Malaysian Journal of Analytical
Sciences, Vol 28
No 1 (2024): 10 -20
PEROXYMONOSULFATE ACTIVATION USING NITROGEN-DOPED BIOCHAR FOR ACID
ORANGE 7 REMOVAL IN WATER
(Pengaktifan
Peroksimonosulfat dengan Bioarang Terdop Nitrogen untuk Penyingkiran Asid Oren
7 dalam Air)
Mohamed Faisal Gasim, Nivethah Sivam, and Wen-Da Oh*
School of Chemical
Sciences, Universiti Sains Malaysia, 11800 Penang,
Malaysia
*Corresponding author: ohwenda@usm.my
Received: 18 August 2023; Accepted: 21
December 2023; Published: 28 February 2024
Abstract
In
this study, N-doped plastic-derived biochar was synthesized at different
synthesis temperatures (600, 700 and 800 ºC) using a facile one-pot pyrolysis
technique. The as-prepared N-doped biochars were
employed to investigate the effect of pyrolysis temperature on the biochar
characteristics and catalytic performance as peroxymonosulfate
(PMS) activator for acid orange 7 (AO7) removal. The X-ray Diffraction (XRD)
analysis indicated that the N-doped biochar consists of amorphous carbon
whereas the field emission scanning electron microscope (FESEM) images
illustrated that the catalysts have microparticles morphology with porous
features. The N-doped biochar synthesized at 800 ºC (N-800) displayed the best
performance with 98% AO7 removed in 30 min (pseudo first-order rate constant, kapp = 0.211 min-1). The kapp was positively affected by
increasing the PMS dosage and N-800 loading while neutral condition (pH = 7)
was optimum for AO7 removal. The scavenger study suggests that singlet oxygen (1O2)
was the dominant reactive oxygen species (ROS) in this reaction system as
sodium azide (NaN3) scavenger inhibited
the AO7 removal by 80%. N-800 catalytic performance in removing AO7 was reduced
from 97 to 22% after four consecutive cycles due to irreversible adsorption and
oxidation of active sites. Overall, the N-800 was able to activate PMS effectively
with a promising potential for sustainable azo dye removal. Future-wise, the employment of co-doping other heteroatoms (such as S,
B) into N-doped plastic-derived biochar for synergistic effects should be
investigated.
Keywords:
advanced oxidation process, peroxymonosulfate,
acid orange 7, nitrogen doping, biochar
Abstrak
Dalam kajian ini, bioarang terdop N
telah disintesis daripada plastik pada suhu sintesis yang berbeza (600, 700 dan
800 ºC) dengan menggunakan teknik pirolisis satu periuk. Bioarang terdop N yang
disediakan telah digunakan untuk menyiasat kesan suhu pirolisis ke atas
ciri-ciri bioarang dan prestasi sebagai pemangkin bagi pengaktifan
peroksimonosulfat (PMS) untuk penyingkiran asid oren 7 (AO7). Analisa
pembelauan sinar-X menunjukkan bioarang terdop N terdiri daripada karbon
amorfus manakala mikroskop elektron pengimbasan pelepasan medan (FESEM)
menggambarkan bahawa pemangkin mempunyai morfologi mikrozarah dengan ciri
berliang. Bioarang terdop N yang disintesis pada 800 ºC (N-800) menunjukkan
prestasi terbaik dengan penyingkiran 98% AO7 dalam 30 min (pemalar kadar pseudo
tertib pertama, kapp = 0.211 min-1).
Didapati kapp meningkat dengan peningkatan dos
PMS dan pemuatan N-800 manakala pH 7 merupakan pH terbaik bagi penyingkiran
AO7. Kajian mengunakan perencat radikal natrium azida (NaN3) menunjukkan
bahawa oksigen singlet (1O2) adalah spesies oksigen reaktif (ROS) yang dominan dalam sistem tindak
balas ini. Prestasi pemangkin N-800 dalam penyingkiran AO7 telah berkurangan
daripada 97 kepada 22% selepas empat kitaran berturut-turut disebabkan oleh
penjerapan tidak berbalik dan pengoksidaan tapak aktif. Secara keseluruhan, N-800
dapat mengaktifkan PMS dengan berkesan dan menunjukkan potensi penyingkiran
pewarna azo yang mampan. Dalam masa hadapan, pendopan bioarang terdop N
terbitan plastik bersama heteroatom lain (seperti S, B) perlu disiasat untuk
kesan sinergistik.
Kata
kunci: proses
pengoksidaan lanjutan, peroksimonosulfat, asid oren 7, nitrogen terdop,
bioarang
References
1. Guerra-Rodríguez,
S., Rodríguez, E., Singh, D. N. and Rodríguez-Chueca, J. (2018). Assessment of
sulfate radical-based advanced oxidation processes for water and wastewater
treatment: a review. Water (Switzerland), 10(12): 1828.
2. Swain, G., Singh, S., Sonwani, R. K., Singh,
R. S., Jaiswal, R. P. and Rai, B.N. (2021). Removal of acid orange 7 dye in a
packed bed bioreactor: process optimization using response surface methodology
and kinetic study. Bioresource Technology Reports, 13: 100620.
3. Perera, H. J. (2020). Removal of acid orange
7 dye from wastewater: review. Advances in Science and Engineering
Technology International Conferences, pp. 1-6.
4. Oh, W. Da, Dong, Z. and Lim, T. T. (2016).
Generation of sulfate radical through heterogeneous catalysis for organic
contaminants removal: current development, challenges and prospects. Applied
Catalysis B: Environmental 194: 169-201.
5. Xia, X., Zhu, F., Li, J., Yang, H., Wei, L.,
Li, Q., