Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 397 411

 

AN INSIGHT INTO PINEAPPLE PEEL WASTE ADSORBENT FOR IRON CONTAMINATED WATER THROUGH KINETIC AND ISOTHERM STUDY

 

(Tinjauan Terhadap Penjerap daripada Sisa Kulit Nanas bagi Air Tercemar dengan Ferum Melalui Kajian Kinetik dan Isoterma)

 

Nurul Faizah Abd Ghapar1, Rozaimi Abu Samah1*, Mohamad Syafiq Abdul Wahab2, Sunarti Abd Rahman1, and Mohd Hafiz Dzarfan Othman3

 

1Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah,

Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.

2EMZI-UiTM Nanoparticles Colloids and Interface Industrial Research Laboratory (NANO-CORE), School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Permatang Pauh,

13500 Permatang Pauh, Penang, Malaysia.

3Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author: rozaimi@umpsa.edu.my

 

 

Received: 17 November 2023; Accepted: 12 February 2024; Published: 29 April 2024

 

 

Abstract

The swift growth of sectors like steel and coal mining leads to a higher release of heavy metals like iron into aquatic ecosystems, resulting in water pollution. In this study, the kinetics and isotherms studies were applied to pineapple peel waste based adsorbent for iron removal. An adsorbent derived from discarded pineapple peels was created through a chemical activation process, employing zinc chloride (ZnCl2) as the activator. By examining the effects of various experimental parameters, including contact duration (30 240 min), concentration of iron (5 80 ppm), and the amount of adsorbent (2 24 g/L), the behaviour of the adsorbent for iron adsorption was carefully studied. Maximum iron removal of 99.24% efficiency with adsorbent dosage of 20 g/L was achieved through this study. The iron removal process was most accurately represented by the Freundlich isotherm model, exhibiting an R2 value of 0.985. Furthermore, the kinetics investigation demonstrated an excellent fit with the pseudo-second-order model for iron adsorption, yielding an R2 value of 0.999. These findings strongly indicate that pineapple peel waste holds promise as a viable adsorbent for eliminating iron from water bodies.

 

Keywords: Pineapple peel waste, iron removal, adsorption isotherm, adsorption kinetic

 

Abstrak

Pertumbuhan pesat sektor-sektor seperti keluli dan perlombongan arang menyebabkan peningkatan pelepasan logam berat seperti ferum ke dalam ekosistem akuatik, yang mengakibatkan pencemaran air. Dalam kajian ini, kajian kinetik dan isoterma telah digunakan bagi penyingkiran ferum menggunakan penjerap berasaskan sisa kulit nanas. Penjerap yang diperoleh daripada kulit nanas yang dibuang telah dihasilkan melalui proses pengaktifan kimia dengan menggunakan zink klorida (ZnCl2) sebagai pengaktif. Dengan mengkaji kesan pelbagai parameter eksperimen, termasuk tempoh penjerapan (30 240 minit), kepekatan ferum (5 80 ppm), dan jumlah penjerap (2 24 g/L), tingkah laku penjerap untuk penjerapan ferum telah dikaji dengan teliti. Penyingkiran ferum maksimum sebanyak 99.24% dengan dos penjerap 20 g/L telah dicapai melalui kajian ini. Proses penyingkiran ferum paling tepat diwakili oleh model isoterma Freundlich, dengan nilai R2 sebanyak 0.985. Selain itu, penyiasatan kinetik menunjukkan kesesuaian yang sangat baik dengan model pseudo-tertib kedua untuk penjerapan ferum, menghasilkan nilai R2 sebanyak 0.999. Penemuan ini menunjukkan bahawa sisa kulit nanas berpotensi sebagai penjerap yang berkesan untuk menyingkirkan ferum dari air.

 

Kata kunci: sisa kulit nenas, penyingkiran ferum, isoterma penjerapan, kinetik penjerapan


References

1.      Hodaifa, G., Ochando-Pulido, J. M., Ben Driss Alami, S., Rodriguez-Vives, S. and Martinez-Ferez, A. (2013). Kinetic and thermodynamic parameters of iron adsorption onto olive stones. Industrial Crops Product, 49: 526-534.

2.      Abdel-ghani, N. T., El-chaghaby, G. A. and Zahran, E. M. (2015). Cost effective adsorption of aluminium and iron from synthetic and real wastewater by rice hull activated carbon (RHAC). American Journal of Analytical Chemistry, 6: 71-83.

3.      Al-Anber, M. A. (2015). Adsorption of ferric ions onto natural feldspar: kinetic modeling and adsorption isotherm. International Journal of Environmental Science and Technology, 12(1): 139-150.

4.      Adekola, F. A., Hodonou, D. S. S. and Adegoke, H. I. (2014). Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash. Journal of Applied Water Science, 6: 319-330.

