Malaysian Journal of Analytical
Sciences, Vol 28
No 1 (2024): 97 - 105
INSIGHTS INTO THE STRUCTURAL, MORPHOLOGICAL, AND
OPTICAL PROPERTIES OF V2O5 CATHODE MATERIAL SYNTHESIZED
BY SELF-PROPAGATING COMBUSTION METHOD UNDER VARIED ANNEALING TEMPERATURES
(Pembelajaran ke atas Ciri-Ciri
Struktur, Morfologi, dan Optik V2O5 yang Disintesis
Melalui Kaedah Pembakaran yang Menyebar Sendiri di Bawah Pelbagai Suhu
Pemanasan)
Mas Fiza Mustafa1,2,
Missha Balqis Shariamin2, Mohd Sufri Mastuli2,3, Zurina
Osman4,5, and
Annie Maria Mahat2,3*
1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450
Shah Alam, Selangor, Malaysia
2Centre of Foundation Studies, Universiti Teknologi MARA,
Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia
3Institute of Science, Level 3, Kompleks Inspirasi,Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
4Centre for Ionics Universiti Malaya, Universiti Malaya, 50603
Kuala Lumpur, Malaysia
5Physics Department, Universiti Malaya, 50603 Kuala Lumpur,
Malaysia
*Corresponding author: anniemaria@uitm.edu.my
Received: 15 September 2023;
Accepted: 10 December 2023; Published: 28
February 2024
Abstract
In this study, we report the novel synthesis of V2O5
cathode material utilizing the self-propagating combustion (SPC) method,
marking the first-ever successful application of this technique for V2O5
production. Nonetheless, a thorough examination of the synthesis of V2O5
cathode material is required, with a special emphasis on the impact of
annealing temperatures. The insufficient examination of the structural,
morphological, and optical properties of V2O5 produced by
the self-propagating combustion method in the current literature impedes the
capacity to enhance its synthesis for application in energy storage devices,
catalytic systems, and optoelectronic devices. In order to close this
information gap, this study will carefully investigate how different annealing
temperatures affect the final V2O5 material properties by
providing comprehensive insights into the structural, morphological, and
optical properties of V2O5 at varying annealing
temperatures. The thermal profile was studied using Simultaneous Thermal
Analysis (STA) providing measurement of multiple thermal properties of the
sample as a function of time or temperature. The structural characterization
was carried out using X-ray diffraction (XRD) analysis, revealing the crystal structure
and phase purity of the synthesized V2O5 samples. Field
emission scanning electron microscopy (FESEM) was employed to examine the
morphological features, including particle size, shape, and surface morphology.
Additionally, Energy Dispersive X-ray Spectroscopy (EDX) provides elemental
composition to further substantiating the synthesis method’s efficacy. The
optical properties were investigated through UV-Visible (UV-Vis) spectroscopy,
providing information on the bandgap energy and optical absorption behavior of
the synthesized V2O5. The results revealed that the
annealing temperature significantly influenced the structural, morphological,
and optical properties of V2O5. With increasing annealing
temperature, the crystallinity and phase purity of V2O5 improved.
The morphological analysis indicated variations in particle size, shape, and
surface texture as a function of annealing temperature. Moreover, the optical
characterization demonstrated that the annealing process influenced the bandgap
energy and optical absorption properties of V2O5. In this
study, it was found that, the optimum annealing temperature is at 600oC,
which gives a single-phase crystal structure with uniform thickness of
nano-sheets like appearance.
