Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 79-96
MICROPLASTICS
POLLUTION MITIGATION IN WASTEWATER TREATMENT: CURRENT PRACTICES, CHALLENGES,
AND FUTURE
PERSPECTIVES
(Pengurangan Pencemaran Mikroplastik
dalam Rawatan Air Sisa: Amalan Semasa, Cabaran dan Perspektif Masa Depan)
Rabiatul S. Rusidi1,2,
Iwani W. Rushdi1,2, Wan M. Khairul2, Sofiah
Hamzah3, Wan Mohd Afiq Wan Mohd Khalik1,2, Sabiqah Tuan
Anuar1,2, Nor Salmi Abdullah4, Nasehir Khan E.M. Yahya4,
and Alyza A. Azmi1,2,*
1Microplastic Research Interest Group (MRIG),
Faculty of Science and Marine
Environment,
Universiti Malaysia Terengganu,
Kuala Nerus, 21030 Terengganu, Malaysia
2Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu,
Kuala Nerus, 21030 Terengganu, Malaysia
3Faculty of Ocean Engineering Technology and
Informatics,
Universiti Malaysia Terengganu,
Kuala Nerus, 21030 Terengganu, Malaysia
4Water Quality Laboratory,
National Water Research Institute
of Malaysia (NAHRIM),
Lot 5377, Jalan Putra Permai,
Rizab Melayu Sungai Kuyoh,
43300, Seri Kembangan, Selangor,
Malaysia
*Corresponding author: alyza.azzura@umt.edu.my
Received: 17 July 2023; Accepted: 4 November 2023; Published: 28 February 2024
Abstract
The growing attention to microplastics stems
from their significant environmental and human impacts. Microplastic
accumulation in the environment also contributes
to the spread
of micropollutants. Daily human activities involving the use of plastics, especially
synthetic materials, lead to their eventual presence
in wastewater treatment plants (WWTPs). Although
WWTPs play a crucial role in removing microplastics during
the treatment process, the technologies currently in use
are not entirely
effective in filtering out all microplastic particles. As
a result, WWTPs are recognized
as major
contributors to microplastic release into the environment.
This review delves into the sources and prevalence
of microplastics, the methods used for their
removal in WWTPs, and the potential risks they
pose to human health. Several removal methods are
discussed, including sedimentation and flotation,
activated sludge and sedimentation, reverse osmosis, and rapid sand filtration.
The efficiency of each method is critically assessed,
highlighting their strengths
and weaknesses
in addressing
microplastic contamination. Moreover,
this review underscores the importance
of ongoing comprehensive research and development to improve
the removal
efficiency of microplastics in WWTPs. Efforts
to optimize existing removal techniques
and investigate
new technologies should be intensified
to achieve more holistic microplastic
removal. By tackling the microplastics
issue at the WWTP level, we can reduce their release
into the environment, thereby diminishing
potential health risks. In conclusion, the
environmental
presence of microplastics and their associated micropollutants demands
robust removal strategies within WWTPs. While existing
technologies offer some level of effectiveness,
there is a need for further advancements to ensure more comprehensive
microplastic removal. This review offers
valuable insights into the current state of microplastic
removal in WWTPs, emphasizing the need
for continued research to protect
both the
environment and human health.
