Malaysian Journal of Analytical Sciences, Vol
28 No 2 (2024): 388 - 396
PERFORMANCE OF MEMBRANE ELECTRODE ASSEMBLY USING Pt/C AND CoFe/N-C
CATALYSTS IN PROTON EXCHANGE MEMBRANE FUEL CELLS
(Prestasi Pemasangan Elektrod Membran Menggunakan
Pemangkin Pt/C dan CoFe/N-C dalam Sel Bahan Api Membran Pertukaran Proton)
1Department of Chemistry, Faculty of Mathematic and
Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih Km 32,
Indralaya, Ogan Ilir 30862, Indonesia
2Center of Research Excellent in Fuel Cell and Hydrogen,
Universitas Sriwijaya, Jl. Srijaya Negara, Palembang 30128, Indonesia
3Chemistry Program, Faculty of Computer and Science,
Universitas Indo Global Mandiri,, Palembang, 30129, Indonesia
4Materials Science and Engineering Research Group
Institut Teknologi Bandung, Faculty of Mechanical and Aerospace Engineering,
Jl. Ganesha 10, Bandung, Indonesia
5 Fuel
Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
*Corresponding author: edyhm71@gmail.com
Received: 16 October 2023; Accepted: 15 February 2024;
Published: 29 April 2024
Abstract
The performance of membrane electrode
assembly (MEA) hinders fuel cell commercialisation. MEA is greatly affected by
humidification, temperature and hydrogen flow rate. In this study, the effects
of operating conditions on MEA were determined using Pt/C and CoFe/N-C
catalysts in proton exchange membrane fuel cells. Herein, two types of MEAs
using the Nafion-212 membrane were prepared and tested. The anode and cathode
of the first MEA were coated with Pt/C and CoFe/N-C catalysts, respectively,
whereas the second MEA utilised a Pt/C catalyst on both electrodes. The electrode
with Pt/C and CoFe/N-C catalysts was characterised using cyclic voltammetry and
electrochemical impedance spectroscopy to obtain the electrochemical surface
area (ECSA) and electrical conductivity of the electrode, respectively. The
performance of two MEAs was tested under different operating conditions, such
as various humidifier temperatures (40 °C, 60 °C, 80 °C and 100 °C) and hydrogen flow rates (100, 200,
300 and 400 mL/min). The electrode with a Pt/C catalyst exhibited higher ECSA
(0.245 m2/g) than the CoFe/N-C electrode (0.018 m2/g).
Similarly, the Pt/C electrode possessed higher conductivity (7.2 × 10−3
S/cm) than the CoFe/N-C electrode (4.4 × 10−3 S/cm).
Consequently, the open-circuit voltage (OCV) of the second MEA with a Pt/C
catalyst on both electrodes showed a higher value (0.890 V) than the OCV of the
first MEA (0.790 V). Furthermore, the humidifier temperature was optimum at 80
°C, and it achieved power density levels as high as 10.14 and 3.43 mW/cm2
for the second and the first MEA, respectively. In addition, the performance of
MEA was affected by the hydrogen flow rate. At the optimum hydrogen flow rate
of 400 mL/min for the first MEA, a power density of 4.93 mW/cm2 was
achieved. Meanwhile, the second MEA required a lower hydrogen flow rate (200
mL/min) to achieve a maximum power density of 10.14 mW/cm2.