Keywords: self-propagating
combustion method, annealing temperatures, X-ray diffraction, field emission scanning
electron microscopy,
UV-Visible spectroscopy
Abstrak
Dalam kajian ini, kami melaporkan sintesis V2O5
sebagai bahan katod baru dengan menggunakan kaedah pembakaran penyebaran
sendiri (SPC), menjadikan ianya laporan pertama penghasilan V2O5
menggunakan kaedah ini. Walau bagaimanapun, kajian menyeluruh sintesis bahan
katod V2O5 diperlukan, dengan penekanan khusus kepada
kesan suhu pemanasan. Penyelidikan yang tidak mencukupi mengenai sifat
struktural, morfologi dan optik V2O5 yang dihasilkan oleh
kaedah pembakaran yang menyebarkan diri dalam kajian semasa, menghalang
keupayaan untuk meningkatkan sintesisnya untuk aplikasi dalam peranti
penyimpanan tenaga, sistem katalis, dan peranti optoelektronik. Untuk menutup
jurang maklumat ini, kajian ini akan mengkaji dengan teliti bagaimana suhu
pemanasan yang berbeza mempengaruhi sifat bahan V2O5
dengan menyediakan konsepsi yang komprehensif ke atas sifat struktural,
morfologi, dan optik V2O5 pada suhu pemanasan yang
berlainan. Profil haba telah dianalisa menggunakan Analisis Terma Serentak
(STA) yang menyediakan pengukuran pelbagai sifat haba sampel sebagai fungsi masa
atau suhu. Bagi mengkaji struktur
kristal dan fasa asli bahan, analisis pembelauan sinar-X (XRD) telah dijalankan
ke atas sampel V2O5 yang telah disintesis. Mikroskopi
Imbasan Elektron Pancaran Medan (FESEM) digunakan untuk mengkaji ciri-ciri
morfologi, termasuk saiz partikel, bentuk, dan morfologi permukaan. Selain itu,
Spektroskopi Sinar-X Tenagan Serakan (EDX) menyediakan komposisi elemental
untuk lebih membuktikan keberkesanan kaedah sintesis. Ciri-ciri optik telah
dipelajari melalui spektroskopi UV-Vis, yang menyediakan maklumat mengenai
tenaga jurang dan tingkah laku penyerapan optik V2O5 yang
disintesis. Hasilnya mendedahkan bahawa suhu pemanasan secara signifikan
mempengaruhi sifat struktural, morfologi dan optik V2O5.
Dengan meningkatnya suhu pemanasan, kristaliniti dan kemurnian fasa V2O5
meningkat. Analisis morfologi juga menunjukkan perubahan dalam saiz partikel,
bentuk, dan tekstur permukaan. Selain itu, sifat optik menunjukkan bahawa
proses pemanasan mempengaruhi tenaga jurang dan sifat penyerapan optik V2O5.
Dalam kajian ini, ia telah ditemui bahawa, suhu pemanasan optimum adalah pada
600oC, yang memberikan struktur kristal satu fasa dan morfologi
denagn permukaan yang sekata serta ketebalan berbentuk lapisan bersaiz nano
yang seragam.
Kata
kunci: kaedah
pembakaran penyebaran sendiri, suhu pemanasan, pembelauan sinar-X, mikroskopi
imbasan elektron pancaran medan, spektroskopi UV-cahaya nampak
References
1. Liu, J., Li, Z., Huo, X.
and Li, J. (2019). Nanosphere-rod-like Co3O4 as high performance cathode material for aluminium
ion batteries. Journal of Power Sources, 422: 49-56.
2. Gu, S., Wang, H., Wu, C.,
Bai, Y., Li, H. and Wu, F. (2017). Confirming reversible Al3+
storage mechanism through intercalation of Al3+ into V2O5
nanowires in a rechargeable aluminum battery. Energy Storage Materials,
6: 9-17.
3. Zhang, W., Lu, J. and Guo,
Z. (2021). Challenges and future perspectives on sodium and potassium ion
batteries for grid-scale energy storage. Materials Today, 50: 400-417.
4. Zhou, Y., Chen, F., Arandiyan, H., Guan, P., Liu, Y., Wang, Y., Zhou, C.,
Wang, D. and Chu, D. (2021). Oxide-based cathode materials for rechargeable
zinc ion batteries: Progresses and challenges.
Journal of Energy Chemistry, 57: 516-542.
5. Zhou, Q., Zheng, Y., Wang,
D., Lian, Y., Ban, C. and Zhou, J. (2020). Cathode materials in non-aqueous
aluminum-ion batteries: Progress and challenges. Ceramics International,
46 (17): 26454-26465.
6. Hwang, J. Y., Myung, S. T.
and Sun, Y. K. (2017). Sodium-ion batteries: Present and future. Royal Society of Chemistry, 46(12):
3529-3614.
7. Mori, T., Orikasa, Y., Nakanishi, K., Kezheng,
C., Hattori, M., Ohta, T. and Uchimoto, Y. (2016).
Discharge charge reaction mechanisms of FeS2 cathode material for
aluminum rechargeable batteries at 55oC. J Power Sources,
313: 9-14.
8. Li, J., Luo, W., Zhang,
Z., Li, F., Chao, Z. and Fan, J. (2023). ZnSe/SnSe2
hollow microcubes as cathode for high performance aluminum ion batteries. Journal
of Colloid and Interface Science, 639: 124-132.
9. Debnath, S., Horscheck-Diaz, M., Searles, D. J. and Hankel, M. (2021).
Carbon nitrides as cathode materials for aluminium
ion batteries. Carbon, 183: 546-559.
