Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 97 - 105

 

INSIGHTS INTO THE STRUCTURAL, MORPHOLOGICAL, AND OPTICAL PROPERTIES OF V2O5 CATHODE MATERIAL SYNTHESIZED BY SELF-PROPAGATING COMBUSTION METHOD UNDER VARIED ANNEALING TEMPERATURES

 

(Pembelajaran ke atas Ciri-Ciri Struktur, Morfologi, dan Optik V2O5 yang Disintesis Melalui Kaedah Pembakaran yang Menyebar Sendiri di Bawah Pelbagai Suhu Pemanasan)

 

Mas Fiza Mustafa1,2, Missha Balqis Shariamin2, Mohd Sufri Mastuli2,3, Zurina Osman4,5, and

Annie Maria Mahat2,3*

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia

3Institute of Science, Level 3, Kompleks Inspirasi,Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

4Centre for Ionics Universiti Malaya, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

5Physics Department, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author: anniemaria@uitm.edu.my

 

 

Received: 15 September 2023; Accepted: 10 December 2023; Published:  28 February 2024

 

 

Abstract

In this study, we report the novel synthesis of V2O5 cathode material utilizing the self-propagating combustion (SPC) method, marking the first-ever successful application of this technique for V2O5 production. Nonetheless, a thorough examination of the synthesis of V2O5 cathode material is required, with a special emphasis on the impact of annealing temperatures. The insufficient examination of the structural, morphological, and optical properties of V2O5 produced by the self-propagating combustion method in the current literature impedes the capacity to enhance its synthesis for application in energy storage devices, catalytic systems, and optoelectronic devices. In order to close this information gap, this study will carefully investigate how different annealing temperatures affect the final V2O5 material properties by providing comprehensive insights into the structural, morphological, and optical properties of V2O5 at varying annealing temperatures. The thermal profile was studied using Simultaneous Thermal Analysis (STA) providing measurement of multiple thermal properties of the sample as a function of time or temperature. The structural characterization was carried out using X-ray diffraction (XRD) analysis, revealing the crystal structure and phase purity of the synthesized V2O5 samples. Field emission scanning electron microscopy (FESEM) was employed to examine the morphological features, including particle size, shape, and surface morphology. Additionally, Energy Dispersive X-ray Spectroscopy (EDX) provides elemental composition to further substantiating the synthesis method’s efficacy. The optical properties were investigated through UV-Visible (UV-Vis) spectroscopy, providing information on the bandgap energy and optical absorption behavior of the synthesized V2O5. The results revealed that the annealing temperature significantly influenced the structural, morphological, and optical properties of V2O5. With increasing annealing temperature, the crystallinity and phase purity of V2O5 improved. The morphological analysis indicated variations in particle size, shape, and surface texture as a function of annealing temperature. Moreover, the optical characterization demonstrated that the annealing process influenced the bandgap energy and optical absorption properties of V2O5. In this study, it was found that, the optimum annealing temperature is at 600oC, which gives a single-phase crystal structure with uniform thickness of nano-sheets like appearance.

 

Keywords: self-propagating combustion method, annealing temperatures, X-ray diffraction, field emission scanning electron microscopy, UV-Visible spectroscopy

 

