Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 365 - 375

 

PHYSICOCHEMICAL CHARACTERIZATION OF ZnO/G-C3N4 FOR PHOTO-REMOVAL OF METHYL ORANGE UNDER LOW UV-LIGHT INTENSITY

 

(Pencirian Fizikokimia ZnO/g-C3N4 untuk Penyingkiran Metil Oren di Bawah Lampu UV Berkeamatan Rendah)

 

Nurul Izzati Izhar1, Zul Adlan Mohd Hir1,2*, Hartini Ahmad Rafaie3 and Shaari Daud1

 

1Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

2Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Centre of Foundation Studies, Universiti Teknologi MARA, Selangor Branch, Dengkil Campus, 43800 Dengkil, Selangor, Malaysia

 

*Corresponding author: zuladlan@uitm.edu.my

 

 

Received: 14 September 2023; Accepted: 12 February 2024; Published:  29 April 2024

 

 

Abstract

UV light-active photocatalyst of ZnO/g-C3N4 was synthesized by a facile mixing method with different ratio of g-C3N4 (0.01, 0.03, 0.05, 0.07, and 0.09 g). The photocatalytic activity of ZnO/g-C3N4 was tested towards methyl orange (MO) dye in aqueous solution using a low UV light intensity (7W). FTIR spectroscopic results obtained show the functional groups spectrum corresponding to the ZnO and g-C3N4. Besides, SEM results also show the formation of heterogenous photocatalysts as irregular shape particles of ZnO interlink with g-C3N4 surface. EDX analysis confirms the presence of Zn, C, O, and N elements correspond to ZnO/g-C3N4 photocatalyst. From the results obtained, ZG3 (0.1:0.03) photocatalysts exhibit almost complete removal of methyl orange under UV irradiation in a period of 60 min (~95%). The highest degradation rate constant of 5.26 × 10-2 min−1, based on pseudo-first-order kinetics is estimated. The best photocatalyst (ZG3) showed high potential in degrading MO under low UV light intensity which can be used for photocatalytic water remediation application.

 

Keywords: g-C3N4, methyl orange, photocatalysis, UV light, ZnO

 

Abstrak

Fotomangkin cahaya UV-aktif ZnO/g-C3N4 telah disintesis dengan kaedah pencampuran mudah dengan nisbah g-C3N4 yang berbeza (0.01 g, 0.03 g, 0.05 g, 0.07 g dan 0.09g). Aktiviti fotomangkin ZnO/g-C3N4 telah diuji terhadap pewarna metil oren (MO) dengan menggunakan cahaya UV berkeamatan rendah (7W). Analisa FTIR spektroskopik yang diperoleh menunjukkan spektrum kumpulan berfungsi yang sepadan dengan ZnO dan g-C3N4. Selain itu, analisa SEM juga menunjukkan pembentukan fotomangkin heterogen ZnO sebagai zarah bentuk tidak sekata ZnO bersaling paut dengan permukaan g-C3N4. Analisa EDX mengesahkan kehadiran unsur Zn, C, O dan N sepadan dengan fotomangkin ZnO/g-C3N4. Melalui keputusan yang diperoleh, fotomangkin ZG3 (0.1:0.03) menunjukkan penyingkiran hampir lengkap pewarna metil oren di bawah penyinaran UV dalam tempoh 60 minit (~93%). Pemalar kadar degradasi yang tertinggi adalah 5.26 × 10-2 min−1 berdasarkan kinetik pseudo-tertib pertama telah dianggarkan. Fotomangkin terbaik (ZG3) menunjukkan potensi yang tinggi untuk degradasi MO dibawah keamatan cahaya UV yang rendah yang boleh digunakan untuk aplikasi pemulihan air fotomangkin.

 

Kata kunci: g-C3N4, metil oren, fotokatalisis, cahaya UV, ZnO


 

References

1.      Mutamim, N. S. A., Noor, Z. Z., Hassan, M. A. A., and Olsson, G. (2012). Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination, 305: 1-11.

2.      Ohore, O. E., and Zhang, S. (2019). Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. Scientific African, 5: e00135.

3.      Balabanič, D., Rupnik, M. and Klemenčič, A. K. (2011). Negative impact of endocrine-disrupting compounds on human reproductive health. Reproduction, Fertility and Development, 23(3): 403-416.

