Malaysian Journal
of Analytical Sciences, Vol 28 No 1 (2024):
45-56
(Sintesis
Biokomposit Berasaskan Karaginan Diplastikkan dengan Pelarut Eutektik Dalam dan
Penyifatan Ciri-Ciri Mekanikal)
Nur Amalina Ramli1,
Fariha Rosli1, Mohd Aiman Hamdan2, and Fatmawati Adam1,3*
1Faculty of Chemical and Process Engineering Technology,
Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang,
Malaysia
2School of Food Industry, Faculty of Bioresources and Food
Industry,
Universiti Sultan Zainal Abidin, 22200 Besut,
Terengganu, Malaysia
3Centre for Research in Advanced Fluid and Processes,
Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang,
Malaysia
*Corresponding author: fatmawati@umpsa.edu.my
Received: 14
September 2023; Accepted: 12 January 2024; Published: 28 February 2024
Abstract
Carrageenan from seaweed tends to be brittle in the
formation of hard capsules. In this study, a carrageenan-based biocomposite was
synthesized to provide an alternative to gelatin hard capsules. This study aims
to characterize the mechanical properties of carrageenan biocomposite
plasticized with a deep eutectic solvent (DES) of choline chloride (ChCl) and glycerol. The carrageenan biocomposite was
formulated at varying concentrations (0, 0.2, 0.4, 0.6, 0.8, and 1.0 v/v%) of
DES to improve the strength and elasticity of carrageenan biocomposite films
and hard capsules. The absence of the ChCl band at 1348
cm⁻¹ and the reduced intensity of the C–O glycerol band at 1107 cm⁻¹
in the ATR-FTIR spectra of DES were regarded as
evidence for the formation of the eutectic mixture. This can be explained by
the hydrogen bond donor and acceptor interaction between the DES constituents,
which are chloride ions (Cl−) of ChCl and the hydroxyl group (–OH) of glycerol (Cl−···OH).
The highest viscosity of Carra-DES 0.2 at 504.9 mPa∙s reflects the improved film tensile strength
up to 60.1 MPa, which gives a positive effect after the addition of DES. The
capsule loop strength reached its peak at 31.7 N for Carra-DES 0.4. A
significant increase in the elongation at break of Carra-DES film was observed at
DES concentrations of 0.2–0.6%. However, the concentration of DES should
be controlled to achieve high tensile and loop strengths in hard capsule
application. In conclusion, the incorporation of DES in
carrageenan biocomposite can reduce its brittleness while improving its
elasticity and strength in the production of hard capsules.
Keywords: Biocomposite, carrageenan, choline chloride,
deep eutectic solvent, plasticizer
Abstrak
Karaginan daripada rumpai laut
cenderung menjadi rapuh dalam pembentukan kapsul keras. Dalam kajian ini,
biokomposit berasaskan karaginan telah disintesis sebagai alternatif kepada
kapsul keras gelatin. Kajian ini bertujuan menyifatkan ciri-ciri mekanikal
biokomposit karaginan yang ditambah pemplastik pelarut eutektik dalam (DES) yang
diperbuat daripada kolina klorida (ChCl) dan gliserol. Biokomposit karaginan
telah dirumuskan dengan DES menggunakan kepekatan yang berbeza (0, 0.2, 0.4,
0.6, 0.8, dan 1.0 v/v%) untuk meningkatkan kekuatan dan keanjalan filem
biokomposit karaginan dan kapsul keras. Ketiadaan jalur penyerapan ChCl pada
1348 cm⁻¹ dalam analisis ATR-FTIR dan peralihan jalur getaran C–O dalam
gliserol ke arah 1728 cm⁻¹ dianggap sebagai bukti pembentukan campuran
eutektik. Ini boleh dijelaskan oleh interaksi penderma dan penerima ikatan
hidrogen antara konstituen DES, iaitu ion klorida (Cl−) ChCl
dan kumpulan hidroksil (–OH) gliserol (Cl−···OH). Kelikatan
tertinggi Carra-DES 0.2 pada 504.9 mPa∙s mencerminkan kekuatan tegangan
filem yang lebih baik sehingga 60.1 MPa dan memberikan kesan positif selepas
penambahan DES. Kekuatan gelung kapsul mencapai kemuncaknya pada 31.7 N untuk
Carra-DES 0.4. Peningkatan ketara pemanjangan filem Carra-DES semasa putus berlaku
pada kepekatan DES 0.2% hingga 0.6%. Walau bagaimanapun, kepekatan DES harus
dikawal untuk mencapai kekuatan tegangan filem dan gelung kapsul yang tinggi
dalam aplikasi kapsul keras. Kesimpulannya, penggabungan DES dalam biokomposit
karaginan dapat mengurangkan kerapuhan di samping meningkatkan keanjalan dan
kekuatan dalam menghasilkan kapsul keras.
