Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 79-96

 

MICROPLASTICS POLLUTION MITIGATION IN WASTEWATER TREATMENT: CURRENT PRACTICES, CHALLENGES,

AND FUTURE PERSPECTIVES

 

(Pengurangan Pencemaran Mikroplastik dalam Rawatan Air Sisa: Amalan Semasa, Cabaran dan Perspektif Masa Depan)

 

Rabiatul S. Rusidi1,2, Iwani W. Rushdi1,2, Wan M. Khairul2, Sofiah Hamzah3, Wan Mohd Afiq Wan Mohd Khalik1,2, Sabiqah Tuan Anuar1,2, Nor Salmi Abdullah4, Nasehir Khan E.M. Yahya4, and Alyza A. Azmi1,2,*

 

1Microplastic Research Interest Group (MRIG),

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, Kuala Nerus, 21030 Terengganu, Malaysia

2Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, Kuala Nerus, 21030 Terengganu, Malaysia

3Faculty of Ocean Engineering Technology and Informatics,

Universiti Malaysia Terengganu, Kuala Nerus, 21030 Terengganu, Malaysia

4Water Quality Laboratory,

National Water Research Institute of Malaysia (NAHRIM),

Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh,

43300, Seri Kembangan, Selangor, Malaysia

 

*Corresponding author: alyza.azzura@umt.edu.my

 

 

Received: 17 July 2023; Accepted: 4 November 2023; Published:  28 February 2024

 

 

Abstract

The growing attention to microplastics stems from their significant environmental and human impacts. Microplastic accumulation in the environment also contributes to the spread of micropollutants. Daily human activities involving the use of plastics, especially synthetic materials, lead to their eventual presence in wastewater treatment plants (WWTPs). Although WWTPs play a crucial role in removing microplastics during the treatment process, the technologies currently in use are not entirely effective in filtering out all microplastic particles. As a result, WWTPs are recognized as major contributors to microplastic release into the environment. This review delves into the sources and prevalence of microplastics, the methods used for their removal in WWTPs, and the potential risks they pose to human health. Several removal methods are discussed, including sedimentation and flotation, activated sludge and sedimentation, reverse osmosis, and rapid sand filtration. The efficiency of each method is critically assessed, highlighting their strengths and weaknesses in addressing microplastic contamination. Moreover, this review underscores the importance of ongoing comprehensive research and development to improve the removal efficiency of microplastics in WWTPs. Efforts to optimize existing removal techniques and investigate new technologies should be intensified to achieve more holistic microplastic removal. By tackling the microplastics issue at the WWTP level, we can reduce their release into the environment, thereby diminishing potential health risks. In conclusion, the environmental presence of microplastics and their associated micropollutants demands robust removal strategies within WWTPs. While existing technologies offer some level of effectiveness, there is a need for further advancements to ensure more comprehensive microplastic removal. This review offers valuable insights into the current state of microplastic removal in WWTPs, emphasizing the need for continued research to protect both the environment and human health.

 

Keywords: microplastics, chemical contaminants, wastewater treatment plants, removal techniques

 

