Malaysian Journal of Analytical
Sciences, Vol 28
No 2 (2024): 365 -
375
PHYSICOCHEMICAL CHARACTERIZATION OF ZnO/G-C3N4
FOR PHOTO-REMOVAL OF METHYL ORANGE UNDER LOW UV-LIGHT INTENSITY
(Pencirian Fizikokimia ZnO/g-C3N4 untuk
Penyingkiran Metil Oren di Bawah Lampu UV Berkeamatan Rendah)
Nurul Izzati Izhar1, Zul Adlan Mohd Hir1,2*,
Hartini Ahmad Rafaie3 and Shaari Daud1
1Faculty of Applied Sciences,
Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka, Pahang,
Malaysia
2Catalysis
for Sustainable Water and Energy Nexus Research Group, School of Chemical
Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
3Centre of
Foundation Studies, Universiti Teknologi MARA, Selangor Branch, Dengkil Campus,
43800 Dengkil, Selangor, Malaysia
*Corresponding author: zuladlan@uitm.edu.my
Received: 14 September 2023;
Accepted: 12 February 2024; Published: 29
April 2024
Abstract
Keywords: g-C3N4, methyl
orange, photocatalysis, UV light, ZnO
Abstrak
Fotomangkin cahaya UV-aktif ZnO/g-C3N4
telah disintesis dengan kaedah pencampuran mudah dengan nisbah g-C3N4
yang berbeza (0.01 g, 0.03 g, 0.05 g, 0.07 g dan 0.09g). Aktiviti fotomangkin
ZnO/g-C3N4 telah diuji terhadap pewarna metil oren (MO)
dengan menggunakan cahaya UV berkeamatan rendah (7W). Analisa FTIR
spektroskopik yang diperoleh menunjukkan spektrum kumpulan berfungsi yang
sepadan dengan ZnO dan g-C3N4. Selain itu, analisa SEM
juga menunjukkan pembentukan fotomangkin heterogen ZnO sebagai zarah bentuk
tidak sekata ZnO bersaling paut dengan permukaan g-C3N4.
Analisa EDX mengesahkan kehadiran unsur Zn, C, O dan N sepadan dengan
fotomangkin ZnO/g-C3N4. Melalui keputusan yang diperoleh,
fotomangkin ZG3 (0.1:0.03) menunjukkan penyingkiran hampir lengkap pewarna
metil oren di bawah penyinaran UV dalam tempoh 60 minit (~93%). Pemalar kadar
degradasi yang tertinggi adalah 5.26 × 10-2 min−1 berdasarkan
kinetik pseudo-tertib pertama telah dianggarkan. Fotomangkin terbaik (ZG3)
menunjukkan potensi yang tinggi untuk degradasi MO dibawah keamatan cahaya UV
yang rendah yang boleh digunakan untuk aplikasi pemulihan air fotomangkin.
Kata kunci: g-C3N4, metil oren, fotokatalisis,
cahaya UV, ZnO
References
1. Mutamim, N. S. A., Noor, Z. Z., Hassan, M. A. A., and Olsson,
G. (2012). Application of membrane bioreactor technology in treating high
strength industrial wastewater: a performance review. Desalination, 305:
1-11.
2. Ohore, O. E., and Zhang, S. (2019). Endocrine
disrupting effects of bisphenol A exposure and recent advances on its removal
by water treatment systems. A review. Scientific African, 5: e00135.
3. Balabanič, D., Rupnik, M. and Klemenčič,
A. K. (2011). Negative impact of endocrine-disrupting compounds on human
reproductive health. Reproduction, Fertility and Development, 23(3):
403-416.
4. Kumar, S., Dhiman, A., Sudhagar, P., and Krishnan, V.
(2018). ZnO-graphene quantum dots heterojunctions for natural sunlight-driven
photocatalytic environmental remediation. Applied Surface Science, 447:
802-815.
5. Qi, K., Cheng, B., Yu, J., and Ho, W. (2017). Review on
the improvement of the photocatalytic and antibacterial activities of ZnO. Journal
of Alloys and Compounds, 727: 792-820.
6. Pullagurala, V. L. R., Adisa, I. O., Rawat, S., Kim,
B., Barrios, A. C., Medina-Velo, I. A., ... and Gardea-Torresdey, J. L. (2018).
