Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 45-56

 

SYNTHESIS OF CARRAGEENAN-BASED BIOCOMPOSITE PLASTICIZED WITH DEEP EUTECTIC SOLVENT AND CHARACTERIZATION OF ITS MECHANICAL PROPERTIES

 

(Sintesis Biokomposit Berasaskan Karaginan Diplastikkan dengan Pelarut Eutektik Dalam dan Penyifatan Ciri-Ciri Mekanikal)

 

Nur Amalina Ramli1, Fariha Rosli1, Mohd Aiman Hamdan2, and Fatmawati Adam1,3*

 

1Faculty of Chemical and Process Engineering Technology,

Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia

2School of Food Industry, Faculty of Bioresources and Food Industry,

Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia

3Centre for Research in Advanced Fluid and Processes,

Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia

 

*Corresponding author: fatmawati@umpsa.edu.my

 

 

Received: 14 September 2023; Accepted: 12 January 2024; Published:  28 February 2024

 

 

Abstract

Carrageenan from seaweed tends to be brittle in the formation of hard capsules. In this study, a carrageenan-based biocomposite was synthesized to provide an alternative to gelatin hard capsules. This study aims to characterize the mechanical properties of carrageenan biocomposite plasticized with a deep eutectic solvent (DES) of choline chloride (ChCl) and glycerol. The carrageenan biocomposite was formulated at varying concentrations (0, 0.2, 0.4, 0.6, 0.8, and 1.0 v/v%) of DES to improve the strength and elasticity of carrageenan biocomposite films and hard capsules. The absence of the ChCl band at 1348 cm⁻¹ and the reduced intensity of the C–O glycerol band at 1107 cm⁻¹ in the ATR-FTIR spectra of DES were regarded as evidence for the formation of the eutectic mixture. This can be explained by the hydrogen bond donor and acceptor interaction between the DES constituents, which are chloride ions (Cl) of ChCl and the hydroxyl group (–OH) of glycerol (Cl···OH). The highest viscosity of Carra-DES 0.2 at 504.9 mPa∙s reflects the improved film tensile strength up to 60.1 MPa, which gives a positive effect after the addition of DES. The capsule loop strength reached its peak at 31.7 N for Carra-DES 0.4. A significant increase in the elongation at break of Carra-DES film was observed at DES concentrations of 0.2–0.6%. However, the concentration of DES should be controlled to achieve high tensile and loop strengths in hard capsule application. In conclusion, the incorporation of DES in carrageenan biocomposite can reduce its brittleness while improving its elasticity and strength in the production of hard capsules.

 

Keywords: Biocomposite, carrageenan, choline chloride, deep eutectic solvent, plasticizer

 

Abstrak

Karaginan daripada rumpai laut cenderung menjadi rapuh dalam pembentukan kapsul keras. Dalam kajian ini, biokomposit berasaskan karaginan telah disintesis sebagai alternatif kepada kapsul keras gelatin. Kajian ini bertujuan menyifatkan ciri-ciri mekanikal biokomposit karaginan yang ditambah pemplastik pelarut eutektik dalam (DES) yang diperbuat daripada kolina klorida (ChCl) dan gliserol. Biokomposit karaginan telah dirumuskan dengan DES menggunakan kepekatan yang berbeza (0, 0.2, 0.4, 0.6, 0.8, dan 1.0 v/v%) untuk meningkatkan kekuatan dan keanjalan filem biokomposit karaginan dan kapsul keras. Ketiadaan jalur penyerapan ChCl pada 1348 cm⁻¹ dalam analisis ATR-FTIR dan peralihan jalur getaran C–O dalam gliserol ke arah 1728 cm⁻¹ dianggap sebagai bukti pembentukan campuran eutektik. Ini boleh dijelaskan oleh interaksi penderma dan penerima ikatan hidrogen antara konstituen DES, iaitu ion klorida (Cl) ChCl dan kumpulan hidroksil (–OH) gliserol (Cl···OH). Kelikatan tertinggi Carra-DES 0.2 pada 504.9 mPa∙s mencerminkan kekuatan tegangan filem yang lebih baik sehingga 60.1 MPa dan memberikan kesan positif selepas penambahan DES. Kekuatan gelung kapsul mencapai kemuncaknya pada 31.7 N untuk Carra-DES 0.4. Peningkatan ketara pemanjangan filem Carra-DES semasa putus berlaku pada kepekatan DES 0.2% hingga 0.6%. Walau bagaimanapun, kepekatan DES harus dikawal untuk mencapai kekuatan tegangan filem dan gelung kapsul yang tinggi dalam aplikasi kapsul keras. Kesimpulannya, penggabungan DES dalam biokomposit karaginan dapat mengurangkan kerapuhan di samping meningkatkan keanjalan dan kekuatan dalam menghasilkan kapsul keras.

 

Kata kunci: Biokomposit, karaginan, kolina klorida, pelarut eutektik dalam, pemplastik

 


References

1.      Phang, S. M., Yeong, H. Y. and Lim, P. E. (2019). The seaweed resources of Malaysia. Botanica Marina, 62 (3): 265-273.

