Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 21 - 32

 

SPECTROSCOPIC, CRYSTAL STRUCTURE, HIRSHFELD SURFACE AND DFT STUDIES OF 2-AMINO-4-CHLOROBENZONITRILE

 

(Kajian Spektroskopi, Struktur Hablur, Permukaan Hirsfeld dan DFT bagi 2-Amino-4-Klorobenzonitril)

 

Onur Erman Dogan1, Erbil Agar1, Necmi Dege2, Erna Normaya4, Siti Syaida Sirat3,5, and Nur Nadia Dzulkifli3*

 

1Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey

2Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey

3School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

4Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia

5Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia

 

*Corresponding author: nurnadia@uitm.edu.my

 

 

Received: 2 July 2023; Accepted: 4 November 2023; Published:  28 February 2024

 

Abstract

This research concentrates on a summary of the global reactivity parameters on the single crystal structure of 2-amino-4-chlorobenzonitrile, which can be utilised in a wide range of applications. The commercial 2-amino-4-chlorobenzonitrile in light yellow (Sigma-Aldrich) [ACBN] was recrystallized from ethanol. The compound crystallizes in the triclinic, P-1 space group with unit cell parameters a =3.8924 (9) Å, b = 6.7886 (15) Å, c = 13.838 (3) Å, α =77.559 (16)°, β = 8.898 (17)° and γ = 83.021 (17)°. The presence of intermolecular interactions was further analyzed via the Hirshfeld Surface analysis. The electronic properties of the compound were investigated via the Density Functional Theory (DFT) using the CIF file of the single crystal. Full geometry optimization was carried out using the DFT at B3LYP with 6- 311++G (d, p) basis set level.  The structure of the recrystallized ACBN was confirmed via single crystal X-ray Crystallography, FTIR, and UV-Vis. The IR spectrum showed three main stretching bands namely nitrile, C≡N (2211 cm-1), C-Cl (782 cm-1), and 1° NH (3452 and 3363 cm-1). The UV-Vis analysis showed two main absorption peaks namely π → π and n → π which occured in an aromatic ring and nitrile, C≡N. The compound crystallized in the triclinic system with the space group . Nitrile (C≡N) and C-N have bond lengths of 1.146(4) and 1.369(4) Ǻ, which are less than the theoretical values of 1.160 and 1.470 Ǻ due to the conjugation of the aromatic ring. The intrinsic molecular characteristics analysis showed that the compound has the capability to donate electrons although it is categorized as a hard compound. The exploration of intrinsic molecular features revealed that, despite the fact that ACBN is stable and less reactive, it still has the ability to transfer and accept electrons. Furthermore, the Mulliken analysis revealed that the compound has the capability to function as a nucleophilic agent due to the nitrogen atoms (highly negative charges). As recommendation, the DFT study revealed that the compound can be investigated more thoroughly in terms of reaction kinetics and mechanisms such as corrosion inhibition and biological activities.

 

Keywords: benzonitrile, density functional theory, mulliken, molecular electrostatic potential, Hirshfeld surface

 

