Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 397 411
AN
INSIGHT INTO PINEAPPLE PEEL WASTE ADSORBENT FOR IRON CONTAMINATED WATER THROUGH
KINETIC AND ISOTHERM STUDY
(Tinjauan
Terhadap Penjerap daripada Sisa Kulit Nanas bagi Air Tercemar dengan Ferum Melalui
Kajian Kinetik dan Isoterma)
Nurul Faizah Abd Ghapar1, Rozaimi Abu Samah1*,
Mohamad Syafiq Abdul Wahab2, Sunarti Abd Rahman1, and Mohd
Hafiz Dzarfan Othman3
1Faculty of Chemical & Process Engineering Technology,
Universiti Malaysia Pahang Al-Sultan Abdullah,
Lebuh Persiaran Tun Khalil Yaakob,
26300 Kuantan, Pahang, Malaysia.
2EMZI-UiTM Nanoparticles Colloids and Interface Industrial
Research Laboratory (NANO-CORE), School of Chemical Engineering, College of
Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus
Permatang Pauh,
13500
Permatang Pauh, Penang, Malaysia.
3Advanced Membrane Technology Research Center (AMTEC), School
of Chemical and Energy Engineering,
Universiti Teknologi Malaysia, 81310
UTM Johor Bahru, Johor, Malaysia
*Corresponding author: rozaimi@umpsa.edu.my
Received:
17 November 2023; Accepted: 12 February 2024; Published: 29 April 2024
Abstract
The swift growth of sectors like steel and coal mining leads
to a higher release of heavy metals like iron into aquatic ecosystems,
resulting in water pollution. In this study, the kinetics and isotherms studies
were applied to pineapple peel waste based adsorbent for iron removal. An
adsorbent derived from discarded pineapple peels was created through a chemical
activation process, employing zinc chloride (ZnCl2) as the
activator. By examining the effects of various experimental parameters,
including contact duration (30 240 min), concentration of iron (5 80 ppm), and
the amount of adsorbent (2 24 g/L), the behaviour of the adsorbent for iron adsorption
was carefully studied. Maximum iron removal of 99.24% efficiency with adsorbent
dosage of 20 g/L was achieved through this study. The iron removal process was
most accurately represented by the Freundlich isotherm model, exhibiting an R2
value of 0.985. Furthermore, the kinetics investigation demonstrated an
excellent fit with the pseudo-second-order model for iron adsorption, yielding
an R2 value of 0.999. These findings strongly indicate that
pineapple peel waste holds promise as a viable adsorbent for eliminating iron
from water bodies.
Keywords: Pineapple
peel waste, iron removal, adsorption isotherm, adsorption kinetic
Abstrak
Pertumbuhan pesat sektor-sektor seperti keluli dan perlombongan arang
menyebabkan peningkatan pelepasan logam berat seperti ferum ke dalam ekosistem
akuatik, yang mengakibatkan pencemaran air. Dalam kajian ini, kajian kinetik
dan isoterma telah digunakan bagi penyingkiran ferum menggunakan penjerap
berasaskan sisa kulit nanas. Penjerap yang diperoleh daripada kulit nanas yang
dibuang telah dihasilkan melalui proses pengaktifan kimia dengan menggunakan zink
klorida (ZnCl2) sebagai pengaktif. Dengan mengkaji kesan pelbagai
parameter eksperimen, termasuk tempoh penjerapan (30 240 minit), kepekatan ferum (5 80 ppm), dan jumlah penjerap (2 24 g/L), tingkah laku penjerap untuk
penjerapan ferum telah dikaji dengan teliti. Penyingkiran ferum maksimum
sebanyak 99.24% dengan dos penjerap 20 g/L telah dicapai melalui kajian ini. Proses penyingkiran ferum
paling tepat diwakili oleh model isoterma Freundlich, dengan nilai R2 sebanyak 0.985. Selain
itu, penyiasatan kinetik menunjukkan kesesuaian yang sangat baik dengan model
pseudo-tertib kedua untuk penjerapan ferum, menghasilkan nilai R2 sebanyak 0.999. Penemuan
ini menunjukkan bahawa sisa kulit nanas berpotensi sebagai penjerap yang berkesan
untuk menyingkirkan ferum dari air.