Keywords: proton exchange membrane fuel cells, MEA performance,
Co-Fe/N-C, humidification temperature, hydrogen flow rate
Abstrak
Prestasi pemasangan elektrod membran (MEA) membawa kepada
kesesakan pengkomersialan sel bahan api. MEA sangat dipengaruhi oleh
pelembapan, suhu, dan kadar aliran hidrogen. Dalam kajian ini, menentukan kesan
keadaan operasi pada MEA menggunakan pemangkin Pt/C dan CoFe/N-C dalam sel
bahan api membran pertukaran proton (PEMFC). Di sini, dua jenis MEA yang
menggunakan membran Nafion-212 telah disediakan dan diuji. Anod
dan katod MEA pertama disalut dengan pemangkin Pt/C dan CoFe/N-C, manakala MEA
kedua menggunakan pemangkin Pt/C pada kedua-dua elektrod. Elektrod dengan
pemangkin Pt/C dan CoFe/N-C dicirikan menggunakan voltammetri kitaran dan
spektroskopi impedans elektrokimia (EIS) untuk mendapatkan kawasan permukaan
elektrokimia (ECSA) dan kekonduksian elektrik elektrod. Prestasi
dua MEA diuji dengan keadaan operasi yang berbeza, seperti pelbagai suhu
humidifier (40 °C, 60 °C, 80 °C, dan 100 °C) dan kadar aliran hidrogen (100,
200, 300, dan 400 mL/min). Elektrod dengan pemangkin Pt/C mempamerkan ECSA yang
lebih tinggi (0.245 m2/g) daripada elektrod CoFe/N-C (0.018 m2/g).
Begitu juga, elektrod Pt/C mempunyai kekonduksian yang lebih tinggi (7.2 x 10-3
S/cm) daripada elektrod CoFe/N-C (4.4 x 10-3 S/cm). Akibatnya,
voltan litar terbuka (OCV) MEA kedua dengan pemangkin Pt/C pada kedua-dua
elektrod menunjukkan nilai yang lebih tinggi (0.890 V) daripada OCV MEA pertama
(0.790 V). Tambahan pula, suhu humidifier adalah optimum pada 80 °C dan
mencapai tahap ketumpatan kuasa setinggi 10.14 dan 3.43 mW/cm2
masing-masing untuk MEA kedua dan pertama. Di samping itu, prestasi MEA dipengaruhi oleh kadar aliran
hidrogen. Dengan kadar aliran hidrogen optimum 400 mL/min untuk MEA pertama,
ketumpatan kuasa 4.93 mW/cm2 telah dicapai. Sementara itu, MEA kedua
memerlukan kadar aliran hidrogen yang lebih rendah (200 mL/min) untuk mencapai
ketumpatan kuasa maksimum 10.14 mW/cm2.
Kata kunci: sel bahan api membran pertukaran
proton, prestasi MEA, Co-Fe/N-C, suhu pelembapan, kadar aliran
hidrogen
References
1.
Toudret, P., Blachot, J. F., Heitzmann, M., and Jacques, P.
A. (2021). Impact of the cathode layer printing process on the performance of
MEA integrating PGM free catalyst. Catalysts, 11(6): 669.
2.
Giuliano, A., Catizzone, E., and Freda, C. (2021). Process
simulation and environmental aspects of dimethyl ether production from
digestate-derived syngas. International Journal of Environmental Research
and Public Health, 18(2), 807.
3.
Matulić, N., Radica, G.,
Barbir, F., & Nižetić, S. (2019). Commercial vehicle auxiliary loads
powered by PEM fuel cell. International Journal of Hydrogen Energy,
44(20): 10082-10090.
4.
Van Biert, L., Godjevac, M.,
Visser, K., and Aravind, P. V. (2016). A review of fuel cell systems for maritime
applications. Journal of Power Sources, 327: 345-364.
5.
Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., and Adroher,
X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology,
applications, and needs on fundamental research. Applied Energy, 88(4):
981-1007.
6.
Kumar Mohanta, P., Ripa, M. S., Regnet, F., and Jörissen, L.
(2021). Effects of supports BET surface areas on membrane electrode assembly
performance at high current loads. Catalysts, 11(2): 195.
7.
Wang, Y., Guan, C., Zhang, P., Zhu, T., Wang, S., Zhu, Y.,
and Wang, X. (2022). Optimal design of a cathode flow field with a new
arrangement of baffle plates for a high clean power generation of a polymer
electrolyte membrane fuel cell. Journal of Cleaner Production,
375:134187.
8.
Rohendi, D., Majlan, E. H., Mohamad, A. B., Daud, W. R. W.,
Kadhum, A. A. H. and Shyuan, L. K. (2015). Effects of temperature and
backpressure on the performance degradation of MEA in PEMFC. International
Journal of Hydrogen Energy, 40(34): 10960-10968.
9.
Falina, I., Pavlets, A.,
Alekseenko, A., Titskaya, E., & Kononenko, N. (2021). Influence of PtCu/C catalysts
composition on electrochemical characteristics of polymer electrolyte fuel cell
and properties of proton exchange membrane. Catalysts, 11(9): 1063.
10.
Zhou, Y., Yu, F., Lang, Z., Nie, H., Wang, Z., Shao, M., ...
and Kang, Z. (2021). Carbon dots/PtW6O24 composite as
efficient and stable electrocatalyst for hydrogen oxidation reaction in PEMFCs.
Chemical Engineering Journal, 426: 130709.
11.
Briega-Martos, V., Ferre-Vilaplana,
A., Herrero, E., and Feliu, J. M. (2020). Why the activity of the hydrogen
oxidation reaction on platinum decreases as pH increases. Electrochimica Acta,
354, 136620.
12.
Molochas, C., and Tsiakaras, P. (2021). Carbon monoxide
tolerant Pt-based electrocatalysts for H2-PEMFC applications:
Current progress and challenges. Catalysts, 11(9): 1127.
13.
Chung, S., Ham, K., Kang, S., Ju,
H., and Lee, J. (2020). Enhanced corrosion tolerance and highly durable ORR activity
by low Pt electrocatalyst on unique pore structured CNF in PEM fuel cell. Electrochimica
Acta, 348: 136346.
14.
An, T., Ge, X., Tham, N. N., Sumboja, A., Liu, Z., &
Zong, Y. (2018). Facile one-pot synthesis of CoFe alloy nanoparticles decorated
N-doped carbon for high-performance rechargeable zinc–air battery stacks. ACS
Sustainable Chemistry & Engineering, 6(6), 7743-7751.
15.
Rao, P., Deng, Y., Fan, W., Luo, J., Deng, P., Li, J., ...
and Tian, X. (2022). Movable type printing method to synthesize high-entropy
single-atom catalysts. Nature Communications, 13(1): 5071.
16.
Hao, Z., Ma, Y., Chen, Y., Fu, P.,
and Wang, P. (2022). Non-noble metal catalysts in cathodic oxygen reduction
reaction of proton exchange membrane fuel cells: recent advances. Nanomaterials,
12(19): 3331.
17.
Chang, Y., Qin, Y., Yin, Y., Zhang,
J., and Li, X. (2018). Humidification strategy for polymer electrolyte membrane fuel
cells–A review. Applied Energy, 230: 643-662.
18.
Houreh, N. B., Ghaedamini, M., Shokouhmand, H., Afshari, E.,
and Ahmaditaba, A. H. (2020). Experimental study on performance of membrane
humidifiers with different configurations and operating conditions for PEM fuel
cells. International Journal of Hydrogen Energy, 45(7): 4841-4859.
19.
Zhang, J., Wang, C., and Zhang, A. (2022). Experimental study
on temperature and performance of an open-cathode PEMFC stack under thermal
radiation environment. Applied Energy, 311: 118646.
20.
Xia, Z., Chen, H., Zhang, T., and Pei, P. (2022). Effect of
channel-rib width ratio and relative humidity on performance of a single
serpentine PEMFC based on electrochemical impedance spectroscopy. International
Journal of Hydrogen Energy, 47(26): 13076-13086.
21.
Cooper, K. R. (2009). In situ PEM fuel cell electrochemical
surface area and catalyst utilization measurement. Fuel Cell Magazine,
9: 28.
22.
Eris, S., Daşdelen, Z., and Sen, F. (2018). Enhanced
electrocatalytic activity and stability of monodisperse Pt nanocomposites for
direct methanol fuel cells. Journal of Colloid and Interface Science,
513: 767-773.
23.
Wang, C., Feng, Z., Zhao, Y., Li, X., Li, W., Xie, X., ...
and Hou, H. (2017). Preparation and properties of ion exchange membranes for
PEMFC with sulfonic and carboxylic acid groups based on polynorbornenes. International
Journal of Hydrogen Energy, 42(50): 29988-29994.
