Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 388 - 396

 

PERFORMANCE OF MEMBRANE ELECTRODE ASSEMBLY USING Pt/C AND CoFe/N-C CATALYSTS IN PROTON EXCHANGE MEMBRANE FUEL CELLS

(Prestasi Pemasangan Elektrod Membran Menggunakan Pemangkin Pt/C dan CoFe/N-C dalam Sel Bahan Api Membran Pertukaran Proton)

 

Dedi Rohendi1,2, Edy Herianto Majlan 4*, Dwi Hawa Yulianti2, Juwita1, Nirwan Syarif1,2, Addy Rachmat1,2, Afriyanti Sumboja3, Nyimas Febrika S.2, and Icha Amelia2

 

1Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30862, Indonesia

2Center of Research Excellent in Fuel Cell and Hydrogen, Universitas Sriwijaya, Jl. Srijaya Negara, Palembang 30128, Indonesia

3Chemistry Program, Faculty of Computer and Science, Universitas Indo Global Mandiri,, Palembang, 30129, Indonesia

4Materials Science and Engineering Research Group Institut Teknologi Bandung, Faculty of Mechanical and Aerospace Engineering, Jl. Ganesha 10, Bandung, Indonesia

5 Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

 

*Corresponding author: edyhm71@gmail.com

 

 

Received: 16 October 2023; Accepted: 15 February 2024; Published:  29 April 2024

 

 

Abstract

The performance of membrane electrode assembly (MEA) hinders fuel cell commercialisation. MEA is greatly affected by humidification, temperature and hydrogen flow rate. In this study, the effects of operating conditions on MEA were determined using Pt/C and CoFe/N-C catalysts in proton exchange membrane fuel cells. Herein, two types of MEAs using the Nafion-212 membrane were prepared and tested. The anode and cathode of the first MEA were coated with Pt/C and CoFe/N-C catalysts, respectively, whereas the second MEA utilised a Pt/C catalyst on both electrodes. The electrode with Pt/C and CoFe/N-C catalysts was characterised using cyclic voltammetry and electrochemical impedance spectroscopy to obtain the electrochemical surface area (ECSA) and electrical conductivity of the electrode, respectively. The performance of two MEAs was tested under different operating conditions, such as various humidifier temperatures (40 °C, 60 °C, 80 °C and 100 °C) and hydrogen flow rates (100, 200, 300 and 400 mL/min). The electrode with a Pt/C catalyst exhibited higher ECSA (0.245 m2/g) than the CoFe/N-C electrode (0.018 m2/g). Similarly, the Pt/C electrode possessed higher conductivity (7.2 × 10−3 S/cm) than the CoFe/N-C electrode (4.4 × 10−3 S/cm). Consequently, the open-circuit voltage (OCV) of the second MEA with a Pt/C catalyst on both electrodes showed a higher value (0.890 V) than the OCV of the first MEA (0.790 V). Furthermore, the humidifier temperature was optimum at 80 °C, and it achieved power density levels as high as 10.14 and 3.43 mW/cm2 for the second and the first MEA, respectively. In addition, the performance of MEA was affected by the hydrogen flow rate. At the optimum hydrogen flow rate of 400 mL/min for the first MEA, a power density of 4.93 mW/cm2 was achieved. Meanwhile, the second MEA required a lower hydrogen flow rate (200 mL/min) to achieve a maximum power density of 10.14 mW/cm2.

 

Keywords: proton exchange membrane fuel cells, MEA performance, Co-Fe/N-C, humidification temperature, hydrogen flow rate

 

Abstrak

Prestasi pemasangan elektrod membran (MEA) membawa kepada kesesakan pengkomersialan sel bahan api. MEA sangat dipengaruhi oleh pelembapan, suhu, dan kadar aliran hidrogen. Dalam kajian ini, menentukan kesan keadaan operasi pada MEA menggunakan pemangkin Pt/C dan CoFe/N-C dalam sel bahan api membran pertukaran proton (PEMFC). Di sini, dua jenis MEA yang menggunakan membran Nafion-212 telah disediakan dan diuji. Anod dan katod MEA pertama disalut dengan pemangkin Pt/C dan CoFe/N-C, manakala MEA kedua menggunakan pemangkin Pt/C pada kedua-dua elektrod. Elektrod dengan pemangkin Pt/C dan CoFe/N-C dicirikan menggunakan voltammetri kitaran dan spektroskopi impedans elektrokimia (EIS) untuk mendapatkan kawasan permukaan elektrokimia (ECSA) dan kekonduksian elektrik elektrod. Prestasi dua MEA diuji dengan keadaan operasi yang berbeza, seperti pelbagai suhu humidifier (40 °C, 60 °C, 80 °C, dan 100 °C) dan kadar aliran hidrogen (100, 200, 300, dan 400 mL/min). Elektrod dengan pemangkin Pt/C mempamerkan ECSA yang lebih tinggi (0.245 m2/g) daripada elektrod CoFe/N-C (0.018 m2/g). Begitu juga, elektrod Pt/C mempunyai kekonduksian yang lebih tinggi (7.2 x 10-3 S/cm) daripada elektrod CoFe/N-C (4.4 x 10-3 S/cm). Akibatnya, voltan litar terbuka (OCV) MEA kedua dengan pemangkin Pt/C pada kedua-dua elektrod menunjukkan nilai yang lebih tinggi (0.890 V) daripada OCV MEA pertama (0.790 V). Tambahan pula, suhu humidifier adalah optimum pada 80 °C dan mencapai tahap ketumpatan kuasa setinggi 10.14 dan 3.43 mW/cm2 masing-masing untuk MEA kedua dan pertama. Di samping itu, prestasi MEA dipengaruhi oleh kadar aliran hidrogen. Dengan kadar aliran hidrogen optimum 400 mL/min untuk MEA pertama, ketumpatan kuasa 4.93 mW/cm2 telah dicapai. Sementara itu, MEA kedua memerlukan kadar aliran hidrogen yang lebih rendah (200 mL/min) untuk mencapai ketumpatan kuasa maksimum 10.14 mW/cm2.

