Malaysian Journal of Analytical
Sciences, Vol 28
No 2 (2024): 247 - 256
FABRICATION AND CHARACTERIZATION OF
WATER-IN-PALM OIL NANOEMULSION AS A CARRIER FOR CATECHIN
(Fabrikasi dan Sifat
Nanoemulsi Air dalam Minyak Kelapa Sawit sebagai Pembawa Katekin)
Nabilah Hauzin1, Nursyamsyila Mat Hadzir1*, Hairul Amani
Abdul Hamid1,
Rosnani Hasham@Hisam2, and
Wan Nazihah Wan Ibrahim1
1School of Chemistry and Environment, Faculty of Applied
Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Department of Bioprocess and Polymer Engineering, School of Chemical and
Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia,
81310, Johor Bahru, Johor, Malaysia
*Corresponding author: nursyamsyila@uitm.edu.my
Received: 10 September 2023;
Accepted: 12 March 2024; Published: 29 April
2024
Abstract
Catechins are known as potent
antioxidants with numerous health benefits, including antimicrobial, antiviral,
anti-inflammatory, anti-allergenic, and anti-cancer effects. However, there are
some challenges to delivering catechins due to their low bioavailability, poor
gastrointestinal absorption, and
low stability. To overcome the limitations of catechin delivery, nanoemulsion
technology with droplet sizes ranging from 10 to 1000 nm was used. In this
study, water-in-oil (W/O) nanoemulsion was effectively prepared by employing
palm oil (PO) as the oil phase, Span 80 as a lipophilic emulsifier, and Tween 80 as a hydrophilic emulsifier with high-energy
approaches (high shear homogenizer). The optimum processing conditions for
preparing water-in-palm oil nanoemulsion are as follows: the ratio of the oil
phase to the water phase is 60:40, and the total concentrations of emulsifier
mixtures are 11 w/w% with a hydrophilic-lipophilic balance (HLB) value of 7.1
using 15,500 rpm for 5 minutes of the high shear homogenizer. The best
nanoemulsion showed an average of 185.6 nm particle size and a zeta potential
of -38.4 mV. The optimized nanoemulsion containing catechin with a pH value of
6.82, showed a low conductivity value of this nanoemulsion (0.001mS/cm) which
means that the continuous phase is oil. The nanoemulsion was stable at
centrifugation of 4000rpm for 30 minutes and alongside 28 days of storage tests
at 10˚C. Hence, this study successfully developed a stable water-in-palm
oil nanoemulsion containing catechins (WPOC-NEs).
Keywords: catechin, nanoemulsion, emulsifiers, formulation,
stability
Abstrak
Katekin dikenali sebagai
antioksidan kuat yang
menawarkan banyak manfaat kesihatan, termasuk kesan antimikrob, antivirus,
anti-radang, anti-alergik, dan anti-barah. Walau
bagaimanapun, terdapat beberapa cabaran dalam membuat penghantaran katekin
disebabkan bioketersediaan mereka yang rendah, penyerapan gastrousus dan
kestabilan yang lemah. Untuk mengatasi had penghantaran katekin, teknologi
nanoemulsi dengan saiz zarah daripada 10 hingga 1000nm telah digunakan. Dalam
kajian ini, nanoemulsi air-dalam-miyak telah disediakan dengan menggunakan minyak
kelapa sawit sebagai fasa minyak, Span 80 sebagai
pengemulsi lipofilik, dan Tween 80 sebagai pengemulsi hidrofilik dengan
pendekatan tenaga tinggi (penghomogenatan ricih tinggi). Keadaan pemprosesan
optimum bagi penyediaan nanoemulsi air-dalam-minyak mengandungi katekin adalah
seperti berikut: nisbah fasa minyak kepada fasa air adalah 60:40, dan jumlah
kepekatan campuran pengemulsi adalah 11% dengan nilai keseimbangan
hidrofilik-lipofilik 7.1 menggunakan penghomogenatan ricih tinggi. Nanoemulsi
mengandungi katekin yang terbaik menunjukkan saiz zarah 185.6 nm, dan potensi
zeta -38.4mV. Tambahan lagi, nanoemulsi dengan nilai pH 6.82 ini, menunjukkan
nilai kondutiviti yang rendah iaitu 0.001mS/cm, yang bermaksud fasa
berterusannya adalah minyak. Nanoemulsi ini juga stabil selepas diemparkan pada
4000rpm selama 30 minit dan juga sepanjang ujian simpanan selama 28 hari di
suhu 10℃. Oleh itu, kajian ini telah berjaya membangunkan nanoemulsi
air-dalam-minyak dengan mengandungi katekin yang stabil.
Kata
kunci: katekin, nanoemulsi, pengemulsi, formulasi, kestabilan
References
1. Bae, J., Kim, N., Shin, Y., Kim, S.
Y., and Kim, Y. J. (2020) Activity of catechins and their applications. Biomedical
Dermatology, 4(1):1-10.
5. Li, P. H., and Chiang, B. H. (2012). Process optimization
and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic
emulsification using response surface methodology. Ultrasonics
Sonochemistry, 19(1): 192-197.
6. Tayeb, H. H., Felimban, R., Almaghrabi, S., and
Hasaballah, N. (2021). Nanoemulsions: Formulation, characterization,
biological fate, and potential role against COVID-19 and other viral
outbreaks. Colloids and Interface Science Communications, 45: 1-19.
7. Liang, C. X., Qi, D. L., Zhang, L. N., Lu, P., and Liu, Z.
D. (2021). Preparation and evaluation of a water-in-oil nanoemulsion drug
delivery system loaded with salidroside. Chinese Journal of Natural
Medicines, 19(3): 231-240.
