Malaysian Journal of Analytical
Sciences, Vol 28
No 1 (2024): 21 - 32
SPECTROSCOPIC, CRYSTAL
STRUCTURE, HIRSHFELD SURFACE AND DFT STUDIES OF 2-AMINO-4-CHLOROBENZONITRILE
(Kajian Spektroskopi, Struktur
Hablur, Permukaan Hirsfeld
dan DFT bagi 2-Amino-4-Klorobenzonitril)
Onur Erman Dogan1, Erbil Agar1, Necmi Dege2, Erna Normaya4, Siti Syaida Sirat3,5, and Nur Nadia Dzulkifli3*
1Department of Chemistry,
Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
2Department of Physics,
Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
3School of Chemistry and
Environment, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri
Sembilan, Kampus Kuala Pilah,
Pekan Parit Tinggi, 72000 Kuala Pilah,
Negeri Sembilan, Malaysia
4Experimental and
Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science,
International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar
Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
5Atta-ur-Rahman Institute
for Natural Product Discovery (AuRIns), Universiti Teknologi MARA, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia
*Corresponding author: nurnadia@uitm.edu.my
Received: 2 July 2023; Accepted: 4
November 2023; Published: 28 February
2024
Abstract
This research concentrates on a summary of the global reactivity
parameters on the single crystal structure of 2-amino-4-chlorobenzonitrile,
which can be utilised in a wide range of
applications. The commercial
2-amino-4-chlorobenzonitrile in light yellow (Sigma-Aldrich) [ACBN] was
recrystallized from ethanol. The compound crystallizes in the triclinic,
P-1 space group with unit cell parameters a =3.8924 (9) Å, b = 6.7886 (15) Å, c = 13.838 (3) Å, α
=77.559 (16)°, β
= 8.898 (17)° and γ = 83.021 (17)°. The presence of intermolecular
interactions was further analyzed via the Hirshfeld Surface analysis. The
electronic properties of the compound were investigated via the Density Functional Theory (DFT) using the CIF file of the single
crystal. Full geometry optimization was carried out using the DFT at
B3LYP with 6- 311++G (d, p) basis set level.
The structure of the recrystallized ACBN was confirmed via single
crystal X-ray Crystallography, FTIR, and UV-Vis. The IR spectrum showed three
main stretching bands namely nitrile, C≡N (2211 cm-1), C-Cl
(782 cm-1), and 1° NH (3452 and 3363 cm-1). The UV-Vis
analysis showed two main absorption peaks namely π → π∗ and n → π∗ which occured
in an aromatic ring and nitrile, C≡N. The compound crystallized in the
triclinic system with the space group Pī.
Nitrile (C≡N) and C-N have bond
lengths of 1.146(4) and 1.369(4) Ǻ, which are less than the theoretical
values of 1.160 and 1.470 Ǻ due to the conjugation of the aromatic ring.
The intrinsic molecular characteristics analysis showed that the compound has the
capability to donate electrons although it is categorized as a hard compound.
The exploration of intrinsic molecular features revealed that, despite the fact that ACBN is stable and less reactive, it
still has the ability to transfer and accept electrons. Furthermore, the
Mulliken analysis revealed that the compound has the capability to function as
a nucleophilic agent due to the nitrogen atoms (highly negative charges). As recommendation, the DFT study revealed that the compound can be
investigated more thoroughly in terms of reaction kinetics and mechanisms such
as corrosion inhibition and biological activities.
Keywords: benzonitrile,
density functional theory, mulliken, molecular electrostatic potential, Hirshfeld
surface
Abstrak
Kajian
ini menumpukan kepada ringkasan parameter kereaktifan global bagi struktur
hablur tunggal 2-amino-4-klorobenzonitril, yang boleh diaplikasikan dalam
pelbagai kegunaan. Komersial 2-amino-4-klorobenzonitril yang berwarna kuning
cair (Sigma-Aldrich) [ACBN] telah dilakukan penghabluran semula daripada
etanol. Sebatian tersebut menghablur dalam triklinik, kumpulan ruang P-1 dengan
parameter sel unit a =3.8924 (9) Å,
b = 6.7886 (15) Å, c = 13.838 (3)
Å, α
=77.559 (16)°, β = 8.898 (17)°
and γ = 83.021 (17)°. Kewujudan
interaksi antara molekul dianalisis selanjutnya dengan Permukaan Hirshfeld.