 

Kata kunci: sel bahan api membran pertukaran proton, prestasi MEA, Co-Fe/N-C, suhu pelembapan, kadar aliran hidrogen


References

1.      Toudret, P., Blachot, J. F., Heitzmann, M., and Jacques, P. A. (2021). Impact of the cathode layer printing process on the performance of MEA integrating PGM free catalyst. Catalysts, 11(6): 669.

2.      Giuliano, A., Catizzone, E., and Freda, C. (2021). Process simulation and environmental aspects of dimethyl ether production from digestate-derived syngas. International Journal of Environmental Research and Public Health, 18(2), 807.

3.      Matulić, N., Radica, G., Barbir, F., & Nižetić, S. (2019). Commercial vehicle auxiliary loads powered by PEM fuel cell. International Journal of Hydrogen Energy, 44(20): 10082-10090.

4.      Van Biert, L., Godjevac, M., Visser, K., and Aravind, P. V. (2016). A review of fuel cell systems for maritime applications. Journal of Power Sources, 327: 345-364.

5.      Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., and Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4): 981-1007.

6.      Kumar Mohanta, P., Ripa, M. S., Regnet, F., and Jörissen, L. (2021). Effects of supports BET surface areas on membrane electrode assembly performance at high current loads. Catalysts, 11(2): 195.

7.      Wang, Y., Guan, C., Zhang, P., Zhu, T., Wang, S., Zhu, Y., and Wang, X. (2022). Optimal design of a cathode flow field with a new arrangement of baffle plates for a high clean power generation of a polymer electrolyte membrane fuel cell. Journal of Cleaner Production, 375:134187.

8.      Rohendi, D., Majlan, E. H., Mohamad, A. B., Daud, W. R. W., Kadhum, A. A. H. and Shyuan, L. K. (2015). Effects of temperature and backpressure on the performance degradation of MEA in PEMFC. International Journal of Hydrogen Energy, 40(34): 10960-10968.

9.      Falina, I., Pavlets, A., Alekseenko, A., Titskaya, E., & Kononenko, N. (2021). Influence of PtCu/C catalysts composition on electrochemical characteristics of polymer electrolyte fuel cell and properties of proton exchange membrane. Catalysts, 11(9): 1063.

10.   Zhou, Y., Yu, F., Lang, Z., Nie, H., Wang, Z., Shao, M., ... and Kang, Z. (2021). Carbon dots/PtW6O24 composite as efficient and stable electrocatalyst for hydrogen oxidation reaction in PEMFCs. Chemical Engineering Journal, 426: 130709.

11.   Briega-Martos, V., Ferre-Vilaplana, A., Herrero, E., and Feliu, J. M. (2020). Why the activity of the hydrogen oxidation reaction on platinum decreases as pH increases. Electrochimica Acta, 354, 136620.

12.   Molochas, C., and Tsiakaras, P. (2021). Carbon monoxide tolerant Pt-based electrocatalysts for H2-PEMFC applications: Current progress and challenges. Catalysts, 11(9): 1127.

13.   Chung, S., Ham, K., Kang, S., Ju, H., and Lee, J. (2020). Enhanced corrosion tolerance and highly durable ORR activity by low Pt electrocatalyst on unique pore structured CNF in PEM fuel cell. Electrochimica Acta, 348: 136346.

14.   An, T., Ge, X., Tham, N. N., Sumboja, A., Liu, Z., & Zong, Y. (2018). Facile one-pot synthesis of CoFe alloy nanoparticles decorated N-doped carbon for high-performance rechargeable zinc–air battery stacks. ACS Sustainable Chemistry & Engineering, 6(6), 7743-7751.

15.   Rao, P., Deng, Y., Fan, W., Luo, J., Deng, P., Li, J., ... and Tian, X. (2022). Movable type printing method to synthesize high-entropy single-atom catalysts. Nature Communications, 13(1): 5071.

16.   Hao, Z., Ma, Y., Chen, Y., Fu, P., and Wang, P. (2022). Non-noble metal catalysts in cathodic oxygen reduction reaction of proton exchange membrane fuel cells: recent advances. Nanomaterials, 12(19): 3331.