Abstrak

Mikroplastik telah menjadi tumpuan kerana kesannya yang ketara terhadap alam sekitar dan manusia. Pengumpulan mikroplastik di persekitaran membawa kepada penyebaran bahan pencemar mikro . Aktiviti harian manusia yang melibatkan penggunaan plastik, terutamanya bahan sintetik, mengakibatkan mereka masuk ke dalam loji rawatan air sisa (WWTP). WWTP memainkan peranan penting dalam membuang mikroplastik semasa proses rawatan, Walaubagaimanapun, teknologi sedia ada yang digunakan tidak berkesan sepenuhnya dalam menapis semua zarah mikroplastik. Kajian semula ini memfokuskan kepada sumber dan kewujudan mikroplastik, kaedah semasa yang digunakan untuk penyingkiran mikroplastik di WWTP, dan risiko terhadap kesihatan manusia. Pelbagai kaedah penyingkiran telah dipertimbangkan, termasuk pemendapan dan pengapungan, enap cemar dan pemendapan diaktifkan, osmosis terbalik, dan penapisan pasir pantas. Kecekapan dan keberkesanan setiap kaedah diperiksa secara kritikal, menjelaskan keupayaan dan batasannya dalam mengurangkan pencemaran mikroplastik. Kajian semula ini juga menekankan keperluan untuk penyelidikan dan pembangunan komprehensif yang berterusan untuk meningkatkan keberkesanan penyingkiran mikroplastik dalam WWTP. Strategi untuk mengoptimumkan kaedah penyingkiran sedia ada dan meneroka teknologi baru harus diteruskan untuk mencapai penyingkiran mikroplastik yang lebih komprehensif. Dengan menangani isu mikroplastik di peringkat WWTP, pembebasan zarah ini ke alam sekitar dapat diminimumkan, seterusnya mengurangkan potensi risiko kepada kesihatan manusia. Kesimpulannya, kehadiran mikroplastik dan bahan pencemar mikro yang berkaitan dalam alam sekitar memerlukan strategi penyingkiran yang mantap. Walaupun teknologi semasa menunjukkan beberapa keberkesanan, kemajuan selanjutnya diperlukan bagi memastikan penyingkiran mikroplastik yang lebih cekap dan menyeluruh. Oleh itu, semakan ini memberikan pandangan yang berharga tentang keadaan semasa penyingkiran mikroplastik di WWTP, menekankan kepentingan penyelidikan berterusan untuk menjaga integriti alam sekitar dan kesejahteraan manusia.

 

Kata kunci: mikroplastik, bahan cemar kimia, loji rawatan air sisa, teknik penyingkiran


References

1.      Arpia, A. A., Chen, W. H., Ubando, A. T., Naqvi, S. R. and Culaba, A. B. (2021). Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: a state-of-the-art review. Journal of Hazardous Materials, 418: 126381.

2.      Chen, H. L., Nath, T. K., Chong, S., Foo, V., Gibbins, C. and Lechner, A. M. (2021). The plastic waste problem in Malaysia: management, recycling and disposal of local and global plastic waste. SN Applied Sciences, 3: 1-15.

3.      Sundqvist-Andberg, H. and Åkerman, M. (2021). Sustainability governance and contested plastic food packaging–An integrative review. Journal of Cleaner Production, 306: 127111.

4.      Evode, N., Qamar, S. A., Bilal, M., Barceló, D. and Iqbal, H. M. (2021). Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4: 100142.

5.      Katare, Y., Singh, P., Sankhla, M. S., Singhal, M., Jadhav, E. B., Parihar, K., ... and Bhardwaj, L. (2021). Microplastics in aquatic environments: sources, ecotoxicity, detection & remediation. Biointerface Research Applied Chemistry, 12: 3407-3428.

6.      Abdellatif, G., Mahmoud, A. S., Peters, R. W. and Mostafa, M. K. (2021). Waste plastics and microplastics in Africa: Negative impacts and opportunities. In 2021 AIChE Annual Meeting. New York, NY, USA: AIChE.

7.      Kehinde, O., Ramonu, O. J., Babaremu, K. O. and Justin, L. D. (2020). Plastic wastes: environmental hazard and instrument for wealth creation in Nigeria. Heliyon, 6(10): e05131.

8.      Nava, V. and Leoni, B. (2021). A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Research, 188: 116476.

9.      Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J. and Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. Scientific Reports, 10(1): 7391.

10.   Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang, J. K., Wu, C. and Lam, P. K. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 274: 116554.

11.   Lee, Y., Cho, S., Park, K., Kim, T., Kim, J., Ryu, D. Y. and Hong, J. (2023). Potential lifetime effects caused by cellular uptake of nanoplastics: A review. Environmental Pollution, 329: 121668.

12.   Liu, L., Xu, K., Zhang, B., Ye, Y., Zhang, Q. and Jiang, W. (2021). Cellular internalization and release of polystyrene microplastics and nanoplastics. Science of the Total Environment, 779: 146523.

13.   Horvatits, T., Tamminga, M., Liu, B., Sebode, M., Carambia, A., Fischer, L., ... and Fischer, E. K. (2022). Microplastics detected in cirrhotic liver tissue. EBioMedicine, 82: 104147.

14.   Hu, M. and Palić, D. (2020). Micro-and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biology, 37: 101620.

15.   Khoshmanesh, M., Sanati, A. M. and Ramavandi, B. (2023). Co-occurrence of microplastics and organic/inorganic contaminants in organisms living in aquatic ecosystems: A review. Marine Pollution Bulletin, 187: 114563.

