Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 412 - 422
(Penentuan Celecoxib dalam Plasma Manusia dengan Bantuan Buih Berbuak Pengekstrakan Mikro Penyebaran Cecair-ke-Cecair dan HPLC/UV)
Zahra
Saharkhiz1*, Mohammad Reza Hadjmohammadi1, and Pourya
Biparva2
1Department of
Analytical Chemistry, Faculty of Chemistry, University of Mazandaran,
NirooHavayii Boulevard, 47416-95447 Babolsar, Iran
2Department of
Basic Sciences, Sari Agricultural Sciences and Natural Resources University,
Sari, India
*Corresponding
author: z_saharkhiz@yahoo.com
Received: 15 November
2023; Accepted: 29 February 2024; Published:
29 April 2024
Abstract
In this study, effervescence-assisted
dispersive liquid–liquid microextraction was utilized for rapid, simple, and
inexpensive microextraction of celecoxib followed by HPLC/UV. In the proposed
method, carbon dioxide microbubbles were produced by the reaction between oxalic
acid and sodium bicarbonate. Various factors such as type and volume of
extraction solvent, pH of the sample solution, content of the acidic and basic
promoters, and type and volume of auxiliary solvent were optimized. Under
optimum conditions, 60 μL chloroform (as an extraction solvent) was added
to 2 mL methanol and 0.4g oxalic acid. The mixture was added to the test tube
containing 0.8g sodium bicarbonate and 10 mL of sample solution (pH 6). The presented
method offered wide linear dynamic range of 0.5-1000 μg L-1 with
satisfactory extraction recovery of 94.4%, high pre-concentration factor of 206,
and normal RSD% (2.15, n=3). Finally, the proposed method was successfully
applied for the analysis of celecoxib in plasma samples.
Keywords: effervescence-assisted liquid-microextraction,
celecoxib, plasma, acid-base reaction, carbon dioxide microbubbles
Abstrak
Dalam kajian ini, pengekstrakan mikro
cecair-ke-cecair yang dibantu buih berbuak telah digunakan untuk pengekstrakan
celecoxib yang cepat, mudah, dan murah diikuti oleh HPLC/UV. Dalam kaedah yang
dicadangkan, buih mikro karbon dioksida dihasilkan oleh tindak balas antara
asid oksalik dan natrium bikarbonat. Pelbagai faktor seperti jenis dan isipadu
pelarut pengekstrakan, pH larutan sampel, kandungan penggalak asid dan bes, dan
jenis dan isipadu pelarut bantu telah dioptimumkan. Di bawah keadaan optimum,
60 μL kloroform (sebagai pelarut pengekstrakan) ditambahkan ke dalam 2 mL
metanol dan 0.4g asid oksalik. Campuran tersebut ditambahkan ke dalam tabung
uji yang mengandungi 0.8g natrium bikarbonat dan 10 mL larutan sampel (pH 6).
Kaedah yang dikemukakan menawarkan julat dinamik linear yang luas dari 0.5-1000
μg L-1 dengan pulihkan pengekstrakan yang memuaskan sebanyak
94.4%, faktor pra-pemekatan tinggi sebanyak 206, dan RSD% normal (2.15, n=3).
Akhirnya, kaedah yang dicadangkan telah berjaya digunakan untuk analisis
celecoxib dalam sampel plasma.
Kata kunci: pengekstrakan cecair-mikro yang dibantu buih
berbuak, celecoxib, plasma, tindak balas asid-bes, buih mikro karbon dioksida
1.
Clemett, D. and Goa,
K. L. (2000). Celecoxib: a review of its use in osteoarthritis, rheumatoid
arthritis and acute pain. Drugs, 59: 957-980.
2.
Abdel-Hamid, M.,
Novotny, L. and Hamza, H. (2001). Liquid chromatographic–mass spectrometric
determination of celecoxib in plasma using single-ion monitoring and its use in
clinical pharmacokinetics. Journal Chromatography B Biomedical Applied, 753(2):
401-408.
3.
Knoppert, D. C.,
Stempak, D., Baruchel, S. and Koren, G. (2003). Celecoxib in human milk: a case
report. Pharmacotherapy, 23(1): 97-100.
4.
Hale, T. W., McDonald, R. and Boger, J. (2004). Transfer of celecoxib into human milk. Journal Human Lactose, 20(4):
397-403.
5.
Ansari, S., and Ghorbani,
A. (2017). Molecularly imprinted polymers (MIP) for selective solid phase
extraction of celecoxib in urine samples followed by high performance liquid
chromatography. Journal Chemical Health Risks, 7(3): 225-237.
6.
Chamkouri, N.,
Zare-Shahabadi, V., Niazi, A. and Ramezani, M. (2004). Ibuprophen, diclofenac,
and celecoxib quantification in human urine samples with ultrasound assisted
emulsification microextraction–HPLC and chemometrics. Bulgaria Chemical Communication,
49: 281-289.
7.
Jalalizadeh, H.,
Amini, M., Ziaee, V., Safa, A., Farsam, H. and Shafiee, A. (2004). Determination
of celecoxib in human plasma by high-performance liquid chromatography. Journal Pharmaceutical Biomedical Analysis, 35(3): 665-670.
8.
Zhang, M., Moore, G.