Abstrak

Dalam kajian ini, kami melaporkan sintesis V2O5 sebagai bahan katod baru dengan menggunakan kaedah pembakaran penyebaran sendiri (SPC), menjadikan ianya laporan pertama penghasilan V2O5 menggunakan kaedah ini. Walau bagaimanapun, kajian menyeluruh sintesis bahan katod V2O5 diperlukan, dengan penekanan khusus kepada kesan suhu pemanasan. Penyelidikan yang tidak mencukupi mengenai sifat struktural, morfologi dan optik V2O5 yang dihasilkan oleh kaedah pembakaran yang menyebarkan diri dalam kajian semasa, menghalang keupayaan untuk meningkatkan sintesisnya untuk aplikasi dalam peranti penyimpanan tenaga, sistem katalis, dan peranti optoelektronik. Untuk menutup jurang maklumat ini, kajian ini akan mengkaji dengan teliti bagaimana suhu pemanasan yang berbeza mempengaruhi sifat bahan V2O5 dengan menyediakan konsepsi yang komprehensif ke atas sifat struktural, morfologi, dan optik V2O5 pada suhu pemanasan yang berlainan. Profil haba telah dianalisa menggunakan Analisis Terma Serentak (STA) yang menyediakan pengukuran pelbagai sifat haba sampel sebagai fungsi masa atau suhu.  Bagi mengkaji struktur kristal dan fasa asli bahan, analisis pembelauan sinar-X (XRD) telah dijalankan ke atas sampel V2O5 yang telah disintesis. Mikroskopi Imbasan Elektron Pancaran Medan (FESEM) digunakan untuk mengkaji ciri-ciri morfologi, termasuk saiz partikel, bentuk, dan morfologi permukaan. Selain itu, Spektroskopi Sinar-X Tenagan Serakan (EDX) menyediakan komposisi elemental untuk lebih membuktikan keberkesanan kaedah sintesis. Ciri-ciri optik telah dipelajari melalui spektroskopi UV-Vis, yang menyediakan maklumat mengenai tenaga jurang dan tingkah laku penyerapan optik V2O5 yang disintesis. Hasilnya mendedahkan bahawa suhu pemanasan secara signifikan mempengaruhi sifat struktural, morfologi dan optik V2O5. Dengan meningkatnya suhu pemanasan, kristaliniti dan kemurnian fasa V2O5 meningkat. Analisis morfologi juga menunjukkan perubahan dalam saiz partikel, bentuk, dan tekstur permukaan. Selain itu, sifat optik menunjukkan bahawa proses pemanasan mempengaruhi tenaga jurang dan sifat penyerapan optik V2O5. Dalam kajian ini, ia telah ditemui bahawa, suhu pemanasan optimum adalah pada 600oC, yang memberikan struktur kristal satu fasa dan morfologi denagn permukaan yang sekata serta ketebalan berbentuk lapisan bersaiz nano yang seragam.

 

Kata kunci: kaedah pembakaran penyebaran sendiri, suhu pemanasan, pembelauan sinar-X,  mikroskopi imbasan elektron pancaran medan, spektroskopi UV-cahaya nampak

 

References

1.     Liu, J., Li, Z., Huo, X. and Li, J. (2019). Nanosphere-rod-like Co3O4 as high performance cathode material for aluminium ion batteries. Journal of Power Sources, 422: 49-56.

2.     Gu, S., Wang, H., Wu, C., Bai, Y., Li, H. and Wu, F. (2017). Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Materials, 6: 9-17.

3.     Zhang, W., Lu, J. and Guo, Z. (2021). Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Materials Today, 50: 400-417.

4.     Zhou, Y., Chen, F., Arandiyan, H., Guan, P., Liu, Y., Wang, Y., Zhou, C., Wang, D. and Chu, D. (2021). Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges.  Journal of Energy Chemistry, 57: 516-542.

5.     Zhou, Q., Zheng, Y., Wang, D., Lian, Y., Ban, C. and Zhou, J. (2020). Cathode materials in non-aqueous aluminum-ion batteries: Progress and challenges. Ceramics International, 46 (17): 26454-26465.

6.     Hwang, J. Y., Myung, S. T. and Sun, Y. K. (2017). Sodium-ion batteries: Present and future. Royal Society of Chemistry, 46(12):  3529-3614.

7.     Mori, T., Orikasa, Y., Nakanishi, K., Kezheng, C., Hattori, M., Ohta, T. and Uchimoto, Y. (2016). Discharge charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55oC. J Power Sources, 313: 9-14.

8.     Li, J., Luo, W., Zhang, Z., Li, F., Chao, Z. and Fan, J. (2023). ZnSe/SnSe2 hollow microcubes as cathode for high performance aluminum ion batteries. Journal of Colloid and Interface Science, 639: 124-132.

9.     Debnath, S., Horscheck-Diaz, M., Searles, D. J. and Hankel, M. (2021). Carbon nitrides as cathode materials for aluminium ion batteries. Carbon, 183: 546-559.

