Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 10 -20

 

PEROXYMONOSULFATE ACTIVATION USING NITROGEN-DOPED BIOCHAR FOR ACID ORANGE 7 REMOVAL IN WATER

 

(Pengaktifan Peroksimonosulfat dengan Bioarang Terdop Nitrogen untuk Penyingkiran Asid Oren 7 dalam Air)

 

Mohamed Faisal Gasim, Nivethah Sivam, and Wen-Da Oh*

 

School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

 

*Corresponding author: ohwenda@usm.my

 

 

Received: 18 August 2023; Accepted: 21 December 2023; Published: 28 February 2024

 

 

Abstract

In this study, N-doped plastic-derived biochar was synthesized at different synthesis temperatures (600, 700 and 800 ºC) using a facile one-pot pyrolysis technique. The as-prepared N-doped biochars were employed to investigate the effect of pyrolysis temperature on the biochar characteristics and catalytic performance as peroxymonosulfate (PMS) activator for acid orange 7 (AO7) removal. The X-ray Diffraction (XRD) analysis indicated that the N-doped biochar consists of amorphous carbon whereas the field emission scanning electron microscope (FESEM) images illustrated that the catalysts have microparticles morphology with porous features. The N-doped biochar synthesized at 800 ºC (N-800) displayed the best performance with 98% AO7 removed in 30 min (pseudo first-order rate constant, kapp = 0.211 min-1). The kapp was positively affected by increasing the PMS dosage and N-800 loading while neutral condition (pH = 7) was optimum for AO7 removal. The scavenger study suggests that singlet oxygen (1O2) was the dominant reactive oxygen species (ROS) in this reaction system as sodium azide (NaN3) scavenger inhibited the AO7 removal by 80%. N-800 catalytic performance in removing AO7 was reduced from 97 to 22% after four consecutive cycles due to irreversible adsorption and oxidation of active sites. Overall, the N-800 was able to activate PMS effectively with a promising potential for sustainable azo dye removal. Future-wise, the employment of co-doping other heteroatoms (such as S, B) into N-doped plastic-derived biochar for synergistic effects should be investigated.

 

Keywords: advanced oxidation process, peroxymonosulfate, acid orange 7, nitrogen doping, biochar

 

Abstrak

Dalam kajian ini, bioarang terdop N telah disintesis daripada plastik pada suhu sintesis yang berbeza (600, 700 dan 800 ºC) dengan menggunakan teknik pirolisis satu periuk. Bioarang terdop N yang disediakan telah digunakan untuk menyiasat kesan suhu pirolisis ke atas ciri-ciri bioarang dan prestasi sebagai pemangkin bagi pengaktifan peroksimonosulfat (PMS) untuk penyingkiran asid oren 7 (AO7). Analisa pembelauan sinar-X menunjukkan bioarang terdop N terdiri daripada karbon amorfus manakala mikroskop elektron pengimbasan pelepasan medan (FESEM) menggambarkan bahawa pemangkin mempunyai morfologi mikrozarah dengan ciri berliang. Bioarang terdop N yang disintesis pada 800 ºC (N-800) menunjukkan prestasi terbaik dengan penyingkiran 98% AO7 dalam 30 min (pemalar kadar pseudo tertib pertama, kapp = 0.211 min-1). Didapati kapp meningkat dengan peningkatan dos PMS dan pemuatan N-800 manakala pH 7 merupakan pH terbaik bagi penyingkiran AO7. Kajian mengunakan perencat radikal natrium azida (NaN3) menunjukkan bahawa oksigen singlet (1O2) adalah spesies oksigen reaktif (ROS) yang dominan dalam sistem tindak balas ini. Prestasi pemangkin N-800 dalam penyingkiran AO7 telah berkurangan daripada 97 kepada 22% selepas empat kitaran berturut-turut disebabkan oleh penjerapan tidak berbalik dan pengoksidaan tapak aktif. Secara keseluruhan, N-800 dapat mengaktifkan PMS dengan berkesan dan menunjukkan potensi penyingkiran pewarna azo yang mampan. Dalam masa hadapan, pendopan bioarang terdop N terbitan plastik bersama heteroatom lain (seperti S, B) perlu disiasat untuk kesan sinergistik.