Sifat elektronik sebatian telah dikaji dengan Teori Fungsian Ketumpatan (DFT)
menggunakan fail CIF hablur tunggal. Pengoptimuman geometri penuh sebatian
telah dilakukan menggunakan B3LYP dengan tahap asas 6- 311++G (d, p). Struktur hablur ACBN telah
disahkan melalui Kristalografi sinar-X hablur tunggal,
FTIR, dan UV-Vis. Spektrum IR menunjukkan tiga jalur regangan yang utama iaitu
nitril, C≡N (2211 cm-1), C-Cl (782 cm-1),
dan 1° NH (3452 dan 3363 cm-1). Analisis UV-Vis menunjukkan dua
puncak serapan utama iaitu π → π∗ dan n → π∗ yang wujud dalam gegelang
aromatik dan nitril, C≡N. Sebatian itu terhablur dalam sistem triklinik
dengan kumpulan ruang Pī. Nitril (C≡N) dan C-N mempunyai panjang
ikatan iaitu 1.146(4) dan 1.369(4) Ǻ di mana kurang daripada nilai teori
iaitu 1.160 dan 1.470 Ǻ disebabkan oleh konjugasi dalam gegelang aromatik.
Analisis ciri molekul intrinsik menunjukkan bahawa sebatian ACBN mempunyai
keupayaan untuk menderma elektron walaupun dikategorikan sebagai sebatian
keras. Penerokaan ciri molekul intrinsik mendedahkan bahawa, walaupun
hakikatnya ACBN adalah stabil dan kurang reaktif tapi masih mempunyai keupayaan
menderma dan menerima elektron. Tambahan
pula, analisis Mulliken mendedahkan bahawa sebatian tersebut mempunyai keupayaan
untuk berfungsi sebagai agen nukleofilik disebabkan oleh atom nitrogen
mempunyai cas negatif yang tinggi. Sebagai cadangan, analisis DFT mendedahkan
bahawa sebatian ACBN boleh dikaji lebih teliti dari segi kinetik tindak balas
kimia dan mekanisma seperti perencatan kakisan dan aktiviti biologi.
Kata kunci: benzonitril, teori fungsian ketumpatan, Mulliken,
potensi elektrostatik molekul, permukaan Hirshfeld
References
1.
Sundaraganesan, N., Elango, G., Sebastian, S. and Subramani, P.
(2009). Molecular structure, vibrational spectroscopic studies
and analysis of 2-fluoro-5-methylbenzonitrile. Indian Journal of Pure &
Applied Physics, 47: 481-490.
2.
Misra, N., Ahmad
Siddiqui, S., Pandey, A. K. and Trivedi, S. (2009). Comparative vibrational
spectroscopic investigation of benzonitrile derivatives using density
functional theory. Der Pharma Chemica, 1(1): 196-209.
3.
Kumar, V., Panikar, Y., Palafox, M. A., Vats, J. K., Kostova, I.,
Lang, K. and Rastogi, V. K. (2010). Ab-initio Calculations, FT-IR and FT-raman spectra of 2-chloro-6-methyl benzonitrile. Indian
Journal of Pure and Applied Physics, 48: 85-94.
4.
Dixon, A. R., Khuseynov, D. and Sanov, A. (2015). Benzonitrile: Electron
affinity, excited states, and anion solvation. Journal of Chemical Physics,
143(13): 1-12.
5.
Karaağaç, D.
(2021). Preparation and characterisation of the
cyano-bridged transition metal complexes using n,nʹ-diethyl
thiourea as a ligand. South African Journal of Chemistry, 75: 130-135.
6.
Hirose, M. And
Torii, H. (2022). Role of the electrostatic interactions in the changes in the
CN stretching frequency of benzonitrile interacting with hydrogen-bond donating
molecules. Journal of Molecular Liquids, 362: 1-7.
7.
Stoe and Cie
(2002) X-AREA (Version 1.18) X-RED32 (Version 1.04) Stoe & Cie, Darmstadt,
Germany.
8.
Sheldrick, G. M. (2008) A short history of SHELX, Acta Crystallographica, A64: 112-122.
9.
Farrugia, L. J.
(1997). ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User
Interface (GUI). Journal of Applied Crystallography, 30(5): 565.
10.
Macrae, C. F.,
Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler,
M., van de Streek, J. and Streek,
J. V. D. (2006) Mercury:
Visualization and analysis of crystal structures. Journal of Applied Crystallogarphy, 39: 453-457.