Keywords: microplastics, chemical contaminants, wastewater
treatment plants, removal techniques
Abstrak
Mikroplastik telah menjadi tumpuan kerana kesannya yang
ketara terhadap alam sekitar dan manusia. Pengumpulan mikroplastik di persekitaran
membawa kepada penyebaran bahan pencemar mikro . Aktiviti harian manusia yang
melibatkan penggunaan plastik, terutamanya bahan sintetik, mengakibatkan mereka
masuk ke dalam loji rawatan air sisa (WWTP). WWTP memainkan peranan penting
dalam membuang mikroplastik semasa proses rawatan, Walaubagaimanapun, teknologi
sedia ada yang digunakan tidak berkesan sepenuhnya dalam menapis semua zarah
mikroplastik. Kajian semula ini memfokuskan kepada sumber dan kewujudan
mikroplastik, kaedah semasa yang digunakan untuk penyingkiran mikroplastik di
WWTP, dan risiko terhadap kesihatan manusia. Pelbagai kaedah penyingkiran telah
dipertimbangkan, termasuk pemendapan dan pengapungan, enap cemar dan pemendapan
diaktifkan, osmosis terbalik, dan penapisan pasir pantas. Kecekapan dan
keberkesanan setiap kaedah diperiksa secara kritikal, menjelaskan keupayaan dan
batasannya dalam mengurangkan pencemaran mikroplastik. Kajian semula ini juga
menekankan keperluan untuk penyelidikan dan pembangunan komprehensif yang
berterusan untuk meningkatkan keberkesanan penyingkiran mikroplastik dalam
WWTP. Strategi untuk mengoptimumkan kaedah penyingkiran sedia ada dan meneroka
teknologi baru harus diteruskan untuk mencapai penyingkiran mikroplastik yang
lebih komprehensif. Dengan menangani isu mikroplastik di peringkat WWTP,
pembebasan zarah ini ke alam sekitar dapat diminimumkan, seterusnya
mengurangkan potensi risiko kepada kesihatan manusia. Kesimpulannya, kehadiran
mikroplastik dan bahan pencemar mikro yang berkaitan dalam alam sekitar
memerlukan strategi penyingkiran yang mantap. Walaupun teknologi semasa
menunjukkan beberapa keberkesanan, kemajuan selanjutnya diperlukan bagi
memastikan penyingkiran mikroplastik yang lebih cekap dan menyeluruh. Oleh itu,
semakan ini memberikan pandangan yang berharga tentang keadaan semasa
penyingkiran mikroplastik di WWTP, menekankan kepentingan penyelidikan
berterusan untuk menjaga integriti alam sekitar dan kesejahteraan manusia.
Kata kunci: mikroplastik, bahan cemar kimia, loji
rawatan air sisa, teknik penyingkiran
References
1. Arpia, A. A., Chen, W. H., Ubando, A.
T., Naqvi, S. R. and Culaba, A. B. (2021).
Microplastic degradation as a sustainable concurrent approach for producing
biofuel and obliterating hazardous environmental effects: a state-of-the-art
review. Journal of Hazardous Materials, 418: 126381.
2. Chen, H. L., Nath, T. K., Chong,
S., Foo, V., Gibbins, C. and Lechner, A. M. (2021). The plastic waste problem
in Malaysia: management, recycling and disposal of
local and global plastic waste. SN Applied Sciences, 3: 1-15.
3. Sundqvist-Andberg,
H. and Åkerman, M. (2021). Sustainability governance and contested plastic
food packaging–An integrative review. Journal of Cleaner Production, 306:
127111.
4. Evode, N.,
Qamar, S. A., Bilal, M., Barceló, D. and Iqbal, H. M. (2021). Plastic waste and its management
strategies for environmental sustainability. Case Studies in Chemical and
Environmental Engineering, 4: 100142.
5. Katare, Y., Singh, P., Sankhla, M. S.,
Singhal, M., Jadhav, E. B., Parihar, K., ... and Bhardwaj, L. (2021).
Microplastics in aquatic environments: sources, ecotoxicity, detection &
remediation. Biointerface Research Applied
Chemistry, 12: 3407-3428.
6. Abdellatif, G., Mahmoud, A. S.,
Peters, R. W. and Mostafa, M. K. (2021). Waste plastics and microplastics in Africa:
Negative impacts and opportunities. In 2021 AIChE Annual Meeting. New
York, NY, USA: AIChE.
7. Kehinde, O., Ramonu,
O. J., Babaremu, K. O. and Justin, L. D. (2020).
Plastic wastes: environmental hazard and instrument for wealth creation in
Nigeria. Heliyon, 6(10): e05131.
8. Nava, V. and Leoni, B. (2021). A
critical review of interactions between microplastics, microalgae and aquatic
ecosystem function. Water Research, 188: 116476.