Kata kunci: sisa kulit nenas, penyingkiran
ferum, isoterma penjerapan, kinetik penjerapan
References
1.
Hodaifa, G.,
Ochando-Pulido, J. M., Ben Driss Alami, S., Rodriguez-Vives, S. and
Martinez-Ferez, A. (2013). Kinetic and thermodynamic parameters of iron
adsorption
onto olive stones. Industrial
Crops Product, 49: 526-534.
2.
Abdel-ghani, N. T., El-chaghaby, G. A. and Zahran, E.
M. (2015). Cost effective adsorption of aluminium and iron from synthetic and
real wastewater by rice hull activated carbon (RHAC). American Journal of Analytical Chemistry, 6: 71-83.
3.
Al-Anber, M. A. (2015). Adsorption of ferric
ions onto natural
feldspar: kinetic modeling and adsorption isotherm. International Journal of Environmental Science and
Technology, 12(1): 139-150.
4.
Adekola, F. A., Hodonou, D. S. S. and Adegoke, H. I.
(2014). Thermodynamic and kinetic studies of biosorption of iron
and manganese
from aqueous medium using rice husk ash. Journal of Applied Water Science, 6: 319-330.
5.
Surovka, D. and Pertile, E. (2015). Sorption of iron,
manganese,
and copper from aqueous solution using orange
peel: Optimization,
isothermic, kinetic, and thermodynamic studies. Polish Journal of Environmental
Study, 26(2): 795-800.
6.
Akl, M. A., Yousef, A. M. and AbdElnasser, S. (2013). Removal of iron and
manganese in water samples using activated carbon derived from local
agro-residues. Journal of Chemical
Engineering Process Technology, 4(4):1-10.
7.
Rose, E. P. and Rajam, S. (2012). Equilibrium study of the adsorption of iron (II) ions from aqueous
solution
on carbons from wild jack and jambul. Advances
in Applied Science Research, 3(2): 1889-1894.
8.
Olowu, R. A., Osundiya, M. O., Oyewole, T. S., Onwordi, C. T., Yusuff, O. K.,
Osifeko, O. L. and Tovide, O. O. (2022). Equilibrium and kinetic studies for the removal of Zn(II) and
Cr(VI) ions from aqueous solution using pineapple peels as
an
adsorbent. European Journal of Applied Sciences, 10(5):34-47.
9.
Mopoung, R. and Kengkhetkit, N. (2016). Lead and
cadmium removal efficiency from aqueous solution by NaOH treated pineapple
waste.
International Journal of
Applied Chemistry, 12(1): 23-35.
10. Ahmad, A., Khatoon, A., Mohd-Setapar,
S. H., Kumar, R. and Rafatullah, M. (2016). Chemically oxidized
pineapple fruit peel
for the biosorption of heavy metals from aqueous
solutions.
Desalination of
Water Treatment, 57(14): 6432-6442.
11. Hu, X., Zhao, M., Song, G. and Huang, H. (2011). Modification
of pineapple peel fibre with succinic anhydride for Cu2+, Cd2+
and Pb2+ removal from aqueous
solutions.
Environmental Technology, 32(7): 739-746.
12. Ahmad Zamri, M. F. M., Akhiar,
A., Mohd Roslan, M. E., Mohd Marzuki, M. H., Saad, J. M. and Shamsuddin, A. H.
(2020). Valorisation of organic fraction municipal solid
waste via anaerobic co-digestion of Malaysia tropical fruit for biogas
production.
IOP Conference Series: Earth & Environmental
Sciences, 476(1):1-8.