5.      Surovka, D. and Pertile, E. (2015). Sorption of iron, manganese, and copper from aqueous solution using orange peel: Optimization, isothermic, kinetic, and thermodynamic studies. Polish Journal of Environmental Study, 26(2): 795-800.

6.      Akl, M. A., Yousef, A. M. and AbdElnasser, S. (2013). Removal of iron and manganese in water samples using activated carbon derived from local agro-residues. Journal of Chemical Engineering Process Technology, 4(4):1-10.

7.      Rose, E. P. and Rajam, S. (2012). Equilibrium study of the adsorption of iron (II) ions from aqueous solution on carbons from wild jack and jambul. Advances in Applied Science Research, 3(2): 1889-1894.

8.      Olowu, R. A., Osundiya, M. O., Oyewole, T. S., Onwordi, C. T., Yusuff, O. K., Osifeko, O. L. and Tovide, O. O. (2022). Equilibrium and kinetic studies for the removal of Zn(II) and Cr(VI) ions from aqueous solution using pineapple peels as an adsorbent. European Journal of Applied Sciences, 10(5):34-47.

9.      Mopoung, R. and Kengkhetkit, N. (2016). Lead and cadmium removal efficiency from aqueous solution by NaOH treated pineapple waste. International Journal of Applied Chemistry, 12(1): 23-35.

10.   Ahmad, A., Khatoon, A., Mohd-Setapar, S. H., Kumar, R. and Rafatullah, M. (2016). Chemically oxidized pineapple fruit peel for the biosorption of heavy metals from aqueous solutions. Desalination of Water Treatment, 57(14): 6432-6442.

11.   Hu, X., Zhao, M., Song, G. and Huang, H. (2011). Modification of pineapple peel fibre with succinic anhydride for Cu2+, Cd2+ and Pb2+ removal from aqueous solutions. Environmental Technology, 32(7): 739-746.

12.   Ahmad Zamri, M. F. M., Akhiar, A., Mohd Roslan, M. E., Mohd Marzuki, M. H., Saad, J. M. and Shamsuddin, A. H. (2020). Valorisation of organic fraction municipal solid waste via anaerobic co-digestion of Malaysia tropical fruit for biogas production. IOP Conference Series: Earth & Environmental Sciences, 476(1):1-8.

13.   Turkmen Koc, S. N., Kipcak, A. S., Moroydor Derun, E. and Tugrul, N. (2021). Removal of zinc from wastewater using orange, pineapple and pomegranate peels. International Journal of Environmental Sciences & Technology, 18(9): 2781-2792.

14.   Rozaidi, N. I. M. and Abu Samah, R. (2018). Peel wastes of Ananas comosus (L.) Merr as biosorbent for Fe(II) Ions removal from aqueous solution. Research Communication: Engineering Science & Technology Special issue Regional Chemical Engineering Undergraduate Congress (RCEUC), 1:8.

15.   Abd Ghapar, N. F., Abu Samah, R. and Abd Rahman, S. (2020). Pineapple peel waste adsorbent for adsorption of Fe (III). IOP Conferences Series: Materials & Science Engineering, 991(012093): 1-5.

16.   Liu, Y. and Shen, L. (2008). A general rate law equation for biosorption. Biochemical Engineering Journal, 38: 390-394.

17.   Reddy, K. S. K., Al Shoaibi, A. and Srinivasakannan, C. (2015). Preparation of porous carbon from date palm seeds and process optimization. International Journal of Environmental Sciences & Technology, 12(3): 959-966.

18.   Fu, B., Ge, C., Yue, L., Luo, J., Feng, D., Deng, H. and Yu, H. (2016). Characterization of biochar derived from pineapple peel waste and its application for sorption of oxytetracycline from aqueous solution. BioResources, 11(4): 9017-9035.

19.   Saadia, M., Nazha, O., Abdlemjid, A. and Ahmed, B. (2012). Preparation and characterization of activated carbon from residues of oregano. Journal of Surface Sciences & Technology, 28(3): 91-100.

20.   Das, D., Samal, D. P. and BC, M. (2015). Preparation of activated carbon from green coconut shell and its characterization. Journal of Chemical Engineering Process Technology, 6(5):1-12.

21.   Ashtaputrey, S. D. and Ashtaputrey, P. D. (2016). Preparation, characterization and application of pineapple peel activated carbon as an adsorbent for water hardness removal. Journal of Chemical and Pharmaceutical Research, 8(8): 1030-1034.

22.   Hossain, M. A., Kumita, M. and Mori, S. (2010). SEM characterization of the mass transfer of Cr(VI) during the adsorption on used black tea leaves. African Journal of Pure Applied Chemistry, 4(7): 135-141.