10.   Yang, X., Chen, M., Chai, L., Zhang, C., Zhang, W. and Li, Z. (2022). High-performance carbon-coated hollow nanocube ZnSe as cathode material for aluminum batteries. Journal of Alloys and Compounds, 920: 166006.

11.   Mączka, M., Mosiałek, M. and Pasierb, P. (2022). Carbon tungsten oxide composite cathode materials for aluminum-ion batteries. Electrochimica Acta, 424: 140606.

12.   Lahan, H. and Das, S. K. (2019). Al3+ ion intercalation in MoO3 for aqueous aluminum-ion battery. Journal of Power Sources, 413: 134-138.

13.   Li, Z., Li, J. and Kang, F. (2019). 3D hierarchical AlV3O9 microspheres as a cathode material for rechargeable aluminum-ion batteries. Electrochimica Acta, 298: 288-296.

14.   Hu, Y., Sun, D., Luo, B. and Wang, L. (2019). Recent progress and future trends of aluminum batteries. Energy Technology, 7(1): 86-106.

15.   Zhuang, R., Huang, Z., Wang,S., Qiao, J., Wu,  J. C. and Yang, J. (2021). Binder-free cobalt sulfide @ carbon nanofibers composite films as cathode for rechargeable aluminum-ion batteries. Chemical Engineering Journal, 409: 128235.

16.   Li, Z., Lv, W., Wu, G. and Zhang, W. (2021). Rhombic dodecahedron hetero-structure Zn/Co–Se @ C as cathode material for aluminum batteries with excellent electrochemical performance.  Journal of Power Sources, 511: 230455.


17.   Sutrave, S., Konda, S., Velpula, D., Volety, S. A., Ravula, S. R., Chidurala, S. C. and Tumma, B. N. (2022). A simple solution combustion method for the synthesis of V2O5 nanostructures for supercapacitor applications. Applied Surface Science Advances, 12: 100331.

18.   Wu, S., Liu, S., Hu, L. and Chen, S. (2021). Constructing electron pathways by graphene oxide for V2O5 nanoparticles in ultrahigh-performance and fast charging aqueous zinc ion batteries.  Journal of Alloys Compounds, 878: 160324.

19.   Zeng, M., Yin, H. and Yu, K. (2012). Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chemical Engineering Journal, 188: 64-70.

20.   Lin, T. C., Jheng, B. J., Yen, H. M. and Huang, W. C. (2022). Thermal annealing effects of V2O5 thin film as an ionic storage layer for electrochromic application.  Materials, 15(13): 4598.

21.   Li, Z., Liu, G., Guo, M., Ding, L. X., Wang, S. and Wang, H. (2015). Electrospun porous vanadium pentoxide nanotubes as a high-performance cathode material for lithium-ion batteries.  Electrochimica Acta, 173: 131138. 

22.   Zhang, T. and Li, Q. (2022). The fabrication of V2O3 by using NH4VO3 as vanadium source without extra reductant under sealed condition. Journal of Solid State Chemistry, 315: 123473.

23.   Yilmaz, E and Sonmez, M. S. (2019). The Influence of process parameters on the chemical and structural properties of solution combustion prepared vanadium pentoxide. Material Letters, 261: 127095.

24.   Zhang, T. and Li, Q. (2022). Facile fabrication of VO2(M) by thermolysis of ammonium metavanadate (NH4VO3) under sealed condition. Journal of Solid State Chemistry, 311: 123117.

25.   Kamarulzaman, N., Mahat, A. M., Badar,  N. and Zhao, C. Z. (2018). Structural and band gaps studies of novel Al2-xHfxO3 materials toward MOS applications. Material Chemistry and Physics, 216: 237-242.

26.   Li, X. F., Cheng, S. L., Wang, R., Yan, Q., Wang, B., Sun, Y., Yan, H., Zhao, Q. and Xin. Y. (2023). Design of novel two-dimensional single-phase chiral phononic crystal assembly structures and study of bandgap mechanism.  Results in Physics, 48: 106431.

27.   Momeni, M., Mashhour, H. Y. and . Kalantarian, M. M. (2019). New approaches to consider electrical properties, band gaps and rate capability of same-structured cathode materials using density of states diagrams: Layered oxides as a case study. Journal of Alloys and  Compounds, 787: 738-743.