Abstrak

Kajian ini menumpukan kepada ringkasan parameter kereaktifan global bagi struktur hablur tunggal 2-amino-4-klorobenzonitril, yang boleh diaplikasikan dalam pelbagai kegunaan. Komersial 2-amino-4-klorobenzonitril yang berwarna kuning cair (Sigma-Aldrich) [ACBN] telah dilakukan penghabluran semula daripada etanol. Sebatian tersebut menghablur dalam triklinik, kumpulan ruang P-1 dengan parameter sel unit a =3.8924 (9) Å, b = 6.7886 (15) Å, c = 13.838 (3) Å,   α =77.559 (16)°, β = 8.898 (17)° and γ  = 83.021 (17)°. Kewujudan interaksi antara molekul dianalisis selanjutnya dengan Permukaan Hirshfeld. Sifat elektronik sebatian telah dikaji dengan Teori Fungsian Ketumpatan (DFT) menggunakan fail CIF hablur tunggal. Pengoptimuman geometri penuh sebatian telah dilakukan menggunakan B3LYP dengan tahap asas 6- 311++G (d, p). Struktur hablur ACBN telah disahkan melalui Kristalografi sinar-X hablur tunggal, FTIR, dan UV-Vis. Spektrum IR menunjukkan tiga jalur regangan yang utama iaitu nitril, C≡N (2211 cm-1), C-Cl (782 cm-1), dan 1° NH (3452 dan 3363 cm-1). Analisis UV-Vis menunjukkan dua puncak serapan utama iaitu ππ dan n → π yang wujud dalam gegelang aromatik dan nitril, C≡N. Sebatian itu terhablur dalam sistem triklinik dengan kumpulan ruang Pī. Nitril (C≡N) dan C-N mempunyai panjang ikatan iaitu 1.146(4) dan 1.369(4) Ǻ di mana kurang daripada nilai teori iaitu 1.160 dan 1.470 Ǻ disebabkan oleh konjugasi dalam gegelang aromatik. Analisis ciri molekul intrinsik menunjukkan bahawa sebatian ACBN mempunyai keupayaan untuk menderma elektron walaupun dikategorikan sebagai sebatian keras. Penerokaan ciri molekul intrinsik mendedahkan bahawa, walaupun hakikatnya ACBN adalah stabil dan kurang reaktif tapi masih mempunyai keupayaan menderma dan menerima elektron.  Tambahan pula, analisis Mulliken mendedahkan bahawa sebatian tersebut mempunyai keupayaan untuk berfungsi sebagai agen nukleofilik disebabkan oleh atom nitrogen mempunyai cas negatif yang tinggi. Sebagai cadangan, analisis DFT mendedahkan bahawa sebatian ACBN boleh dikaji lebih teliti dari segi kinetik tindak balas kimia dan mekanisma seperti perencatan kakisan dan aktiviti biologi.

 

Kata kunci: benzonitril, teori fungsian ketumpatan, Mulliken, potensi elektrostatik molekul, permukaan Hirshfeld

 

References

1.      Sundaraganesan, N., Elango, G., Sebastian, S. and Subramani, P. (2009). Molecular structure, vibrational spectroscopic studies and analysis of 2-fluoro-5-methylbenzonitrile. Indian Journal of Pure & Applied Physics, 47: 481-490.

2.      Misra, N., Ahmad Siddiqui, S., Pandey, A. K. and Trivedi, S. (2009). Comparative vibrational spectroscopic investigation of benzonitrile derivatives using density functional theory. Der Pharma Chemica, 1(1): 196-209.

3.      Kumar, V., Panikar, Y., Palafox, M. A., Vats, J. K., Kostova, I., Lang, K. and Rastogi, V. K. (2010). Ab-initio Calculations, FT-IR and FT-raman spectra of 2-chloro-6-methyl benzonitrile. Indian Journal of Pure and Applied Physics, 48: 85-94.

4.      Dixon, A. R., Khuseynov, D. and Sanov, A. (2015). Benzonitrile: Electron affinity, excited states, and anion solvation. Journal of Chemical Physics, 143(13): 1-12.

5.      Karaağaç, D. (2021). Preparation and characterisation of the cyano-bridged transition metal complexes using n,nʹ-diethyl thiourea as a ligand. South African Journal of Chemistry, 75: 130-135.

6.      Hirose, M. And Torii, H. (2022). Role of the electrostatic interactions in the changes in the CN stretching frequency of benzonitrile interacting with hydrogen-bond donating molecules. Journal of Molecular Liquids, 362: 1-7.

7.      Stoe and Cie (2002) X-AREA (Version 1.18) X-RED32 (Version 1.04) Stoe & Cie, Darmstadt, Germany.

8.      Sheldrick, G. M. (2008) A short history of SHELX, Acta Crystallographica, A64: 112-122.

9.      Farrugia, L. J. (1997). ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 30(5): 565.

10.   Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., van de Streek, J. and Streek, J. V. D. (2006) Mercury: Visualization and analysis of crystal structures. Journal of Applied Crystallogarphy, 39: 453-457.

11.   Turner, M. J., McKinnon, J. J., Wol, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. and Spackman, M. A. (2017). Crystal Explorer 17, University of Western Australia: Crawley, Australia.