10. Yang, X., Chen, M., Chai,
L., Zhang, C., Zhang, W. and Li, Z. (2022). High-performance carbon-coated
hollow nanocube ZnSe as
cathode material for aluminum batteries. Journal of Alloys and Compounds,
920: 166006.
11. Mączka, M., Mosiałek,
M. and Pasierb, P. (2022). Carbon tungsten oxide composite cathode materials
for aluminum-ion batteries. Electrochimica
Acta, 424: 140606.
12. Lahan, H. and Das, S. K.
(2019). Al3+ ion intercalation in MoO3 for aqueous
aluminum-ion battery. Journal of Power Sources, 413: 134-138.
13. Li, Z., Li, J. and Kang,
F. (2019). 3D hierarchical AlV3O9 microspheres as a
cathode material for rechargeable aluminum-ion batteries. Electrochimica
Acta, 298: 288-296.
14. Hu, Y., Sun, D., Luo, B.
and Wang, L. (2019). Recent progress and future trends of aluminum batteries. Energy
Technology, 7(1): 86-106.
15. Zhuang, R., Huang, Z., Wang,S.,
Qiao, J., Wu, J. C. and Yang, J.
(2021). Binder-free cobalt sulfide @ carbon nanofibers composite films as
cathode for rechargeable aluminum-ion batteries. Chemical Engineering
Journal, 409: 128235.
16. Li, Z., Lv, W., Wu, G. and Zhang, W. (2021). Rhombic dodecahedron
hetero-structure Zn/Co–Se @ C as cathode material for aluminum batteries with
excellent electrochemical performance. Journal
of Power Sources, 511: 230455.
17. Sutrave, S., Konda, S., Velpula,
D., Volety, S. A., Ravula, S. R., Chidurala, S. C. and Tumma, B.
N. (2022). A simple solution combustion method for the synthesis of V2O5
nanostructures for supercapacitor applications. Applied Surface Science
Advances, 12: 100331.
18. Wu, S., Liu, S., Hu, L.
and Chen, S. (2021). Constructing electron pathways by graphene oxide for V2O5
nanoparticles in ultrahigh-performance and fast charging aqueous zinc ion
batteries. Journal of Alloys
Compounds, 878: 160324.
19. Zeng, M., Yin, H. and Yu,
K. (2012). Synthesis of V2O5 nanostructures with various
morphologies and their electrochemical and field-emission properties. Chemical
Engineering Journal, 188: 64-70.
20. Lin, T. C., Jheng, B. J., Yen, H. M. and Huang, W. C. (2022). Thermal
annealing effects of V2O5 thin film as an ionic storage
layer for electrochromic application. Materials,
15(13): 4598.
21. Li, Z., Liu, G., Guo, M.,
Ding, L. X., Wang, S. and Wang, H. (2015). Electrospun
porous vanadium pentoxide nanotubes as a high-performance cathode material for
lithium-ion batteries. Electrochimica Acta, 173: 131138.
22. Zhang, T. and Li, Q.
(2022). The fabrication of V2O3 by using NH4VO3
as vanadium source without extra reductant under sealed condition. Journal
of Solid State Chemistry, 315: 123473.
23. Yilmaz, E and Sonmez, M.
S. (2019). The Influence of process parameters on the chemical and structural
properties of solution combustion prepared vanadium pentoxide. Material
Letters, 261: 127095.
24. Zhang, T. and Li, Q.
(2022). Facile fabrication of VO2(M) by thermolysis of ammonium
metavanadate (NH4VO3) under sealed condition. Journal
of Solid State Chemistry, 311: 123117.
25. Kamarulzaman, N., Mahat,
A. M., Badar, N.
and Zhao, C. Z. (2018). Structural and band gaps studies of novel Al2-xHfxO3
materials toward MOS applications. Material Chemistry and Physics, 216:
237-242.
26. Li, X. F., Cheng, S. L.,
Wang, R., Yan, Q., Wang, B., Sun, Y., Yan, H., Zhao, Q.
and Xin. Y. (2023). Design of novel two-dimensional single-phase chiral phononic crystal assembly structures and study of bandgap
mechanism. Results in Physics,
48: 106431.
27. Momeni, M., Mashhour, H.
Y. and . Kalantarian, M. M.
(2019). New approaches to consider electrical properties, band gaps and rate
capability of same-structured cathode materials using density of states
diagrams: Layered oxides as a case study. Journal of Alloys and Compounds,
787: 738-743.