Malaysian Journal of Analytical
Sciences, Vol 28
No 2 (2024): 376 -
387
PHYSICOCHEMICAL STUDY ON ALKOXYLATED AZO-IMINE
CHITOSAN-BASED BIOPOLYMER FOR ELECTROLYTE APPLICATIONS
(Kajian Fizikokimia ke atas Biopolimer Alkoksi
Azo-Imina Berasaskan Kitosan bagi Aplikasi Elektrolit)
Tuan Siti Fatimah Tuan Mohd Pauzi1, Rafizah
Rahamathullah1*, M. N. Hafiza2, Wan M. Khairul3
1Faculty of Chemical Engineering &
Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
2Faculty of Maritime Studies, Universiti
Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
3Faculty of Science and Marine
Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu,
Malaysia
*Corresponding author:
fizah@unimap.edu.my
Received: 15 September 2023;
Accepted: 25 February 2024; Published: 29
April 2024
Abstract
The performance of electrolytes in electronic applications
are in decline due to low ionic conductivity, leakage, and inadequate thermal
stability. Overcoming these challenges necessitates innovative approaches which
includes electrolyte design, and materials selection, that should be taken into
consideration. In this study, new additive alkoxylated
azo-imine (AZ) material containing hybrid moieties of azo (-N=N-)
and imine (-CH=N-) groups was successfully synthesized, characterized, and
doped in biopolymer matrix. Chitosan-based biopolymer was formulated with AZ
additive material as solid biopolymer electrolyte (SBE) through the concept of
Donor (D) - π- Acceptor (A). The prepared AZ
additive was characterized by selected spectroscopic and thermal analyses using
FTIR, 1D NMR, and TGA before integration as SBE. The thermogram of AZ
additive revealed good thermal stability up to 300 ℃, making it suitable
for application as electrolytes. Several weight percentages (2%-8%) of additive
were doped with chitosan biopolymer as new SBEs (F1-F4). The
conductivity of prepared SBE was measured via electrochemical impedance
spectroscopy (EIS) which achieved the highest ionic conductivity of 8.22 x 10-3
S cm-1 at room
temperature (303K). The preliminary findings suggest that this
organic material has significant potential as an additive material in
electrolyte application.
Keywords: additive, azo-imine, biopolymer electrolyte,
conductivity, chitosan
Abstrak
Prestasi elektrolit dalam aplikasi elektronik semakin merosot
kerana konduktiviti ion yang rendah, kebocoran, dan ketidakstabilan terma. Bagi
mengatasi cabaran ini, pendekatan inovatif termasuk reka bentuk elektrolit dan
pemilihan bahan perlu diberi perhatian. Dalam kajian ini, bahan tambah baharu
azo-imina alkoksi (AZ) yang mengandungi moieti campuran azo (-N=N-) dan
imina (-CH=N-) telah berjaya disintesis, dicirikan, dan dicampurkan ke dalam
matriks biopolimer. Biopolimer berasaskan kitosan telah diformulasikan dengan
bahan tambah AZ sebagai elektrolit pepejal biopolimer (SBE) melalui
konsep Penderma (D) - π - Penerima (A). Bahan tambah AZ yang
disediakan telah dicirikan menggunakan analisis spektroskopi dan terma yang
terpilih menggunakan FTIR, 1D NMR, dan TGA sebelum digabungkan sebagai SBE.
Termogram bahan tambah AZ menunjukkan kestabilan terma yang baik
sehingga 300 ℃, menjadikannya sesuai untuk digunakan sebagai elektrolit.
Beberapa peratusan berat (2-8 wt. %) bahan tambah telah dicampurkan dengan
biopolimer kitosan sebagai SBE baharu (F1-F4). Kekonduksian SBE
yang sediakan telah diukur melalui spekstroskopi impedans elektrokimia (EIS) dan
mencapai konduktiviti 8.22 x 10-3 S cm-1 pada suhu bilik
(303 K). Keputusan awal menunjukkan bahawa bahan organik ini mempunyai potensi
yang baik sebagai bahan tambah dalam aplikasi elektrolit.
Kata kunci: bahan tambah, azo-imina, biopolimer elektrolit, kekonduksian,
kitosan
References
1. Li, X., Ding, C., Li, X., Yang, H., Liu, S., Wang, X., Zhang,
L., Sun, Q., Liu, X. and Chen, J. (2020).
Electronic biopolymers: From molecular engineering to functional devices. Chemical
Engineering Journal, 397: 125499.
2. Mirzaeian, M., Abbas, Q., Ogwu, A., Hall, P., Goldin,
M., Mirzaeian, M., and Jirandehi, H. F. (2017). Electrode and electrolyte
materials for electrochemical capacitors. International Journal of Hydrogen
Energy, 42(40): 25565-25587.
3. Pan, Q., Gong, D., and Tang, Y. (2020). Recent progress
and perspective on electrolytes for sodium/potassium-based devices. Energy
Storage Materials, 31: 328-343.
