Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 376 - 387

 

PHYSICOCHEMICAL STUDY ON ALKOXYLATED AZO-IMINE CHITOSAN-BASED BIOPOLYMER FOR ELECTROLYTE APPLICATIONS

 

(Kajian Fizikokimia ke atas Biopolimer Alkoksi Azo-Imina Berasaskan Kitosan bagi Aplikasi Elektrolit)

 

Tuan Siti Fatimah Tuan Mohd Pauzi1, Rafizah Rahamathullah1*, M. N. Hafiza2, Wan M. Khairul3

 

1Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

2Faculty of Maritime Studies, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

3Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: fizah@unimap.edu.my

 

 

Received: 15 September 2023; Accepted: 25 February 2024; Published:  29 April 2024

 

 

Abstract

The performance of electrolytes in electronic applications are in decline due to low ionic conductivity, leakage, and inadequate thermal stability. Overcoming these challenges necessitates innovative approaches which includes electrolyte design, and materials selection, that should be taken into consideration. In this study, new additive alkoxylated azo-imine (AZ) material containing hybrid moieties of azo (-N=N-) and imine (-CH=N-) groups was successfully synthesized, characterized, and doped in biopolymer matrix. Chitosan-based biopolymer was formulated with AZ additive material as solid biopolymer electrolyte (SBE) through the concept of Donor (D) - π- Acceptor (A). The prepared AZ additive was characterized by selected spectroscopic and thermal analyses using FTIR, 1D NMR, and TGA before integration as SBE. The thermogram of AZ additive revealed good thermal stability up to 300 ℃, making it suitable for application as electrolytes. Several weight percentages (2%-8%) of additive were doped with chitosan biopolymer as new SBEs (F1-F4). The conductivity of prepared SBE was measured via electrochemical impedance spectroscopy (EIS) which achieved the highest ionic conductivity of 8.22 x 10-3 S cm-1 at room temperature (303K). The preliminary findings suggest that this organic material has significant potential as an additive material in electrolyte application.

 

Keywords: additive, azo-imine, biopolymer electrolyte, conductivity, chitosan

 

Abstrak

Prestasi elektrolit dalam aplikasi elektronik semakin merosot kerana konduktiviti ion yang rendah, kebocoran, dan ketidakstabilan terma. Bagi mengatasi cabaran ini, pendekatan inovatif termasuk reka bentuk elektrolit dan pemilihan bahan perlu diberi perhatian. Dalam kajian ini, bahan tambah baharu azo-imina alkoksi (AZ) yang mengandungi moieti campuran azo (-N=N-) dan imina (-CH=N-) telah berjaya disintesis, dicirikan, dan dicampurkan ke dalam matriks biopolimer. Biopolimer berasaskan kitosan telah diformulasikan dengan bahan tambah AZ sebagai elektrolit pepejal biopolimer (SBE) melalui konsep Penderma (D) - π - Penerima (A). Bahan tambah AZ yang disediakan telah dicirikan menggunakan analisis spektroskopi dan terma yang terpilih menggunakan FTIR, 1D NMR, dan TGA sebelum digabungkan sebagai SBE. Termogram bahan tambah AZ menunjukkan kestabilan terma yang baik sehingga 300 ℃, menjadikannya sesuai untuk digunakan sebagai elektrolit. Beberapa peratusan berat (2-8 wt. %) bahan tambah telah dicampurkan dengan biopolimer kitosan sebagai SBE baharu (F1-F4). Kekonduksian SBE yang sediakan telah diukur melalui spekstroskopi impedans elektrokimia (EIS) dan mencapai konduktiviti 8.22 x 10-3 S cm-1 pada suhu bilik (303 K). Keputusan awal menunjukkan bahawa bahan organik ini mempunyai potensi yang baik sebagai bahan tambah dalam aplikasi elektrolit.

 

Kata kunci: bahan tambah, azo-imina, biopolimer elektrolit, kekonduksian, kitosan


References

1.      Li, X., Ding, C., Li, X., Yang, H., Liu, S., Wang, X., Zhang, L., Sun, Q., Liu, X. and Chen, J. (2020). Electronic biopolymers: From molecular engineering to functional devices. Chemical Engineering Journal, 397: 125499.

2.      Mirzaeian, M., Abbas, Q., Ogwu, A., Hall, P., Goldin, M., Mirzaeian, M., and Jirandehi, H. F. (2017). Electrode and electrolyte materials for electrochemical capacitors. International Journal of Hydrogen Energy, 42(40): 25565-25587.

3.      Pan, Q., Gong, D., and Tang, Y. (2020). Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Materials, 31: 328-343.