16.   Wang, F., Zhang, M., Sha, W., Wang, Y., Hao, H., Dou, Y. and Li, Y. (2020). Sorption behavior and mechanisms of organic contaminants to nano and microplastics. Molecules, 25(8): 1827.

17.   Kitahara, K. I. and Nakata, H. (2020). Plastic additives as tracers of microplastic sources in Japanese road dusts. Science of the Total Environment, 736: 139694.

18.   Encarnação, T., Pais, A. A., Campos, M. G. and Burrows, H. D. (2019). Endocrine disrupting chemicals: Impact on human health, wildlife and the environment. Science Progress, 102(1): 3-42.

19.   Prata, J. C. (2018). Airborne microplastics: consequences to human health?. Environmental Pollution, 234: 115-126.

20.   Girardi, P., Barbiero, F., Baccini, M., Comba, P., Pirastu, R., Mastrangelo, G., ... and Fedeli, U. (2022). Mortality for lung cancer among PVC baggers employed in the vinyl chloride industry. International Journal of Environmental Research and Public Health, 19(10): 6246.

21.   Jiang, J. Q. (2018). Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption, 13: 16-23.

22.   Ekvall, M. T., Lundqvist, M., Kelpsiene, E., Šileikis, E., Gunnarsson, S. B. and Cedervall, T. (2019). Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Advances, 1(3): 1055-1061.

23.   Sridharan, S., Kumar, M., Bolan, N. S., Singh, L., Kumar, S., Kumar, R. and You, S. (2021). Are microplastics destabilizing the global network of terrestrial and aquatic ecosystem services?. Environmental Research, 198: 111243.

24.   Alvim, C. B., Mendoza-Roca, J. A. and Bes-Piá, A. (2020). Wastewater treatment plant as microplastics release source–Quantification and identification techniques. Journal of Environmental Management, 255: 109739.

25.   Schöpel, B. and Stamminger, R. (2019). A comprehensive literature study on microfibres from washing machines. Tenside Surfactants Detergents, 56(2): 94-104.

26.   Boucher, J. and Friot, D. (2017). Primary microplastics in the oceans: a global evaluation of sources (Vol. 10). Gland, Switzerland: IUCN.

27.   Vassilenko, E., Watkins, M., Chastain, S., Mertens, J., Posacka, A. M., Patankar, S. and Ross, P. S. (2021). Domestic laundry and microfiber pollution: Exploring fiber shedding from consumer apparel textiles. Plos ONE, 16(7): e0250346.

28.   Acharya, S., Rumi, S. S., Hu, Y. and Abidi, N. (2021). Microfibers from synthetic textiles as a major source of microplastics in the environment: A review. Textile Research Journal, 91(17-18): 2136-2156.

29.   Özkan, İ. and Gündoğdu, S. (2021). Investigation on the microfiber release under controlled washings from the knitted fabrics produced by recycled and virgin polyester yarns. The Journal of The Textile Institute, 112(2): 264-272.

30.   De Falco, F., Di Pace, E., Cocca, M. and Avella, M. (2019). The contribution of washing processes of synthetic clothes to microplastic pollution. Scientific Reports, 9(1): 6633.

31.   Šaravanja, A., Pušić, T. and Dekanić, T. (2022). Microplastics in wastewater by washing polyester fabrics. Materials, 15(7): 2683.

32.   Cotton, L., Hayward, A. S., Lant, N. J. and Blackburn, R. S. (2020). Improved garment longevity and reduced microfibre release are important sustainability benefits of laundering in colder and quicker washing machine cycles. Dyes and Pigments, 177: 108120.

33.   Periyasamy, A. P. and Tehrani-Bagha, A. (2022). A review on microplastic emission from textile materials and its reduction techniques. Polymer Degradation and Stability, 199: 109901.

34.   Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., ... and Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research, 155: 255-265.

35.   Pereao, O., Opeolu, B. and Fatoki, O. (2020). Microplastics in aquatic environment: Characterization, ecotoxicological effect, implications for ecosystems and developments in South Africa. Environmental Science and Pollution Research, 27: 22271-22291.