4. Hakari, T., Yoshimi, S., Nagao, K., Sakuda, A.,
Tatsumisago, M., and Hayashi, A. (2022). Thermally stable bulk-type
all-solid-state capacitor with a highly deformable oxide solid electrolyte. Journal
of Power Sources, 543: 231821.
5. Zeng, Q., Lv, Z., Li, S., Yang, B., He, J., and Song,
J. (2023). Electrolytes for liquid metal batteries. Materials Research
Bulletin, 2023: 112586.
6. Sun, J., Yuan, H., Yang, J., Zhang, Y. W., and Wang, J.
(2023). Electrolytes for better and safer batteries: Liquid, solid or
frameworked, what's next?. Next Materials, 1(3): 100024.
7. Taneja, N., Kumar, A., Gupta, P., Gupta, M., Singh, P.,
Agrawal, N., Bocchetta, P. and Kumar, Y. (2022). Advancements in liquid and
solid electrolytes for their utilization in electrochemical systems. Journal
of Energy Storage, 56: 105950.
8. Varshney, P. K., and Gupta, S. (2011). Natural
polymer-based electrolytes for electrochemical devices: a review. Ionics, 17(6):
479-483.
9. Yusuf, S. N. F., Yusof, S. Z., Kufian, M. Z., and Teo,
L. P. (2019). Preparation and electrical characterization of polymer
electrolytes: A review. Materials Today: Proceedings, 17: 446-458.
10. Abdulwahid, R. T., Aziz, S. B., and Kadir, M. F.
(2023). Environmentally friendly plasticized electrolyte based on chitosan
(CS): Potato starch (PS) polymers for EDLC application: Steps toward the
greener energy storage devices derived from biopolymers. Journal of Energy
Storage, 67: 107636.
11. Khairul, W. M., Rahamathullah, R., Joni, J. R., and
Isa, M. I. N. (2022). Density functional theory (DFT) calculations, synthesis
and electronic properties of alkoxylated-chalcone additive in enhancing the
performance of CMC-based solid biopolymer electrolyte. International Journal
of Hydrogen Energy, 47(65): 27866-27876.
12. El-Hefian, E. A., Nasef, M. M., and Yahaya, A. H.
(2014). Chitosan-based polymer blends: Current status and applications. Journal
of the Chemical Society of Pakistan, 36(1): 11-27.
13. Rahman, N. A., Hanifah, S. A., Mobarak, N. N., Ahmad,
A., Ludin, N. A., Bella, F., and Su'ait, M. S. (2021). Chitosan as a paradigm
for biopolymer electrolytes in solid-state dye-sensitised solar cells. Polymer,
230: 124092.
14. Shaari, N., and Kamarudin, S. K. (2019). Recent
advances in additive‐enhanced polymer electrolyte membrane properties in
fuel cell applications: An overview. International Journal of Energy
Research, 43(7): 2756-2794.
15. Kumar, S., Dhapola, P. S., Pandey, S. P., Singh, P. K.,
and Chauhan, M. (2021). Corn-starch based porous carbon and IL based
electrolyte for high efficient supercapacitor. Materials Today: Proceedings,
34: 842-845.
16. Aziz, S.B., Nofal, M.M., Abdulwahid, R.T., Kadir,
M.F.Z., Hadi, J.M., Hessien, M.M., Kareem, W.O., Dannoun, E.M. and Saeed, S.R. (2021).
Impedance, FTIR and transport properties of plasticized proton conducting
biopolymer electrolyte based on chitosan for electrochemical device
application. Results in Physics, 29: 104770.
17. Perumal, P., and Selvin, P. C. (2021). Boosting the
performance of electric double layer capacitor via engaging pectin
macromolecular electrolyte with elevated ionic conductivity and potential
window stability. Chemical Engineering Journal Advances, 8: 100178.
18. Marturano, V., Cerruti, P., and
Ambrogi, V. (2017). Polymer
additives. Physical Sciences Reviews, 2(6): 20160130.
19. Baran, T., and Menteş, A. (2016). Polymeric
material prepared from Schiff base based on O-carboxymethyl chitosan and its Cu
(II) and Pd (II) complexes. Journal of Molecular Structure, 1115:
220-227.
20. Shanavas, A., Vanjinathan, M., Nasar, A. S., Amudha,
S., and Suthanthiraraj, S. A. (2012). Synthesis, thermal and solar cell
application of novel hyperbranched polyurethanes containing azomethine and
aryl-ether connectivities. High Performance Polymers, 24(7): 561-570.
21. Rahamathullah, R., Low, J. K., Khairul, W. M., Osman,
R. A. M., and Isa, M. I. N. (2023). Fused aromatic disubstituted azomethine as
organic additives in NH4SCN doped CMC based electrolyte film. In AIP
Conference Proceedings (Vol. 2703, No. 1). AIP Publishing.