8. Rai, V. K., Mishra, N., Yadav, K. S., and Yadav, N. P.
(2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug
delivery: formulation development, stability issues, basic considerations and
applications. Journal of Controlled Release, 270: 203-225.
9. Maluin, F. N., Hussein, M. Z., and Idris, A. S. (2020). An
overview of the oil palm industry: Challenges and some emerging opportunities
for nanotechnology development. Agronomy, 10(356): 1-20.
10. Goindi, S., Kaur, A., Kaur, R., Kalra, A., and Chauhan, P.
(2016). Nanoemulsions: an Emerging technology in the food industry. Emulsions,
3: 651-688.
11. Qonita, H. A., Syafika, N., Valensie, V., Kamba, J.,
Maulana, A., and Permana, A. D. (2022).
Development water in oil nanoemulsion of diethylcarbamazine for
enhanced the characteristics for lymphatic targeting: A proof of concept
study. Journal of the Indian Chemical Society, 99(4): 1-5.
12. Baba Shekh, A. O., Abdul Wahab, R., and Yahya, N. A.
(2022). Formulation of roselle extract water-in-oil nanoemulsion for
controlled pulmonary delivery. Journal of Dispersion Science and Technology,
44(10): 1830-1841.
13. Ahmad, N., Alam, M. A., Ahmad, R., Umar, S., and Jalees
Ahmad, F. (2018). Improvement of oral efficacy of irinotecan through
biodegradable polymeric nanoparticles through in vitro and in vivo
investigations. Journal of Microencapsulation, 35(4): 327-343.
14. Roselan M. A., Ashari S. E., Faujan N. H., Faudzi S. M.
M., and Mohamad R. (2020). An improved nanoemulsion formulation containing
kojic monooleate: optimization, characterization and in vitro studies. Molecules.
25(11): 1-23.
15. Shahidan, N. S., Salim, N., and Ashari, S. E. (2019).
Preparation and optimization of ibuprofen-loaded nanoemulsion formulation. Journal
of Multidisciplinary Engineering Science and Technology, 6(12): 89-96.
16. Liu, Q., Huang, H., Chen, H., Lin, J., and Wang, Q.
(2019). Food-grade nanoemulsions:
Preparation, stability and application in encapsulation of bioactive
compounds. Molecules, 24(23): 1-37.
17. Genot, C., Kabri, T. H., and Meynier, A. (2013).
Stabilization of omega-3 oils and enriched foods using emulsifiers. Food
Enrichment with Omega-3 Fatty Acids, 252: 150–193.
18. Wang, L., Dong, J., Chen, J., Eastoe, J., and Li, X.
(2009). Design and optimization of a new self-nanoemulsifying drug delivery
system. Journal of Colloid and Interface Science, 330(2): 443-448.
19. Colucci, G., Santamaria-Echart, A., Silva, S. C.,
Fernandes, I. P. M., Sipoli, C. C., and Barreiro, M. F. (2020). Development of
water-in-oil emulsions as delivery vehicles and testing with a natural
antimicrobial extract. Molecules, 25(9): 1-15.
20. Sittinun, A., Pisitsak, P., Manuspiya, H., Thiangtham, S.,
Chang, Y. H., and Ummartyotin, S. (2020).
Utilization of palm olein-based polyol for polyurethane foam sponge
synthesis: potential as a sorbent material. Journal of Polymers and the
Environment, 28(12): 3181-3191.
21. Branzoi, F., and Branzoi, V. (2017). Investigation of some
nonionic surfactants as corrosion inhibitors for carbon steel in sulfuric acid
medium. International Journal of Electrochemical Science, 12(8): 7638-7658.
22. Ahmad, N., Ahmad, R., Alrasheed, R. A., Almatar, H. M. A.,
Al-Ramadan, A. S., Amir, M., and Sarafroz, M. (2020). Quantification and
evaluations of catechin hydrate polymeric nanoparticles used in brain
targeting for the treatment of epilepsy. Pharmaceutics, 12(3): 1-34.
23. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh
Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., and Mozafari, M. R.
(2018). Impact of particle size and polydispersity index on the clinical
applications of lipidic nanocarrier systems. Pharmaceutics, 10(2): 1-17.
24. Marzuki, N. H. C., Wahab, R. A., and Hamid, M. A. (2019).
An overview of nanoemulsion: concepts of development and cosmeceutical
applications. Biotechnology and Biotechnological Equipment, 33(1):
779-797.
25. Pongsumpun, P., Iwamoto, S., and Siripatrawan, U.
(2020). Response surface methodology
for optimization of cinnamon essential oil nanoemulsion with improved
stability and antifungal activity. Ultrasonics Sonochemistry, 60: 1-27.
26. Jiang, J., Mei, Z., Xu, J., and Sun, D. (2013). Effect of
inorganic electrolytes on the formation and the stability of water-in-oil
(w/o) emulsions. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 429: 82-90.
27. Yahya, N. A., Abdul Wahab, R., Attan, N., Abdul Hamid, M.,
Mohamed Noor, N., and Kobun, R. (2022).
Ananas comosus peels extract
as a new natural cosmetic ingredient: oil-in-water (o/w) topical nano cream
stability and safety evaluation. Evidence-Based Complementary and
Alternative Medicine, 2022: 1-9.
28. Attebäck, M., Hedin, B., and Mattsson, S. (2022).
Formulation optimization of extemporaneous oral liquids containing naloxone
and propranolol for pediatric use. Scientia Pharmaceutica, 90(1): 1-18.
29. Ryu, V., McClements, D. J., Corradini, M. G., and
McLandsborough, L. (2018). Effect of
ripening inhibitor type on formation, stability, and antimicrobial activity of
thyme oil nanoemulsion. Food Chemistry, 245: 104-111.