 

Kata kunci: proses pengoksidaan lanjutan, peroksimonosulfat, asid oren 7, nitrogen terdop, bioarang

 


References

1.    Guerra-Rodríguez, S., Rodríguez, E., Singh, D. N. and Rodríguez-Chueca, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review. Water (Switzerland), 10(12): 1828.

2.    Swain, G., Singh, S., Sonwani, R. K., Singh, R. S., Jaiswal, R. P. and Rai, B.N. (2021). Removal of acid orange 7 dye in a packed bed bioreactor: process optimization using response surface methodology and kinetic study. Bioresource Technology Reports, 13: 100620.

3.    Perera, H. J. (2020). Removal of acid orange 7 dye from wastewater: review. Advances in Science and Engineering Technology International Conferences, pp. 1-6.

4.    Oh, W. Da, Dong, Z. and Lim, T. T. (2016). Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Applied Catalysis B: Environmental 194: 169-201.

5.    Xia, X., Zhu, F., Li, J., Yang, H., Wei, L., Li, Q., Jiang, J., Zhang, G. and Zhao, Q. (2020). A Review study on sulfate-radical-based advanced oxidation processes for domestic/industrial wastewater treatment: degradation, efficiency, and mechanism. Frontiers in Chemistry 8: 1092.

6.    Gasim, M. F., Veksha, A., Lisak, G., Low, S.C., Hamidon, T.S., Hussin, M.H. and Oh, W. Da (2023). Importance of carbon structure for nitrogen and sulfur co-doping to promote superior ciprofloxacin removal via peroxymonosulfate activation. Journal of Colloid and Interface Science, 634: 586-600.

7.    Song, H., Yan, L., Wang, Y., Jiang, J., Ma, J., Li, C., Wang, G., Gu, J. and Liu, P. (2020). Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation. Chemical Engineering Journal, 391: 123560.

8.    Gasim, M. F., Choong, Z. Y., Koo, P. L., Low, S. C., Abdurahman, M. H., Ho, Y. C.,  Mohamad, M., Suryawan, I. W. K., Lim, J. W. and Oh, W. Da (2022). Application of biochar as functional material for remediation of organic pollutants in water: an overview. Catalysts, 12(2): 210.

9.    Wang, J., Cai, J., Wang, S., Zhou, X., Ding, X., Ali, J., Zheng, L., Wang, S., Yang, L., Xi, S. et al. (2022). Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species. Chemical Engineering Journal, 428: 131233.

10. Han, R., Fang, Y., Sun, P., Xie, K., Zhai, Z., Liu, H. and Liu, H. (2021). N-doped biochar as a new metal-free activator of peroxymonosulfate for singlet oxygen-dominated catalytic degradation of acid orange 7. Nanomaterials, 11(9): 2288.

11. Gasim, M. F., Lim, J.-W., Low, S.-C., Lin, K.-Y.A. and Oh, W.-D. (2022). Can biochar and hydrochar be used as sustainable catalyst for persulfate activation? Chemosphere, 287: 132458.

12. Oh, W. Da, Veksha, A., Chen, X., Adnan, R., Lim, J. W., Leong, K. H. and Lim, T.T. (2019). Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation. Chemical Engineering Journal, 374: 947-957.

13. Ungár, T., Gubicza, J., Ribárik, G., Pantea, C. and Zerda, T. W. (2002). Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon, 40(6): 929-937.