Finding the conditions for the beneficial use of ZnO nanoparticles towards
plants-A review. Environmental Pollution, 241: 1175-1181.
7. Zhou, J., Zhang, M., and Zhu,
Y. (2014). Preparation of visible
light-driven gC 3 N 4@ ZnO hybrid photocatalyst via mechanochemistry. Physical
Chemistry Chemical Physics, 16(33): 17627-17633.
8. Rafaie, H. A., Nor, R. M., Azmina, M. S., Ramli, N. I.
T., and Mohamed, R. (2017). Decoration of ZnO microstructures with Ag
nanoparticles enhanced the catalytic photodegradation of methylene blue dye. Journal
of Environmental Chemical Engineering, 5(4): 3963-3972.
9. Roza, L., Fauzia, V., Rahman, M. Y. A., Isnaeni, I.,
and Putro, P. A. (2020). ZnO nanorods decorated with carbon nanodots and its
metal doping as efficient photocatalyst for degradation of methyl blue
solution. Optical Materials, 109: 110360.
10. Mousa, H. M., Alenezi, J. F., Mohamed, I. M., Yasin, A.
S., Hashem, A. F. M., and Abdal-Hay, A. (2021). Synthesis of TiO2@
ZnO heterojunction for dye photodegradation and wastewater treatment. Journal
of Alloys and Compounds, 886: 161169.
11. Ismael, M. (2020). The photocatalytic performance of
the ZnO/g-C3N4 composite photocatalyst toward degradation
of organic pollutants and its inactivity toward hydrogen evolution: the
influence of light irradiation and charge transfer. Chemical Physics
Letters, 739: 136992.
12. Paul, D. R., Gautam, S., Panchal, P., Nehra, S. P.,
Choudhary, P., and Sharma, A. (2020). ZnO-modified g-C3N4:
a potential photocatalyst for environmental application. ACS Omega,
5(8): 3828-3838.
13. Mukhair, H., Abdullah, A. H., Hir, Z. A. M., Osman, N.
S., Zainal, Z., and Ngee, L. H. (2023). In-depth investigation on the
photostability and charge separation mechanism of Ag3PO4/g-C3N4
photocatalyst towards very low visible light intensity. Journal of
Molecular Liquids, 376: 121494.
14. Le, S., Jiang, T., Li, Y., Zhao, Q., Li, Y., Fang, W.,
and Gong, M. (2017). Highly efficient visible-light-driven mesoporous graphitic
carbon nitride/ZnO nanocomposite photocatalysts. Applied Catalysis B:
Environmental, 200: 601-610.
15. Bayan, S., Gogurla, N., Midya, A., and Ray, S. K.
(2016). White light emission characteristics of two dimensional graphitic
carbon nitride and ZnO nanorod hybrid heterojunctions. Carbon, 108:
335-342.
16. Luu Thi, L. A., Neto, M. M., Van, T. P., Nguyen Ngoc,
T., Nguyen Thi, T. M., Nguyen, X. S., and Nguyen, C. T. (2021). In situ g-C3N4@
ZnO nanocomposite: one-pot hydrothermal synthesis and photocatalytic
performance under visible light irradiation. Advances in Materials Science
and Engineering, 2021: 1-10.
17. Hir, Z. A. M., Alam, N. M. F. H. N. B., Shaari, A. S.,
and Rafaie, H. A. (2022). One-pot sol-gel synthesis of a zinc oxide-reduced
graphene oxide composite: Photocatalysis and kinetics studies using a fuzzy
inference system. Malaysian Journal Chemistry, 24(2): 37-46.
18. Zhao, Z., Wang, X., Shu, Z., Zhou, J., Li, T., Wang,
W., and Tan, Y. (2018). Facile preparation of hallow -nanosphere based
mesoporous g-C3N4 for highly enhanced visible-light-driven photocatalytic
hydrogen evolution. Applied Surface Science, 455: 591-598.
19. Si, Y., Sun, Z., Huang, L.,
Chen, M., and Wu, L. (2019). A
“ship-in-a-bottle” strategy to fabricate highly crystallized nanoporous
graphitic C3N4 microspheres under pressurized conditions.
Journal of Materials Chemistry A, 7(15): 8952-8959.