4.      Kumar, S., Dhiman, A., Sudhagar, P., and Krishnan, V. (2018). ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation. Applied Surface Science, 447: 802-815.

5.      Qi, K., Cheng, B., Yu, J., and Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 727: 792-820.

6.      Pullagurala, V. L. R., Adisa, I. O., Rawat, S., Kim, B., Barrios, A. C., Medina-Velo, I. A., ... and Gardea-Torresdey, J. L. (2018). Finding the conditions for the beneficial use of ZnO nanoparticles towards plants-A review. Environmental Pollution, 241: 1175-1181.

7.      Zhou, J., Zhang, M., and Zhu, Y. (2014). Preparation of visible light-driven gC 3 N 4@ ZnO hybrid photocatalyst via mechanochemistry. Physical Chemistry Chemical Physics, 16(33): 17627-17633.

8.      Rafaie, H. A., Nor, R. M., Azmina, M. S., Ramli, N. I. T., and Mohamed, R. (2017). Decoration of ZnO microstructures with Ag nanoparticles enhanced the catalytic photodegradation of methylene blue dye. Journal of Environmental Chemical Engineering, 5(4): 3963-3972.

9.      Roza, L., Fauzia, V., Rahman, M. Y. A., Isnaeni, I., and Putro, P. A. (2020). ZnO nanorods decorated with carbon nanodots and its metal doping as efficient photocatalyst for degradation of methyl blue solution. Optical Materials, 109: 110360.

10.   Mousa, H. M., Alenezi, J. F., Mohamed, I. M., Yasin, A. S., Hashem, A. F. M., and Abdal-Hay, A. (2021). Synthesis of TiO2@ ZnO heterojunction for dye photodegradation and wastewater treatment. Journal of Alloys and Compounds, 886: 161169.

11.   Ismael, M. (2020). The photocatalytic performance of the ZnO/g-C3N4 composite photocatalyst toward degradation of organic pollutants and its inactivity toward hydrogen evolution: the influence of light irradiation and charge transfer. Chemical Physics Letters, 739: 136992.

12.   Paul, D. R., Gautam, S., Panchal, P., Nehra, S. P., Choudhary, P., and Sharma, A. (2020). ZnO-modified g-C3N4: a potential photocatalyst for environmental application. ACS Omega, 5(8): 3828-3838.

13.   Mukhair, H., Abdullah, A. H., Hir, Z. A. M., Osman, N. S., Zainal, Z., and Ngee, L. H. (2023). In-depth investigation on the photostability and charge separation mechanism of Ag3PO4/g-C3N4 photocatalyst towards very low visible light intensity. Journal of Molecular Liquids, 376: 121494.

14.   Le, S., Jiang, T., Li, Y., Zhao, Q., Li, Y., Fang, W., and Gong, M. (2017). Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Applied Catalysis B: Environmental, 200: 601-610.

15.   Bayan, S., Gogurla, N., Midya, A., and Ray, S. K. (2016). White light emission characteristics of two dimensional graphitic carbon nitride and ZnO nanorod hybrid heterojunctions. Carbon, 108: 335-342.

16.   Luu Thi, L. A., Neto, M. M., Van, T. P., Nguyen Ngoc, T., Nguyen Thi, T. M., Nguyen, X. S., and Nguyen, C. T. (2021). In situ g-C3N4@ ZnO nanocomposite: one-pot hydrothermal synthesis and photocatalytic performance under visible light irradiation. Advances in Materials Science and Engineering, 2021: 1-10.

17.   Hir, Z. A. M., Alam, N. M. F. H. N. B., Shaari, A. S., and Rafaie, H. A. (2022). One-pot sol-gel synthesis of a zinc oxide-reduced graphene oxide composite: Photocatalysis and kinetics studies using a fuzzy inference system. Malaysian Journal Chemistry, 24(2): 37-46.

18.   Zhao, Z., Wang, X., Shu, Z., Zhou, J., Li, T., Wang, W., and Tan, Y. (2018). Facile preparation of hallow -nanosphere based mesoporous g-C3N4 for highly enhanced visible-light-driven photocatalytic hydrogen evolution. Applied Surface Science, 455: 591-598.