22. Sarswat, P. K., Sathyapalan, A., Zhu, Y., and Free, M.
L. (2013). Design, synthesis, and characterization of TPA-thiophene-based amide
or imine functionalized molecule for potential optoelectronic devices. Journal
of Theoretical and Applied Physics, 7: 1-9.
23. Kamali, S., Orojloo, M., Arabahmadi, R., and Amani, S.
(2022). Design and synthesis of a novel azo-Schiff base ligand: Its application
as a colorimetric chemosensor for selective detection of Ni2+ and CN
in aqueous-organic media, computational studies, antimicrobial
properties, and molecular logic circuits. Journal of Photochemistry and
Photobiology A: Chemistry, 433: 114136.
24. Liu, M., Yin, L., Wang, L., Miao, T., Cheng, X., Wang,
Y., Zhang, W. and Zhu, X. (2019). Synthesis of monodisperse aromatic azo
oligomers toward gaining new insight into the isomerization of
π-conjugated azo systems. Polymer Chemistry, 10(14): 1806-1811.
25. Rahamathullah, R., and Khairul, W. M. (2017).
Evaluation on the electrochemically deposited alkoxy thiourea as liquid
crystalline semiconductor film. Applied Surface Science, 424: 45-51.
26. Menati, S., Azadbakht, A., Azadbakht, R., Taeb, A., and
Kakanejadifard, A. (2013). Synthesis, characterization, and electrochemical
study of some novel, azo-containing Schiff bases and their Ni(II) complexes. Dyes
and pigments, 98(3): 499-506.
27. Ma, I. W., Ammar, S., Bashir, S., Selvaraj, M., Assiri,
M. A., Ramesh, K., and Ramesh, S. (2020). Preparation of hybrid chitosan/silica
composites via ionotropic gelation and its electrochemical impedance studies. Progress
in Organic Coatings, 145: 105679.
28. Kotatha, D., Torii, Y., Shinomiya, K., Ogino, M.,
Uchida, S., Ishikawa, M., Furuike, T. and Tamura, H. (2019). Preparation of
thin-film electrolyte from chitosan-containing ionic liquid for application to
electric double-layer capacitors. International Journal of Biological
Macromolecules, 124: 1274-1280.
29. Purtas, F. Sayin,K. Ceyhan, G., Kose, M. and Kurtoglu,
M. (2017). New fluorescent azo-Schiff base Cu(II) and Zn(II) metal chelates,
spectral, structural, electrochemical, photoluminescence and computational
studies. Journal Molecular Structure, 1137: 461-475.
30. Eskikanbur, S., Sayin, K., Kose, M., Zengin, H., McKee,
V., and Kurtoglu, M. (2015). Synthesis of two new azo-azomethines; spectral
characterization, crystal structures, computational and fluorescence studies. Journal
of Molecular Structure, 1094: 183-194.
31. Gür, M., Kocaokutgen, H., Kandemirli, F., Özkinali, S.,
and Yerlikaya, Z. (2016). Synthesis, spectral and thermal characterization of
some azo-polymers containing acrylate derivatives. Research & Reviews:
Journal of Chemistry, 5(2):1-9.
32. Nakum, K. J., Katariya, K. D.,
Savani, C. J., and Jadeja, R. N. (2022). The influence of molecular flexibility on the mesogenic
behavior of a new homologous series based on azo-azomethine: Synthesis,
characterization, photoisomerization and DFT study. Journal of Molecular
Structure, 1249: 131586.
33. Ozkinali, S., Cavus, M. S., and
Sakin, B. (2018). Synthesis,
structural characterization and theoretical investigations of new
azo-azomethine compounds bearing acryloyl moiety. Hittite Journal of Science
and Engineering, 5(4): 259-269.
34. Nakum, K. J., Katariya, K. D.,
Hagar, M., and Jadeja, R. N. (2022). The
influence of lateral hydroxyl group and molecular flexibility on the mesogenic
behaviour of a new homologous series based on thiophene-chalcone: Synthesis,
characterization, crystal structure and DFT study. Journal of Molecular
Structure, 1261: 132891.
35. Ahmed, N. H., Saad, G. R., Ahmed, H. A., and Hagar, M.
(2020). New wide-stability four-ring azo/ester/Schiff base liquid crystals:
Synthesis, mesomorphic, photophysical, and DFT approaches. RSC Advances, 10(16):
9643-9656.
36. Mali, H., Sharma, V. S., Rathod, S. L., Sharma, A. S.,
Shrivastav, P. S., and Prajapati, H. R. (2023). Synthesis, characterization and
photophysical study of cholesterol functionalized azo-based room temperature
liquid crystals. Journal of Molecular Structure, 1289: 135776.
37. Ismail, N. I., Saidin, S. N., RA, N. H., Ahmad, A., and
NaiiM, N. (2022). The Effects of monosaccharides on the physico-electrochemical
properties of chitosan based solid polymer electrolytes (SPEs). Sains Malaysiana,
51(8): 2461-2472.