9. Hwang, J., Choi, D., Han, S., Jung,
S. Y., Choi, J. and Hong, J. (2020). Potential toxicity of polystyrene
microplastic particles. Scientific Reports, 10(1): 7391.
10. Zhang, K., Hamidian,
A. H., Tubić, A., Zhang, Y., Fang, J. K., Wu,
C. and Lam, P. K. (2021). Understanding plastic degradation and microplastic
formation in the environment: A review. Environmental Pollution, 274:
116554.
11.
Lee,
Y., Cho, S., Park, K., Kim, T., Kim, J., Ryu, D. Y. and Hong, J. (2023).
Potential lifetime effects caused by cellular uptake of nanoplastics:
A review. Environmental Pollution, 329: 121668.
12. Liu, L., Xu, K., Zhang, B., Ye, Y.,
Zhang, Q. and Jiang, W. (2021). Cellular internalization and release of
polystyrene microplastics and nanoplastics. Science
of the Total Environment, 779: 146523.
13. Horvatits, T., Tamminga, M., Liu, B., Sebode, M., Carambia, A.,
Fischer, L., ... and Fischer, E. K. (2022). Microplastics detected in
cirrhotic liver tissue. EBioMedicine, 82:
104147.
14. Hu, M. and Palić,
D. (2020). Micro-and nano-plastics activation of oxidative and inflammatory
adverse outcome pathways. Redox Biology, 37: 101620.
15. Khoshmanesh, M., Sanati, A. M. and Ramavandi, B. (2023). Co-occurrence of microplastics and
organic/inorganic contaminants in organisms living in aquatic ecosystems: A
review. Marine Pollution Bulletin, 187: 114563.
16. Wang, F., Zhang, M., Sha, W., Wang,
Y., Hao, H., Dou, Y. and Li, Y. (2020). Sorption behavior
and mechanisms of organic contaminants to nano and microplastics. Molecules,
25(8): 1827.
17. Kitahara, K. I. and Nakata, H.
(2020). Plastic additives as tracers of microplastic sources in Japanese road
dusts. Science of the Total Environment, 736: 139694.
18. Encarnação,
T., Pais, A. A., Campos, M. G. and Burrows, H. D. (2019). Endocrine disrupting chemicals:
Impact on human health, wildlife and the environment.
Science Progress, 102(1): 3-42.
19.
Prata,
J. C. (2018). Airborne microplastics: consequences to human health?.
Environmental Pollution, 234: 115-126.
20. Girardi,
P., Barbiero, F., Baccini, M., Comba, P., Pirastu, R., Mastrangelo, G., ... and
Fedeli, U. (2022). Mortality
for lung cancer among PVC baggers employed in the vinyl chloride industry. International
Journal of Environmental Research and Public Health, 19(10): 6246.
21. Jiang, J. Q. (2018). Occurrence of
microplastics and its pollution in the environment: A review. Sustainable Production
and Consumption, 13: 16-23.
22. Ekvall, M. T., Lundqvist, M., Kelpsiene, E., Šileikis, E.,
Gunnarsson, S. B. and Cedervall, T. (2019). Nanoplastics formed during the mechanical breakdown of
daily-use polystyrene products. Nanoscale Advances, 1(3): 1055-1061.
23. Sridharan, S., Kumar, M., Bolan, N.
S., Singh, L., Kumar, S., Kumar, R. and You, S. (2021). Are microplastics
destabilizing the global network of terrestrial and aquatic ecosystem services?. Environmental Research, 198: 111243.
24. Alvim, C.
B., Mendoza-Roca, J. A. and Bes-Piá, A. (2020). Wastewater treatment plant as microplastics release
source–Quantification and identification techniques. Journal of
Environmental Management, 255: 109739.
25. Schöpel, B. and Stamminger,
R. (2019). A comprehensive literature study on microfibres from washing
machines. Tenside Surfactants Detergents, 56(2):
94-104.
26. Boucher, J. and Friot, D. (2017).
Primary microplastics in the oceans: a global evaluation of sources (Vol.
10). Gland, Switzerland: IUCN.