4.      Hakari, T., Yoshimi, S., Nagao, K., Sakuda, A., Tatsumisago, M., and Hayashi, A. (2022). Thermally stable bulk-type all-solid-state capacitor with a highly deformable oxide solid electrolyte. Journal of Power Sources, 543: 231821.

5.      Zeng, Q., Lv, Z., Li, S., Yang, B., He, J., and Song, J. (2023). Electrolytes for liquid metal batteries. Materials Research Bulletin, 2023: 112586.

6.      Sun, J., Yuan, H., Yang, J., Zhang, Y. W., and Wang, J. (2023). Electrolytes for better and safer batteries: Liquid, solid or frameworked, what's next?. Next Materials, 1(3): 100024.

7.      Taneja, N., Kumar, A., Gupta, P., Gupta, M., Singh, P., Agrawal, N., Bocchetta, P. and Kumar, Y. (2022). Advancements in liquid and solid electrolytes for their utilization in electrochemical systems. Journal of Energy Storage, 56: 105950.

8.      Varshney, P. K., and Gupta, S. (2011). Natural polymer-based electrolytes for electrochemical devices: a review. Ionics, 17(6): 479-483.

9.      Yusuf, S. N. F., Yusof, S. Z., Kufian, M. Z., and Teo, L. P. (2019). Preparation and electrical characterization of polymer electrolytes: A review. Materials Today: Proceedings, 17: 446-458.

10.   Abdulwahid, R. T., Aziz, S. B., and Kadir, M. F. (2023). Environmentally friendly plasticized electrolyte based on chitosan (CS): Potato starch (PS) polymers for EDLC application: Steps toward the greener energy storage devices derived from biopolymers. Journal of Energy Storage, 67: 107636.

11.   Khairul, W. M., Rahamathullah, R., Joni, J. R., and Isa, M. I. N. (2022). Density functional theory (DFT) calculations, synthesis and electronic properties of alkoxylated-chalcone additive in enhancing the performance of CMC-based solid biopolymer electrolyte. International Journal of Hydrogen Energy, 47(65): 27866-27876.

12.   El-Hefian, E. A., Nasef, M. M., and Yahaya, A. H. (2014). Chitosan-based polymer blends: Current status and applications. Journal of the Chemical Society of Pakistan, 36(1): 11-27.

13.   Rahman, N. A., Hanifah, S. A., Mobarak, N. N., Ahmad, A., Ludin, N. A., Bella, F., and Su'ait, M. S. (2021). Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells. Polymer, 230: 124092.

14.   Shaari, N., and Kamarudin, S. K. (2019). Recent advances in additive‐enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. International Journal of Energy Research, 43(7): 2756-2794.

15.   Kumar, S., Dhapola, P. S., Pandey, S. P., Singh, P. K., and Chauhan, M. (2021). Corn-starch based porous carbon and IL based electrolyte for high efficient supercapacitor. Materials Today: Proceedings, 34: 842-845.

16.   Aziz, S.B., Nofal, M.M., Abdulwahid, R.T., Kadir, M.F.Z., Hadi, J.M., Hessien, M.M., Kareem, W.O., Dannoun, E.M. and Saeed, S.R. (2021). Impedance, FTIR and transport properties of plasticized proton conducting biopolymer electrolyte based on chitosan for electrochemical device application. Results in Physics, 29: 104770.

17.   Perumal, P., and Selvin, P. C. (2021). Boosting the performance of electric double layer capacitor via engaging pectin macromolecular electrolyte with elevated ionic conductivity and potential window stability. Chemical Engineering Journal Advances, 8: 100178.

18.   Marturano, V., Cerruti, P., and Ambrogi, V. (2017). Polymer additives. Physical Sciences Reviews, 2(6): 20160130.

19.   Baran, T., and Menteş, A. (2016). Polymeric material prepared from Schiff base based on O-carboxymethyl chitosan and its Cu (II) and Pd (II) complexes. Journal of Molecular Structure, 1115: 220-227.

20.   Shanavas, A., Vanjinathan, M., Nasar, A. S., Amudha, S., and Suthanthiraraj, S. A. (2012). Synthesis, thermal and solar cell application of novel hyperbranched polyurethanes containing azomethine and aryl-ether connectivities. High Performance Polymers, 24(7): 561-570.

21.   Rahamathullah, R., Low, J. K., Khairul, W. M., Osman, R. A. M., and Isa, M. I. N. (2023). Fused aromatic disubstituted azomethine as organic additives in NH4SCN doped CMC based electrolyte film. In AIP Conference Proceedings (Vol. 2703, No. 1). AIP Publishing.

22.   Sarswat, P. K., Sathyapalan, A., Zhu, Y., and Free, M. L. (2013). Design, synthesis, and characterization of TPA-thiophene-based amide or imine functionalized molecule for potential optoelectronic devices. Journal of Theoretical and Applied Physics, 7: 1-9.

