemistry, 71(14): 2650-2656.

16.     Shen, G., and Lee, H. K. (2003). Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatography-electron capture detection. Analytical Chemistry, 75(1): 98-103.

17.     Šrámková, I. H., Horstkotte, B., Fikarová, K., Sklenářová, H. and Solich, P. (2018). Direct-immersion single-drop microextraction and in-drop stirring microextraction for the determination of nanomolar concentrations of lead using automated Lab-In-Syringe technique. Talanta, 184: 162-172.

18.     Rezaee, M., Assadi, Y., Hosseini, M. R., Aghaee, E., Ahmadi, F. and Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1-2): 1-9.

19.     Ferrone, V., Genovese, S., Carlucci, M., Tiecco, M., Germani, R., Preziuso, F., Epifano, F., Carlucci, G. and Taddeo, V. A. (2018). A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil. Food Chemistry, 245: 578-585.

20.     Bala, S. S., Sireesha, G., Ramya, Th. and Mohana, K. R. M. (2023). Experimental design of non-ionic hydrophobic DES-DLLME coupled with injector port silylation-GC–MS/MS for the quantitative determination of 13 bisphenols in food samples. Food Chemistry, 405(A): 134778.

21.     Elik, A., Özlem, A., Hameed, U. H., Grzegorz, B. and Nail, A. (2023). Combination of homogeneous liquid–liquid extraction and vortex assisted dispersive liquid–liquid microextraction for the extraction and analysis of ochratoxin A in dried fruit samples: Central composite design optimization. Journal Food Composition Analysis, 124: 105656.

22.     Florindo, C., Branco, L. C. and Marrucho, I. M. (2017). Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilibria, 448: 135-142.

23.     Jiang, W., Chen, X., Liu, F., You, X. and Xue, J. (2014).  Effervescence-assisted dispersive liquid–liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice. Journal Separation Sciences, 37(21): 3157-3163.

24.     Jafarinejad, M., Ezoddin, M., Lamei, N., Abdi, K., Babhadi-Ashar, N., Pirooznia, N. and Akhgari, M. (2020). Effervescent tablet-assisted demulsified dispersive liquid–liquid microextraction based on solidification of floating organic droplet for determination of methadone in water and biological samples prior to GC/flame ionization and GC/MS. Journal Separation Sciences, 43(16): 3266-3274.

25.     Kirill, B.Irina, T. and Andrey, B. (2022). An effervescence-assisted dispersive liquid-liquid microextraction based on three-component deep eutectic solvent for the determination of fluoroquinolones in foods. Talanta, 250: 123709.

26.     Rajendran, S., Loh, S. H., Ariffin, M. M., and Khalik, W. M. A. W. M. (2022). Magnetic effervescent tablet-assisted ionic liquid dispersive liquid–liquid microextraction employing the response surface method for the preconcentration of basic pharmaceutical drugs: Characterization, method development, and green profile assessment. Journal of Molecular Liquids, 367: 120411.

27.     Sepideh, S.Ramin, A. and Mohammad, R. A. M. (2022). Combination of microwave-assisted solvent extraction and effervescence-assisted deep eutectic solvent-based in-syringe dispersive liquid-liquid microextraction and its application in the extraction of triazine pesticides from apple samples. Journal Separation Sciences, 45(19): 3735-3744.

28.     Aghaie, A. B., and Hadjmohammadi, M. R. (2006). Fe3O4@p-Naphtholbenzein as a novel nano-sorbent for highly effective removal and recovery of Berberine: Response surface methodology for optimization of ultrasound assisted dispersive magnetic solid phase extraction. Talanta, 156: 18-28.

29.     Hamama, A. K., Ray, J., Day, R. O. and Brien, J. A. E. (2005). Simultaneous Determination of rofecoxib and celecoxib in human plasma by high-performance liquid chromatography. Journal of Chromatographic Sciences, 43(7): 351-354.

30.     Oh, H. A., Kim, D., Lee, S. H., and Jung, B. H. (2015). Simultaneous quantitative determination of celecoxib and its two metabolites using liquid chromatography–tandem mass spectrometry in alternating polarity switching mode. Journal Pharmaceutical Biomedicine, 107: 32-39.

31.     Rose, M. J., Woolf, E. J. and Matuszewski, B. K. (2000). Determination of celecoxib in human plasma by normal-phase high-performance liquid chromatography with column switching and ultraviolet absorbance detection. Journal Chromatography B, 738(2): 377-385.