27. Vassilenko, E., Watkins, M., Chastain, S.,
Mertens, J., Posacka, A. M., Patankar, S. and Ross,
P. S. (2021). Domestic laundry and microfiber pollution: Exploring fiber shedding from consumer apparel textiles. Plos ONE, 16(7): e0250346.
28. Acharya, S., Rumi, S. S., Hu, Y.
and Abidi, N. (2021). Microfibers from synthetic textiles as a major source of
microplastics in the environment: A review. Textile Research Journal, 91(17-18):
2136-2156.
29. Özkan, İ. and Gündoğdu,
S. (2021). Investigation on the microfiber release under controlled washings
from the knitted fabrics produced by recycled and virgin polyester yarns. The
Journal of The Textile Institute, 112(2): 264-272.
30. De Falco, F.,
Di Pace, E., Cocca, M. and Avella, M. (2019). The contribution of washing
processes of synthetic clothes to microplastic pollution. Scientific Reports,
9(1): 6633.
31. Šaravanja, A., Pušić, T. and Dekanić, T. (2022). Microplastics in wastewater by
washing polyester fabrics. Materials, 15(7): 2683.
32. Cotton, L., Hayward, A. S., Lant,
N. J. and Blackburn, R. S. (2020). Improved garment longevity and reduced
microfibre release are important sustainability benefits of laundering in
colder and quicker washing machine cycles. Dyes and Pigments, 177:
108120.
33. Periyasamy, A. P. and Tehrani-Bagha,
A. (2022). A review on microplastic emission from textile materials and its
reduction techniques. Polymer Degradation and Stability, 199: 109901.
34. Long, Z., Pan, Z., Wang, W., Ren,
J., Yu, X., Lin, L., ... and Jin, X. (2019). Microplastic abundance,
characteristics, and removal in wastewater treatment plants in a coastal city
of China. Water Research, 155: 255-265.
35. Pereao, O., Opeolu,
B. and Fatoki, O. (2020). Microplastics in aquatic
environment: Characterization, ecotoxicological effect, implications for
ecosystems and developments in South Africa. Environmental Science and
Pollution Research, 27: 22271-22291.
36. Alrbaihat, M. R., & Abu-Afifeh, Q. (2023). Eco-friendly microplastic removal
through physical and chemical techniques: A review. Annals Advance
Chemistry, 7: 014-024.
37. Turan, N. B., Erkan, H. S. and Engin,
G. O. (2021). Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Safety and
Environmental Protection, 146: 77-84.
38. Egea-Corbacho,
A., Martín-García, A. P., Franco, A. A., Quiroga, J. M., Andreasen, R. R.,
Jørgensen, M. K. and Christensen, M. L. (2023). Occurrence, identification
and removal of microplastics in a Wastewater Treatment Plant compared to an
advanced MBR technology: Full-scale pilot plant. Journal of Environmental
Chemical Engineering, 11(3): 109644.
39. Hidalgo-Crespo,
J., Álvarez-Mendoza, C. I., Soto, M. and Amaya-Rivas, J. L. (2022). Quantification and mapping of
domestic plastic waste using GIS/GPS approach at the city of Guayaquil. Procedia
CIRP, 105: 86-91.
40. Zhang, Y., Li, Y., Su, F., Peng, L.
and Liu, D. (2022). The life cycle of micro-nano plastics in domestic sewage. Science
of The Total Environment, 802: 149658.
41. He, P., Chen, L., Shao, L., Zhang,
H. and Lü, F. (2019). Municipal solid waste (MSW)
landfill: A source of microplastics?-Evidence of
microplastics in landfill leachate. Water Research, 159: 38-45.
42. Joseph, B., James, J., Kalarikkal, N. and Thomas, S. (2021). Recycling of medical
plastics. Advanced Industrial and Engineering Polymer Research, 4(3):
199-208.
43. Wang, H., Zhang, Y. and Wang, C.
(2019). Surface modification and selective flotation of waste plastics for
effective recycling-a review. Separation and Purification Technology, 226:
75-94.