12.   Vhanale, B., Kadam, D. and Shinde, A. (2022) Synthesis, spectral studies, antioxidant and antibacterial evaluation of aromatic nitro and halogenated tetradentate Schiff bases. Heliyon, 8(6): 1-7.

13.   Geethapriya, J., Devaraj, A. R., Gayathri, K., Swadhi, R., Elangovan, N., Manivel, S., Sowrirajan, S. and Thomas, R. (2023). Solid state synthesis of a fluorescent Schiff base (E)-1-(perfluorophenyl)-N-(o-toly)methanimine followed by computational, quantum mechanical and molecular docking studies. Results in Chemistry, 5: 1-11.

14.   Nayak, S. G. and Poojary, B. (2019). Synthesis of novel Schiff bases containing arylpyrimidines as promising antibacterial agents. Heliyon, 5: 1-7.

15.   Đorović, J., Marković, Z., Petrović, Z. D., Simijonović, D. and Petrović, V. P. (2017). Theoretical analysis of the experimental UV-Vis absorption spectra of some phenolic Schiff bases. Molecular Physics, 115(19): 2460-2468.

16.   Nasaruddin, N. H., Ahmad, S. N., Sirat, S. S., Wai Tan, K., Zakaria, N. A., Mohamad Nazam, S. S., Abd Rahman, N. M. M., Mohd Yusof, N. S. and Bahron, H. (2022). Synthesis, structural characterization, Hirshfeld surface analysis, and antibacterial study of Pd(II) and Ni(II) Schiff base complexes derived from aliphatic diamine. ACS Omega, 7(47): 42809-42818.

17.   Hema, M. K.García-Santos, I., Castiñeiras, A., Mehrabian, M., Zangrando, E., Ramalingam, R. J., Ramakrishna, B. N., Lokanath, N. K., Karthik, C. S., Mahmoudi, G. (2023) Cg…Cg interactions driven 1D polymeric chains bridged by lattice solvents in N3-(2-pyridoyl)-4-pyridinecarboxamidrazone Pb(II) complex. Journal of Molecular Structure, 1294(1): 136420-136429.

18.   Razali, N. Z. K., Sheikh Mohd Ghazali, S. A. I., Sharif, I., Sapari, S., Abdul Razak, F. I. and Dzulkifli, N. N. (2022). Synthesis, characterisation and corrosion inhibition screening on 2- chloroacetophenone 4-ethyl-3-thiosemicarbazone: Morphology, weight loss and DFT studies. Chemical Papers, 76: 5955-5966.

19.   Sudha, S., Sundaraganesan, N., Kurt, M., Cinar, M. and Karabacak, M. (2011). FT-IR and FT-Raman spectra, vibrational assignments, NBO analysis and DFT calculations of 2-amino-4-chlorobenzonitrile. Journal of Molecular Structure, 985:148-156.

20.   Rakha, T. H., El-Gammal, O. A., Metwally, H. M. and Abu El-Reash, G, M. (2014). Synthesis, characterization, DFT and biological studies of (Z)-N·-(2-oxoindolin-3-ylidene)picolinohydrazide and its Co(II), Ni(II) and Cu(II) complexes. Journal of Molecular Structure, 1062: 96-109.

21.   Sherif, O. E. and Abdel-Kader, N. S. (2018). DFT calculations, spectroscopic studies, thermal analysis and biological activity of supramolecular Schiff base complexes. Arabian Journal of Chemistry, 11(5):700-713.

22.   Domingo, L. R., Aurell, M. J., Perez, P. and Contreras, R. ́ (2002). Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in diels-alder reactions. Tetrahedron, 58: 4417-4423.

23.   Idelfitri, N. I. F., Dzulkifli, N. N., Ash’ari, N. A. N., Sapari, S., Abdul Razak, F. I. and Pungot, N. H. (2023). Synthesis, characterisation and corrosion inhibitory study of meldrum’s acid thiosemicarbazone: Weight loss, SEM-EDX and DFT. Inorganic Chemistry Communications, 150: 1-11.