2.      Dewi, E. N., Darmanto, Y. S. and Ambariyanto. (2012). Characterization and quality of semi refined carrageenan products from different coastal waters based on Fourier transform infrared technique. Journal of Coastal Development, 16(1): 25-31.

3.      Adam, F., Hamdan, M. A., Hana, S., Bakar, A., Yusoff, M. and Jose, R. (2020). Molecular recognition of isovanillin crosslinked carrageenan biocomposite for drug delivery application for drug delivery application. Chemical Engineering Communications, 208(5): 741-752.

4.      Hamdan, M. A., Mohd Amin, K. N., Jose, R., Martin, D. and Adam, F. (2021). Tuning mechanical properties of seaweeds for hard capsules: A step forward for a sustainable drug delivery medium. Food Hydrocolloids for Health, 1(8): 100023.

5.      Wan Yahaya, W. A., Mohd Azman, N. A., M. Krishnnan, P., Adam, F. and Almajano, M. P. (2023). Thermo‐mechanical and antioxidant properties of eugenol‐loaded carrageenan‐cellulose nanofiber films for sustainable packaging applications. Journal of Applied Polymer Science: e54943.

6.      Adam, F., Jamaludin, J., Abu Bakar, S. H., Abdul Rasid, R. and Hassan, Z. (2020). Evaluation of hard capsule application from seaweed: Gum Arabic-kappa carrageenan biocomposite films. Cogent Engineering, 7(1): 1765682.

7.      Jamaludin, J., Adam, F. and Abdul Rasid, Z. H. (2017). Thermal studies on Arabic Gum - carrageenan polysaccharides film. Chemical Engineering Research Bulletin, 19: 80-86.

8.      Ramli, N. A., Adam, F., Mohd Amin, K. N., Nor, A. M. and Ries, M. E. (2023). Evaluation of mechanical and thermal properties of carrageenan/hydroxypropyl methyl cellulose hard capsule. Canadian Journal of Chemical Engineering, 101: 1219-1234.

9.      Ramli, N. A., Adam, F., Mohd Amin, K. N., Abu Bakar, N. F. and Ries, M. E. (2022). Mechanical and thermal evaluation of carrageenan/hydroxypropyl methyl cellulose biocomposite incorporated with modified starch corroborated by molecular interaction recognition. ACS Applied Polymer Materials, 5(1): 182-192.

10.   Mat Yasin, N. H., Othman, N. A. and Adam, F. (2022). Evaluation of the properties on carrageenan bio-films with chlorella vulgaris blending. Chemical Engineering Communications, 2022: 1-15.

11.   Wei, L., Zhang, W., Yang, J., Pan, Y., Chen, H. and Zhang, Z. (2023). The application of deep eutectic solvents systems based on choline chloride in the preparation of biodegradable food packaging films. Trends in Food Science and Technology, 139 (2): 104124.

12.   Chen, J., Li, Y., Wang, X. and Liu, W. (2019). Application of deep eutectic solvents in food analysis: A review. Molecules, 24: 1-12.

13.   Sirviö, J. A., Visanko, M., Ukkola, J. and Liimatainen, H. (2018). Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Industrial Crops & Products, 122: 513-521.

14.   Mbous, Y. P., Hayyan, M., Hayyan, A., Wong, W. F., Hashim, M. A. and Looi, C. Y. (2017). Applications of deep eutectic solvents in biotechnology and bioengineering - promises and challenges. Biotechnology Advances, 35 (2): 105-134.

15.   Hong, S., Yuan, Y., Li, P., Zhang, K., Lian, H. and Liimatainen, H. (2020). Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent. Industrial Crops and Products, 154(5): 112677.

16.   Okwuwa, C. C., Adam, F., Said, F. M. and Ries, M. E. (2023). Cellulose dissolution for edible biocomposites in deep eutectic solvents: A review. Journal of Cleaner Production: 139166.

17.   Wei, X., Lin, T., Du, H., Wang, L. and Yin, X. (2022). Effect of a trace amount of deep eutectic solvents on the structure and optical properties of cellulose nanocrystal films. Cellulose, 29(9): 5235-5249.

18.   Li, C., Zheng, C., Huang, H., Su, H. and Huang, C. (2023). Preparation and plasticizing mechanism of deep eutectic solvent/lignin plasticized chitosan films. International Journal of Biological Macromolecules, 240 (2): 124473.

19.   Wu, T., Dai, R., Shan, Z., Chen, H., Woo, M. W. and Yi, J. (2022). High efficient crosslinking of gelatin and preparation of its excellent flexible composite film using deep eutectic solvent. Process Biochemistry, 118 (1): 32-40.

20.   Yu, J., Liu, X., Xu, S., Shao, P., Li, J., Chen, Z. and Renard, C. M. G. C. (2023). Advances in green solvents for production of polysaccharide-based packaging films: insights of ionic liquids and deep eutectic solvents. Comprehensive Reviews in Food Science and Food Safety, 22(2): 1030-1057.

