Malaysian Journal of Analytical Sciences, Vol 28 No 2 (2024): 247 - 256

 

FABRICATION AND CHARACTERIZATION OF WATER-IN-PALM OIL NANOEMULSION AS A CARRIER FOR CATECHIN

 

(Fabrikasi dan Sifat Nanoemulsi Air dalam Minyak Kelapa Sawit sebagai Pembawa Katekin)

 

Nabilah Hauzin1, Nursyamsyila Mat Hadzir1*, Hairul Amani Abdul Hamid1,

Rosnani Hasham@Hisam2, and Wan Nazihah Wan Ibrahim1

 

1School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia

 

*Corresponding author: nursyamsyila@uitm.edu.my

 

 

Received: 10 September 2023; Accepted: 12 March 2024; Published:  29 April 2024

 

 

Abstract

Catechins are known as potent antioxidants with numerous health benefits, including antimicrobial, antiviral, anti-inflammatory, anti-allergenic, and anti-cancer effects. However, there are some challenges to delivering catechins due to their low bioavailability, poor gastrointestinal absorption, and low stability. To overcome the limitations of catechin delivery, nanoemulsion technology with droplet sizes ranging from 10 to 1000 nm was used. In this study, water-in-oil (W/O) nanoemulsion was effectively prepared by employing palm oil (PO) as the oil phase, Span 80 as a lipophilic emulsifier, and Tween 80 as a hydrophilic emulsifier with high-energy approaches (high shear homogenizer). The optimum processing conditions for preparing water-in-palm oil nanoemulsion are as follows: the ratio of the oil phase to the water phase is 60:40, and the total concentrations of emulsifier mixtures are 11 w/w% with a hydrophilic-lipophilic balance (HLB) value of 7.1 using 15,500 rpm for 5 minutes of the high shear homogenizer. The best nanoemulsion showed an average of 185.6 nm particle size and a zeta potential of -38.4 mV. The optimized nanoemulsion containing catechin with a pH value of 6.82, showed a low conductivity value of this nanoemulsion (0.001mS/cm) which means that the continuous phase is oil. The nanoemulsion was stable at centrifugation of 4000rpm for 30 minutes and alongside 28 days of storage tests at 10˚C. Hence, this study successfully developed a stable water-in-palm oil nanoemulsion containing catechins (WPOC-NEs).

 

Keywords: catechin, nanoemulsion, emulsifiers, formulation, stability

 

Abstrak

Katekin dikenali sebagai antioksidan kuat yang menawarkan banyak manfaat kesihatan, termasuk kesan antimikrob, antivirus, anti-radang, anti-alergik, dan anti-barah. Walau bagaimanapun, terdapat beberapa cabaran dalam membuat penghantaran katekin disebabkan bioketersediaan mereka yang rendah, penyerapan gastrousus dan kestabilan yang lemah. Untuk mengatasi had penghantaran katekin, teknologi nanoemulsi dengan saiz zarah daripada 10 hingga 1000nm telah digunakan. Dalam kajian ini, nanoemulsi air-dalam-miyak telah disediakan dengan menggunakan minyak kelapa sawit sebagai fasa minyak, Span 80 sebagai pengemulsi lipofilik, dan Tween 80 sebagai pengemulsi hidrofilik dengan pendekatan tenaga tinggi (penghomogenatan ricih tinggi). Keadaan pemprosesan optimum bagi penyediaan nanoemulsi air-dalam-minyak mengandungi katekin adalah seperti berikut: nisbah fasa minyak kepada fasa air adalah 60:40, dan jumlah kepekatan campuran pengemulsi adalah 11% dengan nilai keseimbangan hidrofilik-lipofilik 7.1 menggunakan penghomogenatan ricih tinggi. Nanoemulsi mengandungi katekin yang terbaik menunjukkan saiz zarah 185.6 nm, dan potensi zeta -38.4mV. Tambahan lagi, nanoemulsi dengan nilai pH 6.82 ini, menunjukkan nilai kondutiviti yang rendah iaitu 0.001mS/cm, yang bermaksud fasa berterusannya adalah minyak. Nanoemulsi ini juga stabil selepas diemparkan pada 4000rpm selama 30 minit dan juga sepanjang ujian simpanan selama 28 hari di suhu 10℃. Oleh itu, kajian ini telah berjaya membangunkan nanoemulsi air-dalam-minyak dengan mengandungi katekin yang stabil.

 

Kata kunci: katekin, nanoemulsi, pengemulsi, formulasi, kestabilan

 


 

References

1.    Bae, J., Kim, N., Shin, Y., Kim, S. Y., and Kim, Y. J. (2020) Activity of catechins and their applications. Biomedical Dermatology, 4(1):1-10.

2.    Tsai, Y. J., and Chen, B. H. (2016). Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3. International Journal of Nanomedicine, 11: 1907-1926.

3.    Bhushani, J. A., Karthik, P., and Anandharamakrishnan, C. (2016). Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins. Food Hydrocolloids, 56: 372-382.

4.    Wilson, R. J., Li, Y., Yang, G., and Zhao, C. X. (2022). Nanoemulsions for drug delivery. Particuology, 64: 85-97.

5.    Li, P. H., and Chiang, B. H. (2012). Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonics Sonochemistry, 19(1): 192-197.

6.    Tayeb, H. H., Felimban, R., Almaghrabi, S., and Hasaballah, N. (2021). Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. Colloids and Interface Science Communications, 45: 1-19.