24.
Zhang, F., Cheng, F., Cheng, C., Guo, M., Liu, Y., Miao, Y.,
... & Wang, X. (2022). Preparation and electrical conductivity of (Zr, Hf,
Pr, Y, La) O high entropy fluorite oxides. Journal of Materials Science
& Technology, 105: 122-130.
25.
Arroyo-Ramírez, L.,
Montano-Serrano, R., Luna-Pineda, T., Román, F. R., Raptis, R. G., and Cabrera,
C. R. (2013). Synthesis and characterization of palladium and
palladium–cobalt nanoparticles on vulcan XC-72R for the oxygen reduction
reaction. ACS Applied Materials & Interfaces, 5(22): 11603-11612.
26.
Wu, K., Wang, Z., Zhang, G., Fan, L., Zhu, M., Xie, X., ...
and Jiao, K. (2022). Correlating electrochemical active surface area with
humidity and its application in proton exchange membrane fuel cell modeling. Energy
Conversion and Management, 251: 114982.
27.
Niya, S. M. R. and Hoorfar, M. (2013). Study of proton
exchange membrane fuel cells using electrochemical impedance spectroscopy
technique–A review. Journal of Power Sources, 240: 281-293.
28.
Shiva Kumar, S., Ramakrishna, S. U. B., Rama Devi, B., and
Himabindu, V. (2018). Phosphorus-doped graphene supported palladium (Pd/PG)
electrocatalyst for the hydrogen evolution reaction in PEM water electrolysis. International
Journal of Green Energy, 15(10): 558-567.
29.
Andrews, J., and Doddathimmaiah, A. K. (2008). Regenerative
fuel cells. In Materials for Fuel Cells (pp. 344-385). Woodhead Publishing.
30.
Brightman, E., Hinds, G., and O'Malley, R. (2013). In situ
measurement of active catalyst surface area in fuel cell stacks. Journal of
Power Sources, 242: 244-254.
31.
Binninger, T., Fabbri, E., Kötz, R. and Schmidt, T. J.
(2013). Determination of the electrochemically active surface area of
metal-oxide supported platinum catalyst. Journal of The Electrochemical
Society, 161(3): H121.
32.
Li, Y., Xiong, D., Liu, Y., Liu,
M., Liu, J., Liang, C., ... and Xu, J. (2019). Correlation between electrochemical
performance degradation and catalyst structural parameters on polymer
electrolyte membrane fuel cell. Nanotechnology Reviews, 8(1): 493-502.
33.
Rohendi, D., Majlan, E. H., Mohamad, A. B., Daud, W. R. W.,
Kadhum, A. A. H., and Shyuan, L. K. (2013). Characterization of electrodes and
performance tests on MEAs with varying platinum content and under various
operational conditions. International Journal of Hydrogen Energy,
38(22): 9431-9437.
34.
Asghari, S., Mokmeli, A., and
Samavati, M. (2010). Study of PEM fuel cell performance by electrochemical
impedance spectroscopy. International Journal of Hydrogen Energy,
35(17): 9283-9290.
35.
Ruiz-Camacho, B., Vera, J. B.,
Medina-Ramírez, A., Fuentes-Ramírez, R., and Carreño-Aguilera, G. (2017). EIS analysis of oxygen reduction
reaction of Pt supported on different substrates. International Journal of
Hydrogen Energy, 42(51): 30364-30373.
36.
Zhu, D., Yang, Y., Pei, F., and Ma,
T. (2022). High-precision identification of polarization processes of distribution of
relaxation times by polarization curve model for proton exchange membrane fuel
cell. Energy Conversion and Management, 268: 115994.
37.
Rohendi, D., Majlan, E. H., Mohamad, A. B., Daud, W. R. W.,
Kadhum, A. A. H., and Shyuan, L. K. (2015). Effects of temperature and
backpressure on the performance degradation of MEA in PEMFC. International
Journal of Hydrogen Energy, 40(34): 10960-10968.