36.   Alrbaihat, M. R., & Abu-Afifeh, Q. (2023). Eco-friendly microplastic removal through physical and chemical techniques: A review. Annals Advance Chemistry, 7: 014-024.

37.   Turan, N. B., Erkan, H. S. and Engin, G. O. (2021). Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Safety and Environmental Protection, 146: 77-84.

38.   Egea-Corbacho, A., Martín-García, A. P., Franco, A. A., Quiroga, J. M., Andreasen, R. R., Jørgensen, M. K. and Christensen, M. L. (2023). Occurrence, identification and removal of microplastics in a Wastewater Treatment Plant compared to an advanced MBR technology: Full-scale pilot plant. Journal of Environmental Chemical Engineering, 11(3): 109644.

39.   Hidalgo-Crespo, J., Álvarez-Mendoza, C. I., Soto, M. and Amaya-Rivas, J. L. (2022). Quantification and mapping of domestic plastic waste using GIS/GPS approach at the city of Guayaquil. Procedia CIRP, 105: 86-91.

40.   Zhang, Y., Li, Y., Su, F., Peng, L. and Liu, D. (2022). The life cycle of micro-nano plastics in domestic sewage. Science of The Total Environment, 802: 149658.

41.   He, P., Chen, L., Shao, L., Zhang, H. and , F. (2019). Municipal solid waste (MSW) landfill: A source of microplastics?-Evidence of microplastics in landfill leachate. Water Research, 159: 38-45.

42.   Joseph, B., James, J., Kalarikkal, N. and Thomas, S. (2021). Recycling of medical plastics. Advanced Industrial and Engineering Polymer Research, 4(3): 199-208.

43.   Wang, H., Zhang, Y. and Wang, C. (2019). Surface modification and selective flotation of waste plastics for effective recycling-a review. Separation and Purification Technology, 226: 75-94.

44.   Werbowski, L. M., Gilbreath, A. N., Munno, K., Zhu, X., Grbic, J., Wu, T., ... and Rochman, C. M. (2021). Urban stormwater runoff: a major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters. ACS ES&T Water, 1(6): 1420-1428.

45.   Yang, F., Li, D., Zhang, Z., Wen, L., Liu, S., Hu, E., ... and Gao, L. (2022). Characteristics and the potential impact factors of microplastics in wastewater originated from different human activity. Process Safety and Environmental Protection, 166: 78-85.

46.   Rathi, B. S. and Kumar, P. S. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280: 116995.

47.   Kehrein, P., Van Loosdrecht, M., Osseweijer, P., Garfí, M., Dewulf, J. and Posada, J. (2020). A critical review of resource recovery from municipal wastewater treatment plants–market supply potentials, technologies and bottlenecks. Environmental Science: Water Research & Technology, 6(4): 877-910.

48.   Tufail, A., Price, W. E., Mohseni, M., Pramanik, B. K. and Hai, F. I. (2021). A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: Mechanisms, factors, degradation products, and effluent toxicity. Journal of Water Process Engineering, 40: 101778.

49.   Wang, Z., Sedighi, M. and Lea-Langton, A. (2020). Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Research, 184: 116165.

50.   Enfrin, M., Dumée, L. F. and Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes–origin, impact and potential solutions. Water Research, 161: 621-638.

51.   Ngo, P. L., Pramanik, B. K., Shah, K. and Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 255: 113326.

52.   Li, J., Shan, E., Zhao, J., Teng, J. and Wang, Q. (2023). The factors influencing the vertical transport of microplastics in marine environment: A review. Science of the Total Environment, 870: 161893.

53.   Ahmed, R., Hamid, A. K., Krebsbach, S. A., He, J. and Wang, D. (2022). Critical review of microplastics removal from the environment. Chemosphere, 293: 133557.

54.   Joo, S. H., Liang, Y., Kim, M., Byun, J. and Choi, H. (2021). Microplastics with adsorbed contaminants: Mechanisms and Treatment. Environmental Challenges, 3: 100042.

55.   Liu, X., Yuan, W., Di, M., Li, Z. and Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362: 176-182.

56.   Naderi Beni, N., Karimifard, S., Gilley, J., Messer, T., Schmidt, A. and Bartelt-Hunt, S. (2023). Higher concentrations of microplastics in runoff from biosolid-amended croplands than manure-amended croplands. Communications Earth & Environment, 4(1): 42.