23.   Kamali, S., Orojloo, M., Arabahmadi, R., and Amani, S. (2022). Design and synthesis of a novel azo-Schiff base ligand: Its application as a colorimetric chemosensor for selective detection of Ni2+ and CN– in aqueous-organic media, computational studies, antimicrobial properties, and molecular logic circuits. Journal of Photochemistry and Photobiology A: Chemistry, 433: 114136.

24.   Liu, M., Yin, L., Wang, L., Miao, T., Cheng, X., Wang, Y., Zhang, W. and Zhu, X. (2019). Synthesis of monodisperse aromatic azo oligomers toward gaining new insight into the isomerization of π-conjugated azo systems. Polymer Chemistry, 10(14): 1806-1811.

25.   Rahamathullah, R., and Khairul, W. M. (2017). Evaluation on the electrochemically deposited alkoxy thiourea as liquid crystalline semiconductor film. Applied Surface Science, 424: 45-51.

26.   Menati, S., Azadbakht, A., Azadbakht, R., Taeb, A., and Kakanejadifard, A. (2013). Synthesis, characterization, and electrochemical study of some novel, azo-containing Schiff bases and their Ni(II) complexes. Dyes and pigments, 98(3): 499-506.

27.   Ma, I. W., Ammar, S., Bashir, S., Selvaraj, M., Assiri, M. A., Ramesh, K., and Ramesh, S. (2020). Preparation of hybrid chitosan/silica composites via ionotropic gelation and its electrochemical impedance studies. Progress in Organic Coatings, 145: 105679.

28.   Kotatha, D., Torii, Y., Shinomiya, K., Ogino, M., Uchida, S., Ishikawa, M., Furuike, T. and Tamura, H. (2019). Preparation of thin-film electrolyte from chitosan-containing ionic liquid for application to electric double-layer capacitors. International Journal of Biological Macromolecules, 124: 1274-1280.

29.   Purtas, F. Sayin,K. Ceyhan, G., Kose, M. and Kurtoglu, M. (2017). New fluorescent azo-Schiff base Cu(II) and Zn(II) metal chelates, spectral, structural, electrochemical, photoluminescence and computational studies. Journal Molecular Structure, 1137: 461-475.

30.   Eskikanbur, S., Sayin, K., Kose, M., Zengin, H., McKee, V., and Kurtoglu, M. (2015). Synthesis of two new azo-azomethines; spectral characterization, crystal structures, computational and fluorescence studies. Journal of Molecular Structure, 1094: 183-194.

31.   Gür, M., Kocaokutgen, H., Kandemirli, F., Özkinali, S., and Yerlikaya, Z. (2016). Synthesis, spectral and thermal characterization of some azo-polymers containing acrylate derivatives. Research & Reviews: Journal of Chemistry, 5(2):1-9.

32.   Nakum, K. J., Katariya, K. D., Savani, C. J., and Jadeja, R. N. (2022). The influence of molecular flexibility on the mesogenic behavior of a new homologous series based on azo-azomethine: Synthesis, characterization, photoisomerization and DFT study. Journal of Molecular Structure, 1249: 131586.

33.   Ozkinali, S., Cavus, M. S., and Sakin, B. (2018). Synthesis, structural characterization and theoretical investigations of new azo-azomethine compounds bearing acryloyl moiety. Hittite Journal of Science and Engineering, 5(4): 259-269.

34.   Nakum, K. J., Katariya, K. D., Hagar, M., and Jadeja, R. N. (2022). The influence of lateral hydroxyl group and molecular flexibility on the mesogenic behaviour of a new homologous series based on thiophene-chalcone: Synthesis, characterization, crystal structure and DFT study. Journal of Molecular Structure, 1261: 132891.

35.   Ahmed, N. H., Saad, G. R., Ahmed, H. A., and Hagar, M. (2020). New wide-stability four-ring azo/ester/Schiff base liquid crystals: Synthesis, mesomorphic, photophysical, and DFT approaches. RSC Advances, 10(16): 9643-9656.

36.   Mali, H., Sharma, V. S., Rathod, S. L., Sharma, A. S., Shrivastav, P. S., and Prajapati, H. R. (2023). Synthesis, characterization and photophysical study of cholesterol functionalized azo-based room temperature liquid crystals. Journal of Molecular Structure, 1289: 135776.

37.   Ismail, N. I., Saidin, S. N., RA, N. H., Ahmad, A., and NaiiM, N. (2022). The Effects of monosaccharides on the physico-electrochemical properties of chitosan based solid polymer electrolytes (SPEs). Sains Malaysiana, 51(8): 2461-2472.