23.   Mahamad, M. N., Ahmad Zaini, M. A. and Zakaria, Z. A. (2015). Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. International Biodeterioration & Biodegradation, 102: 274-280.

24.   Sazali, N., Harun, Z. and Sazali, N. (2020). A review on batch and column adsorption of various adsorbent towards the removal of heavy metal. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 67(2): 66-88.

25.   El-Sayed, G. O., Dessouki, H. A. and Ibrahiem, S. S. (2011). Removal of Zn(II), Cd(II) and Mn(II) from aqueous solutions by adsorption on maize stalks. Malaysian Journal of Analytical Sciences, 15(1): 8-21.

26.   Sekhararao Gulipalli, C., Prasad, B. and Wasewar, K. L. (2011). Batch study, equilibirum and kinetics of adsorption of selenium using rice husk ash (RHA). Journal of Engineering Science & Technology, 6(5): 590-609.

27.   Desta, M. B. (2013). Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (eragrostis tef) agricultural waste. Journal of Thermodynamic, 1(1): 1-6.

28.   Mohamed, K. N. and Yee, L. L. (2019). Removal of Fe Ion from polluted water by reusing spent coffee grounds. Pertanika Journal of Science & Technology, 27(3): 1077-1090.

29.   Renu, Agarwal, M. and Singh, K. (2018). Removal of copper, cadmium, and chromium from wastewater by modified wheat bran using Box Behnken design: Kinetics and isotherm. Separation Science and Technology, 53(10):1476-1489.

30.   Nayeem, A., Mizi, F., Ali, M. F. and Shariffuddin, J. H. (2023). Utilization of cockle shell powder as an adsorbent to remove phosphorus-containing wastewater. Environmental Research, 216:1-8.

31.   Kaur, R., Singh, J., Khare, R., Cameotra, S. S. and Ali, A. (2013). Batch sorption dynamics, kinetics and equilibrium studies of Cr(VI), Ni(II) and Cu(II) from aqueous phase using agricultural residues. Applied Water Science, 3(1): 207-218.

32.   Seliem, M. K. and Komarneni, S. (2016). Equilibrium and kinetic studies for adsorption of iron from aqueous solution by synthetic Na-A zeolites: Statistical modeling and optimization. Microporous Mesoporous Materials, 228: 266-274.

33.   Chen, J., Cai, Y., Clark, M. and Yu, Y. (2013). Equilibrium and kinetic studies of phosphate removal from solution onto a hydrothermally modified oyster shell material. PLoS One, 8(4):1-10.

34.   Sahu, M. K., Mandal, S., Yadav, L. S., Dash, S. S. and Patel, R. K. (2016). Equilibrium and kinetic studies of Cd(II) ion adsorption from aqueous solution by activated red mud. Desalination Water Treatment, 57(30): 14251-14265.

35.   Khalfa, L., Cervera, M. L., Souissi-Najjar, S. and Bagane, M. (2021). Removal of Fe(III) from synthetic wastewater into raw and modified clay: Experiments and models fitting. Separation Science and Technology, 56(4): 708-718.

36.   Neag, E., T r k, A. I., Tanaselia, C., Aschilean, I. and Senila, M. (2020). Kinetics and equilibrium studies for the removal of Mn and Fe from binary metal solution systems using a Romanian thermally activated natural zeolite. Water (Switzerland), 12(6):1-13.

37.   Akbar, N. A., Aziz, H. A. and Adlan, M. N. (2016). Potential of high quality limestone as adsorbent for iron and manganese removal in groundwater. Jurnal Teknologi, 78(9-4):77-82.

38.   Doran, P. M. (2013). Bioprocess engineering principles. Chapter 11, John Wiley. pp: 445-595.

39.   Younes, A. A., Abdulhady, Y. A. M., Shahat, N. S. and El-Din El-Dars, F. M. S. (2021). Removal of cadmium ions from wastewaters using corn cobs supporting nano-zero valent iron. Separation Science and Technology, 56(1):1-13.

40.   Ali, M. E. A., Aboelfadl, M. M. S., Selim, A. M., Khalil, H. F. and Elkady, G. M. (2018). Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases. Separation Science and Technology, 53(18): 2870-2881.

41.   Shavandi, M. A., Haddadian, Z., Ismail, M. H. S., Abdullah, N. and Abidin, Z. Z. (2012). Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite. Journal of the Taiwan Institute of Chemical Engineers, 43(5): 750-759.

42.   Al-Ghouti, M. A., Li, J., Salamh, Y., Al-Laqtah, N., Walker, G. and Ahmad, M. N. M. (2010). Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. Journal of Hazardous Materials, 176: 510-520.