13. Turkmen
Koc, S. N., Kipcak, A. S., Moroydor Derun, E. and Tugrul, N. (2021). Removal of
zinc from wastewater using orange, pineapple and pomegranate peels. International
Journal of Environmental Sciences & Technology, 18(9): 2781-2792.
14. Rozaidi,
N. I. M. and Abu Samah, R. (2018). Peel wastes of Ananas comosus (L.)
Merr as biosorbent for Fe(II) Ions removal from aqueous solution. Research
Communication: Engineering Science & Technology Special issue Regional Chemical Engineering Undergraduate
Congress (RCEUC), 1:8.
15. Abd Ghapar, N. F., Abu
Samah, R. and Abd Rahman, S. (2020). Pineapple peel waste adsorbent for
adsorption of Fe (III). IOP
Conferences Series:
Materials & Science Engineering, 991(012093):
1-5.
16. Liu, Y. and Shen, L.
(2008). A general rate law equation for biosorption. Biochemical Engineering Journal, 38: 390-394.
17. Reddy, K. S. K., Al
Shoaibi, A. and Srinivasakannan, C. (2015). Preparation of porous
carbon from date
palm seeds
and process optimization. International
Journal of Environmental Sciences
& Technology, 12(3): 959-966.
18. Fu, B., Ge, C., Yue, L.,
Luo, J., Feng, D., Deng, H. and Yu, H. (2016). Characterization of biochar
derived from pineapple peel waste and its application for sorption of
oxytetracycline from aqueous solution. BioResources,
11(4): 9017-9035.
19. Saadia, M., Nazha, O., Abdlemjid,
A. and Ahmed, B. (2012). Preparation and characterization of activated carbon
from residues of oregano. Journal
of Surface Sciences &
Technology,
28(3): 91-100.
20. Das, D., Samal, D. P. and BC,
M.
(2015). Preparation of activated carbon from green coconut shell and its
characterization. Journal of
Chemical Engineering Process Technology, 6(5):1-12.
21. Ashtaputrey, S. D. and
Ashtaputrey, P. D. (2016). Preparation, characterization
and application of pineapple
peel activated carbon as an adsorbent for water
hardness removal.
Journal of Chemical and
Pharmaceutical Research, 8(8): 1030-1034.
22. Hossain,
M. A., Kumita, M. and Mori, S. (2010). SEM characterization of the mass
transfer of Cr(VI) during the adsorption on used black tea leaves. African
Journal of Pure Applied Chemistry, 4(7): 135-141.
23. Mahamad, M. N., Ahmad
Zaini, M. A. and Zakaria, Z. A. (2015). Preparation and characterization
of activated carbon
from pineapple waste biomass for dye removal. International Biodeterioration & Biodegradation, 102: 274-280.
24. Sazali, N., Harun, Z. and Sazali,
N. (2020). A review on batch and column
adsorption
of various adsorbent towards the removal of heavy
metal. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 67(2): 66-88.
25. El-Sayed, G. O., Dessouki,
H. A. and Ibrahiem, S. S. (2011). Removal of Zn(II), Cd(II) and Mn(II) from aqueous
solutions
by adsorption on maize stalks. Malaysian
Journal of Analytical Sciences, 15(1): 8-21.
26. Sekhararao Gulipalli, C.,
Prasad, B. and Wasewar, K. L. (2011). Batch study, equilibirum and kinetics of adsorption of selenium using rice
husk ash
(RHA).
Journal of Engineering Science & Technology, 6(5): 590-609.
27. Desta, M. B. (2013). Batch
sorption experiments: Langmuir and Freundlich isotherm
studies for
the adsorption of textile metal ions onto teff
straw (eragrostis tef) agricultural waste. Journal
of Thermodynamic, 1(1): 1-6.