11.
Turner, M. J.,
McKinnon, J. J., Wol, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. and Spackman, M. A. (2017). Crystal Explorer
17, University of Western Australia: Crawley, Australia.
12.
Vhanale, B., Kadam, D.
and Shinde, A. (2022) Synthesis, spectral studies, antioxidant
and antibacterial evaluation of aromatic nitro and halogenated tetradentate
Schiff bases. Heliyon, 8(6): 1-7.
13.
Geethapriya, J.,
Devaraj, A. R., Gayathri, K., Swadhi, R., Elangovan, N., Manivel, S.,
Sowrirajan, S. and Thomas, R. (2023). Solid state synthesis of a fluorescent
Schiff base (E)-1-(perfluorophenyl)-N-(o-toly)methanimine followed by computational, quantum
mechanical and molecular docking studies. Results in Chemistry, 5: 1-11.
14.
Nayak, S. G. and
Poojary, B. (2019). Synthesis of novel Schiff bases containing arylpyrimidines as promising antibacterial agents. Heliyon, 5: 1-7.
15.
Đorović, J.,
Marković, Z., Petrović, Z. D., Simijonović,
D. and Petrović, V. P. (2017). Theoretical analysis of the experimental
UV-Vis absorption spectra of some phenolic Schiff bases. Molecular Physics,
115(19): 2460-2468.
16.
Nasaruddin, N. H.,
Ahmad, S. N., Sirat, S. S., Wai Tan, K., Zakaria, N. A., Mohamad Nazam, S. S.,
Abd Rahman, N. M. M., Mohd Yusof, N. S. and Bahron,
H. (2022). Synthesis, structural
characterization, Hirshfeld surface analysis, and antibacterial study of Pd(II) and Ni(II) Schiff base complexes derived from
aliphatic diamine. ACS Omega, 7(47):
42809-42818.
17.
Hema, M. K., García-Santos, I., Castiñeiras, A., Mehrabian,
M., Zangrando, E., Ramalingam, R. J., Ramakrishna,
B. N., Lokanath, N. K., Karthik, C. S., Mahmoudi,
G. (2023) Cg…Cg interactions driven 1D polymeric
chains bridged by lattice solvents in N3-(2-pyridoyl)-4-pyridinecarboxamidrazone
Pb(II) complex. Journal of
Molecular Structure, 1294(1): 136420-136429.
18.
Razali, N. Z. K.,
Sheikh Mohd Ghazali, S. A. I., Sharif, I., Sapari, S., Abdul Razak, F. I. and
Dzulkifli, N. N. (2022). Synthesis, characterisation
and corrosion inhibition screening on 2- chloroacetophenone
4-ethyl-3-thiosemicarbazone: Morphology, weight loss and DFT studies. Chemical
Papers, 76: 5955-5966.
19.
Sudha, S., Sundaraganesan, N., Kurt, M., Cinar, M. and Karabacak, M.
(2011). FT-IR and FT-Raman spectra, vibrational assignments, NBO analysis and
DFT calculations of 2-amino-4-chlorobenzonitrile. Journal of Molecular
Structure, 985:148-156.
20.
Rakha, T.
H., El-Gammal, O. A., Metwally, H. M.
and Abu El-Reash, G, M. (2014). Synthesis, characterization, DFT and
biological studies of (Z)-N·-(2-oxoindolin-3-ylidene)picolinohydrazide and its Co(II), Ni(II) and Cu(II)
complexes. Journal of Molecular Structure, 1062: 96-109.
21.
Sherif, O. E.
and Abdel-Kader, N. S. (2018). DFT
calculations, spectroscopic studies, thermal analysis
and biological activity of supramolecular Schiff base complexes. Arabian
Journal of Chemistry, 11(5):700-713.
22.
Domingo,
L. R., Aurell, M. J., Perez, P. and Contreras, R.
́ (2002). Quantitative characterization of the global electrophilicity
power of common diene/dienophile pairs in diels-alder
reactions. Tetrahedron, 58: 4417-4423.
23.
Idelfitri, N. I. F.,
Dzulkifli, N. N., Ash’ari, N. A. N., Sapari, S.,
Abdul Razak, F. I. and Pungot, N. H. (2023).
Synthesis, characterisation
and corrosion inhibitory study of meldrum’s acid
thiosemicarbazone: Weight loss, SEM-EDX and DFT. Inorganic Chemistry
Communications, 150: 1-11.