20. Li, Y., Yang, M., Xing, Y., Liu, X., Yang, Y., Wang,
X., and Song, S. (2017). Preparation of carbon‐rich g‐C3N4
nanosheets with enhanced visible light utilization for efficient photocatalytic
hydrogen production. Small, 13(33): 1701552.
21. Lia, J., Wang, Y., Li, X., GaO, Q., and Zhang, S.
(2021). A facile synthesis of high-crystalline g-C3N4 nanosheets
with closed self-assembly strategy for enhanced photocatalytic H2 evolution.
Journal Alloys Compounds, 881: 1-9.
22. Cai, J., Zhang, A., Tao, H., Li, R., Han, J., and
Huang, M. (2022). In situ growth TiO2 nanoparticles on mxene (Ti3C2)
decorated with nio quantum dots for enhanced photocatalytic performance. SSRN,
2022: 4045349.
23. Chen, Z., Fang, Y., Wang, L., Chen, X., Lin, W., and
Wang, X. (2021). Remarkable oxygen evolution by Co-doped ZnO nanorods and
visible light. Applied Catalysis B: Environmental, 296: 120369.
24. Li, L., Sun, S. Q., Wang, Y. X., and Wang, C. Y.
(2018). Facile synthesis of ZnO/g-C3N4 composites with
honeycomb-like structure by H2 bubble templates and their enhanced
visible light photocatalytic performance. Journal of photochemistry and
photobiology A: Chemistry, 355: 16-24.
25. Ma, X., Huo, X., Hao, K., Song,
L., Yu, Q., Liu, T., and Wang, Z. (2021). Visible light driven VO2/g‐C3N4
Z‐scheme composite photocatalysts for selective oxidation of
DL‐1‐phenylethyl alcohol under Vis‐LEDs irradiation and
aerobic oxidation. ChemistrySelect, 6(9): 2101-2110.
26. Alfaifi, M. Q. and Bagabas, A. A. (2019). Preparation,
characterization, and application in water purification of gC3N4/I-TiO2
composite photocatalysts. Advance Material Sciences, 4: 1-10.
27. Ismael, M. (2020). The photocatalytic performance of
the ZnO/g-C3N4 composite photocatalyst toward degradation
of organic pollutants and its inactivity toward hydrogen evolution: the
influence of light irradiation and charge transfer. Chemical Physics
Letters, 739: 136992.
28. Goulart, L. A., Alves, S. A.,
and Mascaro, L. H. (2019). Photoelectrochemical
degradation of bisphenol A using Cu doped WO3 electrodes. Journal
of Electroanalytical Chemistry, 839: 123-133.
29. Brasileiro, I. L. O., Madeira,
V. S., Lopes-Moriyama, A. L., and de Almeida Ramalho, M. L. R. (2023). Addition of g-C3N4 to ZnO and
ZnFe2O4 to improve photocatalytic degradation of emerging
organic pollutants. Ceramics International, 49(3): 4449-4459.
30. Zhu, Y. P., Li, M., Liu, Y. L.,
Ren, T. Z., and Yuan, Z. Y. (2014). Carbon-doped
ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for
photocatalysis. The Journal of Physical Chemistry C, 118(20):
10963-10971.
31. Sundaram, I. M., Kalimuthu, S., and Ponniah, G. (2017).
Highly active ZnO modified g-C3N4 nanocomposite for dye
degradation under UV and visible light with enhanced stability and
antimicrobial activity. Composites Communications, 5: 64-71.
32. Yang, P., Wang, J., Yue, G., Yang, R., Zhao, P., Yang,
L., ... and Astruc, D. (2020). Constructing mesoporous g-C3N4/ZnO
nanosheets catalyst for enhanced visible-light driven photocatalytic activity. Journal
of Photochemistry and Photobiology A: Chemistry, 388: 112169.
33. Garg, R., Gupta, R., and Bansal, A. (2021). Synthesis
of g-C3N4/ZnO nanocomposite for photocatalytic
degradation of a refractory organic endocrine disrupter. Materials Today:
Proceedings, 44: 855-859.
34. Sun, J. X., Yuan, Y. P., Qiu, L. G., Jiang, X., Xie, A.
J., Shen, Y. H. and Zhu, J. F. (2012). Fabrication of composite photocatalyst
gC3N4–ZnO and enhancement of photocatalytic activity
under visible light. Dalton Transactions, 41(22): 6756-6763.