Kata kunci: Biokomposit,
karaginan, kolina klorida, pelarut eutektik dalam, pemplastik
References
1.
Phang, S. M., Yeong,
H. Y. and Lim, P. E. (2019). The seaweed resources of Malaysia. Botanica
Marina, 62 (3): 265-273.
2.
Dewi, E. N., Darmanto, Y. S. and Ambariyanto. (2012).
Characterization and quality of semi refined carrageenan products from
different coastal waters based on Fourier transform infrared technique. Journal
of Coastal Development, 16(1): 25-31.
3.
Adam, F., Hamdan, M.
A., Hana, S., Bakar, A., Yusoff, M. and Jose, R. (2020). Molecular recognition
of isovanillin crosslinked carrageenan biocomposite for drug delivery
application for drug delivery application. Chemical Engineering
Communications, 208(5): 741-752.
4.
Hamdan, M. A., Mohd
Amin, K. N., Jose, R., Martin, D. and Adam, F. (2021). Tuning mechanical
properties of seaweeds for hard capsules: A step
forward for a sustainable drug delivery medium. Food Hydrocolloids for
Health, 1(8): 100023.
5.
Wan Yahaya, W. A.,
Mohd Azman, N. A., M. Krishnnan, P., Adam, F. and Almajano, M. P. (2023). Thermo‐mechanical and
antioxidant properties of eugenol‐loaded carrageenan‐cellulose
nanofiber films for sustainable packaging applications. Journal of
Applied Polymer Science: e54943.
6.
Adam, F., Jamaludin,
J., Abu Bakar, S. H., Abdul Rasid, R. and Hassan, Z. (2020). Evaluation of hard
capsule application from seaweed: Gum Arabic-kappa carrageenan biocomposite
films. Cogent Engineering, 7(1): 1765682.
7.
Jamaludin, J., Adam,
F. and Abdul Rasid, Z. H. (2017). Thermal studies on Arabic Gum - carrageenan
polysaccharides film. Chemical Engineering Research Bulletin, 19: 80-86.
8.
Ramli, N. A., Adam,
F., Mohd Amin, K. N., Nor, A. M. and Ries, M. E.
(2023). Evaluation of mechanical and thermal properties of
carrageenan/hydroxypropyl methyl cellulose hard capsule. Canadian Journal of
Chemical Engineering, 101: 1219-1234.
9.
Ramli, N. A., Adam,
F., Mohd Amin, K. N., Abu Bakar, N. F. and Ries, M. E. (2022). Mechanical and thermal
evaluation of carrageenan/hydroxypropyl methyl cellulose biocomposite
incorporated with modified starch corroborated by molecular interaction
recognition. ACS Applied Polymer Materials, 5(1): 182-192.
10.
Mat Yasin, N. H.,
Othman, N. A. and Adam, F. (2022). Evaluation of the properties on carrageenan bio-films with chlorella vulgaris blending. Chemical
Engineering Communications, 2022: 1-15.
11.