28. Mohamed, K. N. and Yee, L.
L. (2019). Removal of Fe Ion from polluted water by reusing
spent coffee grounds. Pertanika
Journal of Science &
Technology,
27(3): 1077-1090.
29. Renu, Agarwal, M. and Singh,
K. (2018). Removal of copper, cadmium, and chromium from wastewater by modified
wheat bran
using Box Behnken design: Kinetics and isotherm. Separation Science and
Technology, 53(10):1476-1489.
30. Nayeem, A., Mizi, F., Ali,
M. F. and Shariffuddin, J. H. (2023). Utilization of cockle shell
powder as an
adsorbent to remove phosphorus-containing
wastewater.
Environmental Research, 216:1-8.
31. Kaur, R., Singh, J., Khare,
R., Cameotra, S. S. and Ali, A. (2013). Batch sorption
dynamics, kinetics and equilibrium studies of Cr(VI), Ni(II) and Cu(II) from aqueous
phase using
agricultural residues. Applied
Water Science, 3(1): 207-218.
32. Seliem, M. K. and Komarneni, S.
(2016). Equilibrium
and kinetic studies for adsorption of iron from aqueous solution by synthetic
Na-A zeolites: Statistical modeling and optimization. Microporous Mesoporous Materials, 228:
266-274.
33. Chen, J., Cai, Y., Clark,
M. and Yu, Y. (2013). Equilibrium and kinetic studies of phosphate removal from
solution onto a hydrothermally modified oyster shell material. PLoS One, 8(4):1-10.
34. Sahu, M. K., Mandal, S.,
Yadav, L. S., Dash, S. S. and Patel, R. K. (2016). Equilibrium and kinetic
studies of
Cd(II) ion adsorption from aqueous solution by activated
red mud.
Desalination Water Treatment, 57(30):
14251-14265.
35. Khalfa, L., Cervera, M.
L., Souissi-Najjar, S. and Bagane, M. (2021). Removal of Fe(III) from synthetic
wastewater
into raw and modified clay: Experiments and models
fitting.
Separation Science and
Technology, 56(4): 708-718.
36. Neag, E., T r k, A. I., Tanaselia,
C., Aschilean, I. and Senila, M. (2020). Kinetics and equilibrium
studies for
the removal of Mn and Fe from binary metal
solution systems
using a
Romanian thermally activated natural zeolite. Water (Switzerland), 12(6):1-13.
37. Akbar, N. A., Aziz, H. A.
and Adlan, M. N. (2016). Potential of high quality limestone as adsorbent for iron and manganese
removal in groundwater. Jurnal Teknologi, 78(9-4):77-82.
38. Doran, P. M. (2013). Bioprocess engineering
principles. Chapter 11, John Wiley. pp: 445-595.
39. Younes, A. A., Abdulhady,
Y. A. M., Shahat, N. S. and El-Din El-Dars, F. M. S. (2021). Removal of cadmium
ions from wastewaters using corn
cobs supporting nano-zero valent iron. Separation
Science and Technology, 56(1):1-13.
40. Ali, M. E. A., Aboelfadl, M.
M. S., Selim, A. M., Khalil, H. F. and Elkady, G. M. (2018). Chitosan nanoparticles
extracted
from shrimp shells, application for removal of Fe(II) and Mn(II) from
aqueous phases. Separation
Science and Technology, 53(18): 2870-2881.
41. Shavandi, M. A.,
Haddadian, Z., Ismail, M. H. S., Abdullah, N. and Abidin, Z. Z. (2012). Removal
of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural
zeolite.
Journal of the Taiwan Institute of Chemical Engineers, 43(5): 750-759.
42. Al-Ghouti,
M. A., Li, J., Salamh, Y., Al-Laqtah, N., Walker, G. and Ahmad, M. N. M.
(2010). Adsorption mechanisms of removing heavy metals and dyes from aqueous
solution using date pits solid adsorbent. Journal of Hazardous Materials,
176: 510-520.