7.    Liang, C. X., Qi, D. L., Zhang, L. N., Lu, P., and Liu, Z. D. (2021). Preparation and evaluation of a water-in-oil nanoemulsion drug delivery system loaded with salidroside. Chinese Journal of Natural Medicines, 19(3): 231-240.

8.    Rai, V. K., Mishra, N., Yadav, K. S., and Yadav, N. P. (2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. Journal of Controlled Release, 270: 203-225.

9.    Maluin, F. N., Hussein, M. Z., and Idris, A. S. (2020). An overview of the oil palm industry: Challenges and some emerging opportunities for nanotechnology development. Agronomy, 10(356): 1-20.

10.  Goindi, S., Kaur, A., Kaur, R., Kalra, A., and Chauhan, P. (2016). Nanoemulsions: an Emerging technology in the food industry. Emulsions, 3: 651-688.

11.  Qonita, H. A., Syafika, N., Valensie, V., Kamba, J., Maulana, A., and Permana, A. D. (2022).  Development water in oil nanoemulsion of diethylcarbamazine for enhanced the characteristics for lymphatic targeting: A proof of concept study. Journal of the Indian Chemical Society, 99(4): 1-5.

12.  Baba Shekh, A. O., Abdul Wahab, R., and Yahya, N. A. (2022). Formulation of roselle extract water-in-oil nanoemulsion for controlled pulmonary delivery. Journal of Dispersion Science and Technology, 44(10): 1830-1841.

13.  Ahmad, N., Alam, M. A., Ahmad, R., Umar, S., and Jalees Ahmad, F. (2018). Improvement of oral efficacy of irinotecan through biodegradable polymeric nanoparticles through in vitro and in vivo investigations. Journal of Microencapsulation, 35(4): 327-343.

14.  Roselan M. A., Ashari S. E., Faujan N. H., Faudzi S. M. M., and Mohamad R. (2020). An improved nanoemulsion formulation containing kojic monooleate: optimization, characterization and in vitro studies. Molecules. 25(11): 1-23.

15.  Shahidan, N. S., Salim, N., and Ashari, S. E. (2019). Preparation and optimization of ibuprofen-loaded nanoemulsion formulation. Journal of Multidisciplinary Engineering Science and Technology, 6(12): 89-96.

16.  Liu, Q., Huang, H., Chen, H., Lin, J., and Wang, Q. (2019).  Food-grade nanoemulsions: Preparation, stability and application in encapsulation of bioactive compounds. Molecules, 24(23): 1-37.

17.  Genot, C., Kabri, T. H., and Meynier, A. (2013). Stabilization of omega-3 oils and enriched foods using emulsifiers. Food Enrichment with Omega-3 Fatty Acids, 252: 150–193.

18.  Wang, L., Dong, J., Chen, J., Eastoe, J., and Li, X. (2009). Design and optimization of a new self-nanoemulsifying drug delivery system. Journal of Colloid and Interface Science, 330(2): 443-448.

19.  Colucci, G., Santamaria-Echart, A., Silva, S. C., Fernandes, I. P. M., Sipoli, C. C., and Barreiro, M. F. (2020). Development of water-in-oil emulsions as delivery vehicles and testing with a natural antimicrobial extract. Molecules, 25(9): 1-15.

20.  Sittinun, A., Pisitsak, P., Manuspiya, H., Thiangtham, S., Chang, Y. H., and Ummartyotin, S. (2020).  Utilization of palm olein-based polyol for polyurethane foam sponge synthesis: potential as a sorbent material. Journal of Polymers and the Environment, 28(12): 3181-3191.

21.  Branzoi, F., and Branzoi, V. (2017). Investigation of some nonionic surfactants as corrosion inhibitors for carbon steel in sulfuric acid medium. International Journal of Electrochemical Science, 12(8): 7638-7658.

22.  Ahmad, N., Ahmad, R., Alrasheed, R. A., Almatar, H. M. A., Al-Ramadan, A. S., Amir, M., and Sarafroz, M. (2020). Quantification and evaluations of catechin hydrate polymeric nanoparticles used in brain targeting for the treatment of epilepsy. Pharmaceutics, 12(3): 1-34.

23.  Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., and Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2): 1-17.

24.  Marzuki, N. H. C., Wahab, R. A., and Hamid, M. A. (2019). An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnology and Biotechnological Equipment, 33(1): 779-797.

25.  Pongsumpun, P., Iwamoto, S., and Siripatrawan, U. (2020).  Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrasonics Sonochemistry, 60: 1-27.

26.  Jiang, J., Mei, Z., Xu, J., and Sun, D. (2013). Effect of inorganic electrolytes on the formation and the stability of water-in-oil (w/o) emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 429: 82-90.

27.  Yahya, N. A., Abdul Wahab, R., Attan, N., Abdul Hamid, M., Mohamed Noor, N., and Kobun, R. (2022).  Ananas comosus peels extract as a new natural cosmetic ingredient: oil-in-water (o/w) topical nano cream stability and safety evaluation. Evidence-Based Complementary and Alternative Medicine, 2022: 1-9.

28.  Attebäck, M., Hedin, B., and Mattsson, S. (2022). Formulation optimization of extemporaneous oral liquids containing naloxone and propranolol for pediatric use. Scientia Pharmaceutica, 90(1): 1-18.

29.  Ryu, V., McClements, D. J., Corradini, M. G., and McLandsborough, L. (2018).  Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion. Food Chemistry, 245: 104-111.