Wei, L., Zhang, W.,
Yang, J., Pan, Y., Chen, H. and Zhang, Z. (2023). The application of deep
eutectic solvents systems based on choline chloride in the preparation of
biodegradable food packaging films. Trends in Food Science and Technology,
139 (2): 104124.
12.
Chen, J., Li, Y.,
Wang, X. and Liu, W. (2019). Application of deep eutectic solvents in food
analysis: A review. Molecules, 24: 1-12.
13.
Sirviö, J. A., Visanko, M., Ukkola, J. and
Liimatainen, H. (2018). Effect of plasticizers on the mechanical and
thermomechanical properties of cellulose-based biocomposite films. Industrial
Crops & Products, 122: 513-521.
14.
Mbous, Y. P., Hayyan, M., Hayyan, A., Wong, W. F., Hashim, M. A.
and Looi, C. Y. (2017). Applications of deep eutectic solvents in biotechnology
and bioengineering - promises and challenges. Biotechnology Advances, 35
(2): 105-134.
15.
Hong, S., Yuan, Y.,
Li, P., Zhang, K., Lian, H. and Liimatainen, H. (2020). Enhancement of the nanofibrillation of birch cellulose pretreated with natural
deep eutectic solvent. Industrial Crops and Products, 154(5): 112677.
16.
Okwuwa, C. C., Adam, F., Said, F. M. and Ries, M. E. (2023).
Cellulose dissolution for edible biocomposites in
deep eutectic solvents: A review. Journal of Cleaner Production:
139166.
17.
Wei, X., Lin, T., Du,
H., Wang, L. and Yin, X. (2022). Effect of a trace amount of deep eutectic
solvents on the structure and optical properties of cellulose nanocrystal
films. Cellulose, 29(9): 5235-5249.
18.
Li, C., Zheng, C.,
Huang, H., Su, H. and Huang, C. (2023). Preparation and plasticizing mechanism
of deep eutectic solvent/lignin plasticized chitosan films. International
Journal of Biological Macromolecules, 240 (2): 124473.
19.
Wu, T., Dai, R.,
Shan, Z., Chen, H., Woo, M. W. and Yi, J. (2022). High
efficient crosslinking of gelatin and preparation of its excellent flexible
composite film using deep eutectic solvent. Process Biochemistry, 118 (1):
32-40.
20.
Yu, J., Liu, X., Xu,
S., Shao, P., Li, J., Chen, Z. and Renard, C. M. G. C. (2023). Advances in
green solvents for production of polysaccharide-based packaging films: insights
of ionic liquids and deep eutectic solvents. Comprehensive Reviews in Food
Science and Food Safety, 22(2): 1030-1057.
21.
Zdanowicz, M., Wilpiszewska, K. and Spychaj, T.
(2018). Deep eutectic solvents for polysaccharides processing. a review. Carbohydrate
Polymers, 200 (7): 361-380.
22.
González-Rivera, J., Mero, A., Husanu, E., Mezzetta, A., Ferrari, C.,
D’Andrea, F. and Guazzelli, L. (2021). Combining
acid-based deep eutectic solvents and microwave irradiation for improved
chestnut shell waste valorization. Green Chemistry, 23(24): 10101-10115.
23.
Thi, S. and Lee, K. M. (2019). Comparison of deep eutectic
solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose
digestibility, structural and morphology changes. Bioresource Technology,
282(3): 525-529.
24.
Zhang, H., Lang, J.,
Lan, P., Yang, H., Lu, J. and Wang, Z. (2020). Study on the dissolution
mechanism of cellulose by ChCl-based deep eutectic
solvents. Materials, 13 (2): 1-12.
25.
Mohd Amin, K. N.,
Annamalai, P. K. and Martin, D. (2017). Cellulose nanocrystals with enhanced
thermal stability reinforced thermoplastic polyurethane. Malaysian Journal
of Analytical Sciences, 21(3): 754-761.
26.
Ramli, N. A., Amira Kamaluddin, N. N. and Adam, F. (2022). Mechanical, structural and physical
properties of carrageenan-gum Arabic biocomposite film for hard capsule
application. Solid State Phenomena, 340: 11-18.