A., Gardiner, S. J. and Begg, E. J. (2006). Determination of celecoxib in human
plasma and breast milk by high-performance liquid chromatographic assay. Journal
Chromatography B, 830(2): 245-248.
9.
Zhao, E., Zhao, W.,
Han, L., Jiang, S. and Zhou, Z. (2007). Application of dispersive liquid–liquid
microextraction for the analysis of organophosphorus pesticides in watermelon
and cucumber. Journal Chromatography A, 1175(1): 137-140.
11. Jayachandran, J., and Dhadke, P. M. (1997). Liquid-liquid extraction
separation of iron (III) with 2-ethyl hexyl phosphonic acid mono 2-ethyl hexyl
ester. Talanta. 44(7): 1285-1290.
12. Thurman, E. M., and Mills, M. S. (1998). Solid-phase extraction.
Principles and Practice, Wiley, New York, 1998.
13. Korta, E., Bakkali, A., Berrueta, L. A., Gallo, B. and
Vicente, F. (2001). Study of
semi-automated solid-phase extraction for the determination of acaricide
residues in honey by liquid chromatography. Journal of Chromatography A,
930 (1-2): 21-29.
14. Jeannot, M. A., and Cantwell, F. F. (1996). Solvent microextraction into a
single drop. Analytical Chemistry, 68(13): 2236-2240.
15. Pedersen-Bjergaard, S., and Rasmussen, K. E. (1999). Liquid−
liquid− liquid microextraction for sample preparation of biological
fluids prior to capillary electrophoresis. Analytical Chemistry, 71(14):
2650-2656.
16. Shen, G., and Lee, H. K. (2003). Headspace liquid-phase microextraction of
chlorobenzenes in soil with gas chromatography-electron capture detection. Analytical
Chemistry, 75(1): 98-103.
17. Šrámková, I. H., Horstkotte, B., Fikarová, K., Sklenářová, H. and
Solich, P. (2018). Direct-immersion single-drop microextraction and in-drop
stirring microextraction for the determination of nanomolar concentrations of
lead using automated Lab-In-Syringe technique. Talanta, 184: 162-172.
18. Rezaee, M., Assadi, Y., Hosseini, M. R., Aghaee, E., Ahmadi, F. and
Berijani, S. (2006). Determination of organic compounds in water using
dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1-2):
1-9.
19. Ferrone, V., Genovese, S., Carlucci, M., Tiecco, M., Germani, R., Preziuso,
F., Epifano, F., Carlucci, G. and Taddeo, V. A. (2018). A green deep eutectic
solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA
determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn,
and sunflower oil. Food Chemistry, 245: 578-585.
21. Elik, A., Özlem, A., Hameed, U. H., Grzegorz, B. and Nail, A. (2023).
Combination of homogeneous liquid–liquid extraction and vortex assisted
dispersive liquid–liquid microextraction for the extraction and analysis of
ochratoxin A in dried fruit samples: Central composite design optimization. Journal
Food Composition Analysis, 124: 105656.
22.
Florindo, C., Branco,
L. C. and Marrucho, I. M. (2017). Development of hydrophobic deep eutectic
solvents for extraction of pesticides from aqueous environments. Fluid Phase
Equilibria, 448: 135-142.
23.
Jiang, W., Chen, X., Liu, F., You, X. and
Xue, J. (2014). Effervescence-assisted
dispersive liquid–liquid microextraction using a solid effervescent agent as a
novel dispersion technique for the analysis of fungicides in apple juice. Journal
Separation Sciences, 37(21): 3157-3163.
24.
Jafarinejad, M., Ezoddin, M., Lamei, N.,
Abdi, K., Babhadi-Ashar, N., Pirooznia, N. and Akhgari, M. (2020). Effervescent
tablet-assisted demulsified dispersive liquid–liquid microextraction based on
solidification of floating organic droplet for determination of methadone in
water and biological samples prior to GC/flame ionization and GC/MS. Journal
Separation Sciences, 43(16): 3266-3274.
26. Rajendran, S., Loh, S. H., Ariffin, M. M., and Khalik,
W. M. A. W. M. (2022). Magnetic
effervescent tablet-assisted ionic liquid dispersive liquid–liquid
microextraction employing the response surface method for the preconcentration
of basic pharmaceutical drugs: Characterization, method development, and green
profile assessment. Journal of Molecular Liquids, 367: 120411.
27. Sepideh, S., Ramin, A. and Mohammad, R. A. M. (2022). Combination of
microwave-assisted solvent extraction and effervescence-assisted deep eutectic
solvent-based in-syringe dispersive liquid-liquid microextraction and its
application in the extraction of triazine pesticides from apple samples.
Journal Separation
Sciences, 45(19): 3735-3744.
28.
Aghaie, A. B., and Hadjmohammadi, M. R.
(2006). Fe3O4@p-Naphtholbenzein as a novel nano-sorbent
for highly effective removal and recovery of Berberine: Response surface
methodology for optimization of ultrasound assisted dispersive magnetic solid
phase extraction. Talanta, 156: 18-28.
29. Hamama, A. K., Ray,
J., Day, R. O. and Brien, J. A. E. (2005).
Simultaneous Determination of rofecoxib and celecoxib in human plasma by
high-performance liquid chromatography. Journal of Chromatographic Sciences,
43(7): 351-354.