14. Ng, W.-Y., Choong, Z.-Y., Gasim, M. F., Khoerunnisa, F., Lin, K.-Y.A. and Oh, W.-D. (2002). Insights into the performance and kinetics of face mask-derived nitrogen-doped porous carbon as peroxymonosulfate activator for gatifloxacin removal. Journal of Water Process Engineering, 50: 103239.

15. Lawrinenko, M. and Laird, D. A. (2015). Anion exchange capacity of biochar. Green Chemistry, 17(9): 4628-4636.

16. Guo, D., Xin, R., Wang, Y., Jiang, W., Gao, Q., Hu, G. and Fan, M. (2019). N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors. Microporous and Mesoporous Materials, 279: 323-333.

17. Dey, R. S., Hajra, S., Sahu, R. K., Raj, C. R. and Panigrahi, M. K. (2012). A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide. Chemical Communications, 48(12): 1787-1789.

18. Liu, N., Zhang, Y., Xu, C., Liu, P., Lv, J., Liu, Y.Y. and Wang, Q. (2020). Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study. Journal of Hazardous Materials, 384: 121371.

19.  Yu, J., Tang, L., Pang, Y., Zeng, G., Wang, J., Deng, Y., Liu, Y., Feng, H., Chen, S. and Ren, X. (2019). Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal


electron transfer mechanism. Chemical Engineering Journal, 364: 146-159.

20. Maiyalagan, T. and Viswanathan, B. (2005). Template synthesis and characterization of well-aligned nitrogen containing carbon nanotubes. Materials Chemistry and Physics, 93(2-3): 291-295.

21. Xu, L., Wu, C., Liu, P., Bai, X., Du, X., Jin, P., Yang, L., Jin, X., Shi, X. and Wang, Y. (2020) Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants. Chemical Engineering Journal, 387: 124065.

22. Fan, Y., Zhou, Z., Feng, Y., Zhou, Y., Wen, L. and Shih, K. (2020). Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites. Chemical Engineering Journal, 383: 123056.

23. Li, Z., Sun, Y., Yang, Y., Han, Y., Wang, T., Chen, J. and Tsang, D.C.W. (2020). Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. Journal of Hazardous Materials, 383: 121240.

24. Zhang, T., Zhu, H. and Croué, J. P. (2013). Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism. Environmental Science and Technology, 47(6): 2784-2791.

25. Pérez-Urquiza, M. and Beltrán, J. L. (2001). Determination of the dissociation constants of sulfonated azo dyes by capillary zone electrophoresis and spectrophotometry methods. Journal of Chromatography A 917(1–2): 331-336.

26. Khan, R., Habib, M., Gondal, M. A., Guan, K., Zhou, P., Zhang, J. and Zhu, L. (2020). Catalytic degradation of acid orange 7 in water by persulfate activated with CuFe2O4@RSDBC. Materials Research Express, 7(1): 016529.

27. Zaeni, J. R. J., Lim, J. W., Wang, Z., Ding, D., Chua, Y. S., Ng, S. L. and Oh, W. Da (2020). In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: characteristics and performance studies. Separation and Purification Technology, 241: 116702.

28. Sun, P., Liu, H., Feng, M., Guo, L., Zhai, Z., Fang, Y., Zhang, X. and Sharma, V. K. (2019). Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator: singlet oxygen-dominated catalytic degradation of organic contaminants. Applied Catalysis B: Environmental, 251: 335-345.

29. Sun, H., Peng, X., Zhang, S., Liu, S., Xiong, Y., Tian, S. and Fang, J. (2017). Activation of peroxymonosulfate by nitrogen-functionalized sludge carbon for efficient degradation of organic pollutants in water. Bioresource Technology, 241: 244-251.

30. Chen, X., Oh, W. Da, Hu, Z. T., Sun, Y. M., Webster, R. D., Li, S. Z. and Lim, T. T. (2018). Enhancing sulfacetamide degradation by peroxymonosulfate activation with n-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes. Applied Catalysis B: Environmental, 225: 243-257.