27.
Hamdan, M. A., Ramli,
N. A., Othman, N. A., Mohd Amin, K. N. and Adam, F. (2021). Characterization
and property investigation of microcrystalline cellulose (MCC) and
carboxymethyl cellulose (CMC) filler on the carrageenan-based biocomposite
film. Materials Today: Proceedings, 42: 56-62.
28.
Adam, F., Othman, N.
A., Yasin, N. H. M., Cheng, C. K. and Azman, N. A. M. (2022). Evaluation of reinforced
and green bioplastic from carrageenan seaweed with nanocellulose. Fibers and
Polymers, 23(10): 2885-2896.
29.
Hamdan, M. A., Adam,
F. and Mohd Amin, K. N. (2018). Investigation of mixing time on
carrageenan-cellulose nanocrystals (CNC) hard capsule for drug delivery
carrier. International Journal of Innovative Science and Research Technology,
3(1): 457-461.
30.
Othman, N. A., Adam,
F. and Mat Yasin, N. H. (2020). Reinforced bioplastic film at different
microcrystalline cellulose concentration. Materials Today: Proceedings,
41: 77-82.
31.
Jakubowska, E., Gierszewska, M., Nowaczyk, J. and Olewnik-Kruszkowska, E. (2021). The role of a deep eutectic solvent
in changes of physicochemical and antioxidative properties of chitosan-based
films. Carbohydrate Polymers, 255 (10): 117527.
32.
Delgado-Mellado, N., Larriba, M., Navarro, P., Rigual, V., Ayuso, M.,
García, J. and Rodríguez, F. (2018). Thermal stability of
choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. Journal of
Molecular Liquids, 260: 37-43.
33.
Jakubowska, E., Gierszewska, M., Nowaczyk, J. and Olewnik-Kruszkowska, E. (2020). Physicochemical and storage
properties of chitosan-based films plasticized with deep eutectic solvent. Food
Hydrocolloids, 108 (May): 106007.
34.
Vorobiov, V. K., Sokolova, M. P., Bobrova, N. V., Elokhovsky, V. Y. and Smirnov, M. A. (2022). Rheological properties
and 3D-printability of cellulose nanocrystals/deep eutectic solvent
electroactive ion gels. Carbohydrate Polymers, 290: 119475.
35.
Sun, L., Han, J., Tang, C., Wu, J., Fang, S., Li, Y. and Wang, Y. (2022). Choline chloride-based deep eutectic solvent system as a
pretreatment for microcrystalline cellulose. Cellulose, 29(15): 8133-8150.
36.
Hii, S. L., Lim, J.
Y., Ong, W. T. and Wong, C. L. (2016). Agar from Malaysian red seaweed as
potential material for synthesis of bioplastic film. Journal of Engineering
Science and Technology, 11: 1-15.
37.
Ghozali, M., Meliana, Y., Fatriasari, W.,
Antov, P. and Chalid, M. (2023). Preparation and
characterization of thermoplastic starch from sugar palm (Arenga pinnata) by extrusion method. Journal of Renewable
Materials, 11(4): 1963-1976.
38.
Zhao, P., Wang, J.,
Yan, X., Cai, Z., Fu, L., Gu, Q. and Fu, Y. (2022). Functional chitosan/zein
films with Rosa Roxburghii
Tratt leaves extracts prepared by natural deep eutectic solvents. Food
Packaging and Shelf Life, 34: 101001.
39.
Smith, A. M., Ingham,
A., Grover, L. and Perrie, Y. (2010). Polymer film formulations for the
preparation of enteric pharmaceutical capsules. Journal of Pharmacy and
Pharmacology, 62: 1-6.
40.
Wang, S., Li, Z.,
Wang, H., Yuan, C., Liu, K., Yuan, M. and Wang, Y. (2022). Study on the
structure and properties of choline chloride toughened polylactide composites. Polymer
Bulletin, 80(8): 9237-9252.