44. Werbowski, L. M., Gilbreath, A. N., Munno,
K., Zhu, X., Grbic, J., Wu, T., ... and Rochman, C. M. (2021). Urban
stormwater runoff: a major pathway for anthropogenic particles, black rubbery
fragments, and other types of microplastics to urban receiving waters. ACS
ES&T Water, 1(6): 1420-1428.
45. Yang, F., Li, D., Zhang, Z., Wen,
L., Liu, S., Hu, E., ... and Gao, L. (2022). Characteristics and the potential
impact factors of microplastics in wastewater originated from different human
activity. Process Safety and Environmental Protection, 166: 78-85.
46. Rathi, B. S. and Kumar, P. S.
(2021). Application of adsorption process for effective removal of emerging
contaminants from water and wastewater. Environmental Pollution, 280:
116995.
47. Kehrein, P., Van Loosdrecht,
M., Osseweijer, P., Garfí,
M., Dewulf, J. and Posada, J. (2020). A critical
review of resource recovery from municipal wastewater treatment plants–market
supply potentials, technologies and bottlenecks. Environmental
Science: Water Research & Technology, 6(4): 877-910.
48. Tufail, A., Price, W. E., Mohseni,
M., Pramanik, B. K. and Hai, F. I. (2021). A critical review of advanced
oxidation processes for emerging trace organic contaminant degradation: Mechanisms,
factors, degradation products, and effluent toxicity. Journal of Water
Process Engineering, 40: 101778.
49. Wang, Z., Sedighi, M. and Lea-Langton,
A. (2020). Filtration of microplastic spheres by biochar: removal efficiency
and immobilisation mechanisms. Water Research, 184: 116165.
50. Enfrin, M., Dumée,
L. F. and Lee, J. (2019). Nano/microplastics in water and wastewater treatment
processes–origin, impact and potential solutions. Water
Research, 161: 621-638.
51. Ngo, P. L., Pramanik, B. K., Shah,
K. and Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in
wastewater treatment plants. Environmental Pollution, 255: 113326.
52. Li, J., Shan, E., Zhao, J., Teng,
J. and Wang, Q. (2023). The factors influencing the vertical transport of
microplastics in marine environment: A review. Science of the Total
Environment, 870: 161893.
53. Ahmed, R., Hamid, A. K., Krebsbach,
S. A., He, J. and Wang, D. (2022). Critical review of microplastics removal
from the environment. Chemosphere, 293: 133557.
54. Joo, S. H., Liang, Y., Kim, M.,
Byun, J. and Choi, H. (2021). Microplastics with adsorbed contaminants:
Mechanisms and Treatment. Environmental Challenges, 3: 100042.
55. Liu, X., Yuan, W., Di, M., Li, Z.
and Wang, J. (2019). Transfer and fate of microplastics during the
conventional activated sludge process in one wastewater treatment plant of
China. Chemical Engineering Journal, 362: 176-182.
56. Naderi Beni,
N., Karimifard, S., Gilley, J., Messer, T., Schmidt, A. and Bartelt-Hunt, S.
(2023). Higher
concentrations of microplastics in runoff from biosolid-amended croplands than
manure-amended croplands. Communications Earth & Environment, 4(1):
42.
57. Borthakur, A., Leonard, J.,
Koutnik, V. S., Ravi, S. and Mohanty, S. K. (2022). Inhalation risks of
wind-blown dust from biosolid-applied agricultural lands: Are they enriched
with microplastics and PFAS?. Current Opinion in
Environmental Science & Health, 25: 100309.
58. Ziembowicz, S., Kida, M. and Koszelnik, P. (2023). Elimination of a mixture of
microplastics using conventional and detergent-assisted coagulation. Materials,
16(11): 4070.
59. Swart, B., Pihlajamäki, A., Chew,
Y. J. and Wenk, J. (2022). Microbubble-microplastic interactions in batch air
flotation. Chemical Engineering Journal, 449: 137866.
60. Scherer, C., Weber, A., Lambert, S.
and Wagner, M. (2018). Interactions of microplastics with freshwater biota
(pp. 153-180). Springer International Publishing.