17.   Chang, Y., Qin, Y., Yin, Y., Zhang, J., and Li, X. (2018). Humidification strategy for polymer electrolyte membrane fuel cells–A review. Applied Energy, 230: 643-662.

18.   Houreh, N. B., Ghaedamini, M., Shokouhmand, H., Afshari, E., and Ahmaditaba, A. H. (2020). Experimental study on performance of membrane humidifiers with different configurations and operating conditions for PEM fuel cells. International Journal of Hydrogen Energy, 45(7): 4841-4859.

19.   Zhang, J., Wang, C., and Zhang, A. (2022). Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment. Applied Energy, 311: 118646.

20.   Xia, Z., Chen, H., Zhang, T., and Pei, P. (2022). Effect of channel-rib width ratio and relative humidity on performance of a single serpentine PEMFC based on electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 47(26): 13076-13086.

21.   Cooper, K. R. (2009). In situ PEM fuel cell electrochemical surface area and catalyst utilization measurement. Fuel Cell Magazine, 9: 28.

22.   Eris, S., Daşdelen, Z., and Sen, F. (2018). Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. Journal of Colloid and Interface Science, 513: 767-773.

23.   Wang, C., Feng, Z., Zhao, Y., Li, X., Li, W., Xie, X., ... and Hou, H. (2017). Preparation and properties of ion exchange membranes for PEMFC with sulfonic and carboxylic acid groups based on polynorbornenes. International Journal of Hydrogen Energy, 42(50): 29988-29994.

24.   Zhang, F., Cheng, F., Cheng, C., Guo, M., Liu, Y., Miao, Y., ... & Wang, X. (2022). Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La) O high entropy fluorite oxides. Journal of Materials Science & Technology, 105: 122-130.

25.   Arroyo-Ramírez, L., Montano-Serrano, R., Luna-Pineda, T., Román, F. R., Raptis, R. G., and Cabrera, C. R. (2013). Synthesis and characterization of palladium and palladium–cobalt nanoparticles on vulcan XC-72R for the oxygen reduction reaction. ACS Applied Materials & Interfaces, 5(22): 11603-11612.

26.   Wu, K., Wang, Z., Zhang, G., Fan, L., Zhu, M., Xie, X., ... and Jiao, K. (2022). Correlating electrochemical active surface area with humidity and its application in proton exchange membrane fuel cell modeling. Energy Conversion and Management, 251: 114982.

27.   Niya, S. M. R. and Hoorfar, M. (2013). Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique–A review. Journal of Power Sources, 240: 281-293.

28.   Shiva Kumar, S., Ramakrishna, S. U. B., Rama Devi, B., and Himabindu, V. (2018). Phosphorus-doped graphene supported palladium (Pd/PG) electrocatalyst for the hydrogen evolution reaction in PEM water electrolysis. International Journal of Green Energy, 15(10): 558-567.

29.   Andrews, J., and Doddathimmaiah, A. K. (2008). Regenerative fuel cells. In Materials for Fuel Cells (pp. 344-385). Woodhead Publishing.

30.   Brightman, E., Hinds, G., and O'Malley, R. (2013). In situ measurement of active catalyst surface area in fuel cell stacks. Journal of Power Sources, 242: 244-254.

31.   Binninger, T., Fabbri, E., Kötz, R. and Schmidt, T. J. (2013). Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. Journal of The Electrochemical Society, 161(3): H121.

32.   Li, Y., Xiong, D., Liu, Y., Liu, M., Liu, J., Liang, C., ... and Xu, J. (2019). Correlation between electrochemical performance degradation and catalyst structural parameters on polymer electrolyte membrane fuel cell. Nanotechnology Reviews, 8(1): 493-502.

33.   Rohendi, D., Majlan, E. H., Mohamad, A. B., Daud, W. R. W., Kadhum, A. A. H., and Shyuan, L. K. (2013). Characterization of electrodes and performance tests on MEAs with varying platinum content and under various operational conditions. International Journal of Hydrogen Energy, 38(22): 9431-9437.

34.   Asghari, S., Mokmeli, A., and Samavati, M. (2010). Study of PEM fuel cell performance by electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 35(17): 9283-9290.

35.   Ruiz-Camacho, B., Vera, J. B., Medina-Ramírez, A., Fuentes-Ramírez, R., and Carreño-Aguilera, G. (2017). EIS analysis of oxygen reduction reaction of Pt supported on different substrates. International Journal of Hydrogen Energy, 42(51): 30364-30373.

36.   Zhu, D., Yang, Y., Pei, F., and Ma, T. (2022). High-precision identification of polarization processes of distribution of relaxation times by polarization curve model for proton exchange membrane fuel cell. Energy Conversion and Management, 268: 115994.

37.   Rohendi, D., Majlan, E. H., Mohamad, A. B., Daud, W. R. W., Kadhum, A. A. H., and Shyuan, L. K. (2015). Effects of temperature and backpressure on the performance degradation of MEA in PEMFC. International Journal of Hydrogen Energy, 40(34): 10960-10968.