57.   Borthakur, A., Leonard, J., Koutnik, V. S., Ravi, S. and Mohanty, S. K. (2022). Inhalation risks of wind-blown dust from biosolid-applied agricultural lands: Are they enriched with microplastics and PFAS?. Current Opinion in Environmental Science & Health, 25: 100309.

58.   Ziembowicz, S., Kida, M. and Koszelnik, P. (2023). Elimination of a mixture of microplastics using conventional and detergent-assisted coagulation. Materials, 16(11): 4070.

59.   Swart, B., Pihlajamäki, A., Chew, Y. J. and Wenk, J. (2022). Microbubble-microplastic interactions in batch air flotation. Chemical Engineering Journal, 449: 137866.

60.   Scherer, C., Weber, A., Lambert, S. and Wagner, M. (2018). Interactions of microplastics with freshwater biota (pp. 153-180). Springer International Publishing.

61.   Ziajahromi, S., Neale, P. A., Rintoul, L. and Leusch, F. D. (2017). Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water research, 112: 93-99.

62.   Liu, W., Zhang, J., Liu, H., Guo, X., Zhang, X., Yao, X., ... and Zhang, T. (2021). A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environment International, 146: 106277.

63.   Magni, S., Binelli, A., Pittura, L., Avio, C. G., Della Torre, C., Parenti, C. C., ... and Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant. Science of the Total Environment, 652: 602-610.

64.   Li, X., Chen, L., Mei, Q., Dong, B., Dai, X., Ding, G. and Zeng, E. Y. (2018). Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142: 75-85.

65.   Mohana, A. A., Rahman, M., Sarker, S. K., Haque, N., Gao, L. and Pramanik, B. K. (2022). Nano/microplastics: Fragmentation, interaction with co-existing pollutants and their removal from wastewater using membrane processes. Chemosphere, 309: 136682.

66.   Krishnan, R. Y., Manikandan, S., Subbaiya, R., Karmegam, N., Kim, W. and Govarthanan, M. (2023). Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination–A critical review. Science of the Total Environment, 858: 159681.

67.   Li, J., Wang, B., Chen, Z., Ma, B. and Chen, J. P. (2021). Ultrafiltration membrane fouling by microplastics with raw water: Behaviors and alleviation methods. Chemical Engineering Journal, 410: 128174.

68.   Cevallos-Mendoza, J., Amorim, C. G., Rodríguez-Díaz, J. M. and Montenegro, M. D. C. B. (2022). Removal of contaminants from water by membrane filtration: A review. Membranes, 12(6): 570.

69.   Beshr, S., Moustafa, M., Fayed, M. and Aly, S. (2023). Evaluation of water consumption in rapid sand filters backwashed under varied physical conditions. Alexandria Engineering Journal, 64: 601-613.

70.   Bayo, J., López-Castellanos, J. and Olmos, S. (2020). Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Marine Pollution Bulletin, 156: 111211.

71.   Marsono, B. D., Yuniarto, A., Purnomo, A. and Soedjono, E. S. (2022). Comparison performances of microfiltration and rapid sand filter operated in water treatment plant. In IOP Conference Series: Earth and Environmental Science (Vol. 1111, No. 1, p. 012048). IOP Publishing.

72.   Bäuerlein, P. S., Hofman-Caris, R. C., Pieke, E. N. and Ter Laak, T. L. (2022). Fate of microplastics in the drinking water production. Water Research, 221: 118790.

73.   Sembiring, E., Fajar, M. and Handajani, M. (2021). Performance of rapid sand filter–single media to remove microplastics. Water Supply, 21(5): 2273-2284.

74.   Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M. and De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155: 410-422.

75.   Umar, M., Singdahl-Larsen, C. and Ranneklev, S. B. (2023). Microplastics removal from a plastic recycling industrial wastewater using sand filtration. Water, 15(5): 896.

76.   Pronk, W., Ding, A., Morgenroth, E., Derlon, N., Desmond, P., Burkhardt, M., ... and Fane, A. G. (2019). Gravity-driven membrane filtration for water and wastewater treatment: A review. Water Research, 149: 553-565.