61. Ziajahromi, S., Neale, P. A., Rintoul, L. and
Leusch, F. D. (2017). Wastewater treatment plants as
a pathway for microplastics: development of a new approach to sample
wastewater-based microplastics. Water research, 112: 93-99.
62.
Liu,
W., Zhang, J., Liu, H., Guo, X., Zhang, X., Yao, X., ... and Zhang, T. (2021).
A review of the removal of microplastics in global wastewater treatment
plants: Characteristics and mechanisms. Environment
International, 146: 106277.
63. Magni, S., Binelli,
A., Pittura, L., Avio, C.
G., Della Torre, C., Parenti, C. C., ... and Regoli, F. (2019). The fate of microplastics in an Italian Wastewater
Treatment Plant. Science of the Total Environment, 652: 602-610.
64. Li, X., Chen, L., Mei, Q., Dong,
B., Dai, X., Ding, G. and Zeng, E. Y. (2018). Microplastics in sewage sludge
from the wastewater treatment plants in China. Water Research, 142:
75-85.
65. Mohana, A. A., Rahman, M., Sarker,
S. K., Haque, N., Gao, L. and Pramanik, B. K. (2022). Nano/microplastics:
Fragmentation, interaction with co-existing pollutants and their removal from
wastewater using membrane processes. Chemosphere, 309: 136682.
66. Krishnan, R. Y., Manikandan, S., Subbaiya, R., Karmegam, N., Kim, W. and Govarthanan, M.
(2023). Recent approaches and advanced wastewater treatment technologies for
mitigating emerging microplastics contamination–A critical review. Science
of the Total Environment, 858: 159681.
67. Li, J., Wang, B., Chen, Z., Ma, B.
and Chen, J. P. (2021). Ultrafiltration membrane fouling by microplastics with
raw water: Behaviors and alleviation methods. Chemical
Engineering Journal, 410: 128174.
68. Cevallos-Mendoza,
J., Amorim, C. G., Rodríguez-Díaz, J. M. and Montenegro, M. D. C. B. (2022). Removal of contaminants from water
by membrane filtration: A review. Membranes, 12(6): 570.
69. Beshr, S., Moustafa, M., Fayed, M. and Aly,
S. (2023). Evaluation of water consumption in rapid sand filters backwashed
under varied physical conditions. Alexandria Engineering Journal, 64:
601-613.
70. Bayo, J., López-Castellanos, J. and
Olmos, S. (2020). Membrane bioreactor and rapid sand filtration for the
removal of microplastics in an urban wastewater treatment plant. Marine
Pollution Bulletin, 156: 111211.
71. Marsono, B.
D., Yuniarto, A., Purnomo, A. and Soedjono, E. S. (2022). Comparison performances of
microfiltration and rapid sand filter operated in water treatment plant. In IOP
Conference Series: Earth and Environmental Science (Vol. 1111, No. 1, p.
012048). IOP Publishing.
72. Bäuerlein, P. S., Hofman-Caris, R. C., Pieke, E. N. and Ter Laak, T. L. (2022). Fate of
microplastics in the drinking water production. Water Research, 221:
118790.
73. Sembiring, E., Fajar, M. and Handajani, M. (2021). Performance of rapid sand
filter–single media to remove microplastics. Water Supply, 21(5):
2273-2284.
74. Koelmans, A. A., Nor, N. H. M., Hermsen,
E., Kooi, M., Mintenig, S. M. and De France, J.
(2019). Microplastics in freshwaters and drinking water: Critical review and
assessment of data quality. Water Research, 155: 410-422.
75. Umar, M., Singdahl-Larsen,
C. and Ranneklev, S. B. (2023). Microplastics
removal from a plastic recycling industrial wastewater using sand filtration. Water,
15(5): 896.
76. Pronk, W., Ding, A., Morgenroth,
E., Derlon, N., Desmond, P., Burkhardt, M., ... and
Fane, A. G. (2019). Gravity-driven membrane filtration for water and
wastewater treatment: A review. Water Research, 149: 553-565.