21.   Zdanowicz, M., Wilpiszewska, K. and Spychaj, T. (2018). Deep eutectic solvents for polysaccharides processing. a review. Carbohydrate Polymers, 200 (7): 361-380.

22.   González-Rivera, J., Mero, A., Husanu, E., Mezzetta, A., Ferrari, C., D’Andrea, F. and Guazzelli, L. (2021). Combining acid-based deep eutectic solvents and microwave irradiation for improved chestnut shell waste valorization. Green Chemistry, 23(24): 10101-10115.

23.   Thi, S. and Lee, K. M. (2019). Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes. Bioresource Technology, 282(3): 525-529.

24.   Zhang, H., Lang, J., Lan, P., Yang, H., Lu, J. and Wang, Z. (2020). Study on the dissolution mechanism of cellulose by ChCl-based deep eutectic solvents. Materials, 13 (2): 1-12.

25.   Mohd Amin, K. N., Annamalai, P. K. and Martin, D. (2017). Cellulose nanocrystals with enhanced thermal stability reinforced thermoplastic polyurethane. Malaysian Journal of Analytical Sciences, 21(3): 754-761.

26.   Ramli, N. A., Amira Kamaluddin, N. N. and Adam, F. (2022). Mechanical, structural and physical properties of carrageenan-gum Arabic biocomposite film for hard capsule application. Solid State Phenomena, 340: 11-18.

27.   Hamdan, M. A., Ramli, N. A., Othman, N. A., Mohd Amin, K. N. and Adam, F. (2021). Characterization and property investigation of microcrystalline cellulose (MCC) and carboxymethyl cellulose (CMC) filler on the carrageenan-based biocomposite film. Materials Today: Proceedings, 42: 56-62.

28.   Adam, F., Othman, N. A., Yasin, N. H. M., Cheng, C. K. and Azman, N. A. M. (2022). Evaluation of reinforced and green bioplastic from carrageenan seaweed with nanocellulose. Fibers and Polymers, 23(10): 2885-2896.

29.   Hamdan, M. A., Adam, F. and Mohd Amin, K. N. (2018). Investigation of mixing time on carrageenan-cellulose nanocrystals (CNC) hard capsule for drug delivery carrier. International Journal of Innovative Science and Research Technology, 3(1): 457-461.

30.   Othman, N. A., Adam, F. and Mat Yasin, N. H. (2020). Reinforced bioplastic film at different microcrystalline cellulose concentration. Materials Today: Proceedings, 41: 77-82.

31.   Jakubowska, E., Gierszewska, M., Nowaczyk, J. and Olewnik-Kruszkowska, E. (2021). The role of a deep eutectic solvent in changes of physicochemical and antioxidative properties of chitosan-based films. Carbohydrate Polymers, 255 (10): 117527.

32.   Delgado-Mellado, N., Larriba, M., Navarro, P., Rigual, V., Ayuso, M., García, J. and Rodríguez, F. (2018). Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. Journal of Molecular Liquids, 260: 37-43.

33.   Jakubowska, E., Gierszewska, M., Nowaczyk, J. and Olewnik-Kruszkowska, E. (2020). Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocolloids, 108 (May): 106007.

34.   Vorobiov, V. K., Sokolova, M. P., Bobrova, N. V., Elokhovsky, V. Y. and Smirnov, M. A. (2022). Rheological properties and 3D-printability of cellulose nanocrystals/deep eutectic solvent electroactive ion gels. Carbohydrate Polymers, 290: 119475.

35.   Sun, L., Han, J., Tang, C., Wu, J., Fang, S., Li, Y. and Wang, Y. (2022). Choline chloride-based deep eutectic solvent system as a pretreatment for microcrystalline cellulose. Cellulose, 29(15): 8133-8150.

36.   Hii, S. L., Lim, J. Y., Ong, W. T. and Wong, C. L. (2016). Agar from Malaysian red seaweed as potential material for synthesis of bioplastic film. Journal of Engineering Science and Technology, 11: 1-15.

37.   Ghozali, M., Meliana, Y., Fatriasari, W., Antov, P. and Chalid, M. (2023). Preparation and characterization of thermoplastic starch from sugar palm (Arenga pinnata) by extrusion method. Journal of Renewable Materials, 11(4): 1963-1976.

38.   Zhao, P., Wang, J., Yan, X., Cai, Z., Fu, L., Gu, Q. and Fu, Y. (2022). Functional chitosan/zein films with Rosa Roxburghii Tratt leaves extracts prepared by natural deep eutectic solvents. Food Packaging and Shelf Life, 34: 101001.

39.   Smith, A. M., Ingham, A., Grover, L. and Perrie, Y. (2010). Polymer film formulations for the preparation of enteric pharmaceutical capsules. Journal of Pharmacy and Pharmacology, 62: 1-6.

40.   Wang, S., Li, Z., Wang, H., Yuan, C., Liu, K., Yuan, M. and Wang, Y. (2022). Study on the structure and properties of choline chloride toughened polylactide composites. Polymer Bulletin, 80(8): 9237-9252.