19.   Si, Y., Sun, Z., Huang, L., Chen, M., and Wu, L. (2019). A “ship-in-a-bottle” strategy to fabricate highly crystallized nanoporous graphitic C3N4 microspheres under pressurized conditions. Journal of Materials Chemistry A, 7(15): 8952-8959.

20.   Li, Y., Yang, M., Xing, Y., Liu, X., Yang, Y., Wang, X., and Song, S. (2017). Preparation of carbon‐rich g‐C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production. Small, 13(33): 1701552.

21.   Lia, J., Wang, Y., Li, X., GaO, Q., and Zhang, S. (2021). A facile synthesis of high-crystalline g-C3N4 nanosheets with closed self-assembly strategy for enhanced photocatalytic H2 evolution. Journal Alloys Compounds, 881: 1-9.

22.   Cai, J., Zhang, A., Tao, H., Li, R., Han, J., and Huang, M. (2022). In situ growth TiO2 nanoparticles on mxene (Ti3C2) decorated with nio quantum dots for enhanced photocatalytic performance. SSRN, 2022: 4045349.

23.   Chen, Z., Fang, Y., Wang, L., Chen, X., Lin, W., and Wang, X. (2021). Remarkable oxygen evolution by Co-doped ZnO nanorods and visible light. Applied Catalysis B: Environmental, 296: 120369.

24.   Li, L., Sun, S. Q., Wang, Y. X., and Wang, C. Y. (2018). Facile synthesis of ZnO/g-C3N4 composites with honeycomb-like structure by H2 bubble templates and their enhanced visible light photocatalytic performance. Journal of photochemistry and photobiology A: Chemistry, 355: 16-24.

25.   Ma, X., Huo, X., Hao, K., Song, L., Yu, Q., Liu, T., and Wang, Z. (2021). Visible light driven VO2/g‐C3N4 Z‐scheme composite photocatalysts for selective oxidation of DL‐1‐phenylethyl alcohol under Vis‐LEDs irradiation and aerobic oxidation. ChemistrySelect, 6(9): 2101-2110.

26.   Alfaifi, M. Q. and Bagabas, A. A. (2019). Preparation, characterization, and application in water purification of gC3N4/I-TiO2 composite photocatalysts. Advance Material Sciences, 4: 1-10.

27.   Ismael, M. (2020). The photocatalytic performance of the ZnO/g-C3N4 composite photocatalyst toward degradation of organic pollutants and its inactivity toward hydrogen evolution: the influence of light irradiation and charge transfer. Chemical Physics Letters, 739: 136992.

28.   Goulart, L. A., Alves, S. A., and Mascaro, L. H. (2019). Photoelectrochemical degradation of bisphenol A using Cu doped WO3 electrodes. Journal of Electroanalytical Chemistry, 839: 123-133.

29.   Brasileiro, I. L. O., Madeira, V. S., Lopes-Moriyama, A. L., and de Almeida Ramalho, M. L. R. (2023). Addition of g-C3N4 to ZnO and ZnFe2O4 to improve photocatalytic degradation of emerging organic pollutants. Ceramics International, 49(3): 4449-4459.

30.   Zhu, Y. P., Li, M., Liu, Y. L., Ren, T. Z., and Yuan, Z. Y. (2014). Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. The Journal of Physical Chemistry C, 118(20): 10963-10971.

31.   Sundaram, I. M., Kalimuthu, S., and Ponniah, G. (2017). Highly active ZnO modified g-C3N4 nanocomposite for dye degradation under UV and visible light with enhanced stability and antimicrobial activity. Composites Communications, 5: 64-71.

32.   Yang, P., Wang, J., Yue, G., Yang, R., Zhao, P., Yang, L., ... and Astruc, D. (2020). Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 388: 112169.

33.   Garg, R., Gupta, R., and Bansal, A. (2021). Synthesis of g-C3N4/ZnO nanocomposite for photocatalytic degradation of a refractory organic endocrine disrupter. Materials Today: Proceedings, 44: 855-859.

34.   Sun, J. X., Yuan, Y. P., Qiu, L. G., Jiang, X., Xie, A. J., Shen, Y. H. and Zhu, J. F. (2012). Fabrication of composite photocatalyst gC3N4–ZnO and enhancement of photocatalytic activity under visible light. Dalton Transactions, 41(22): 6756-6763.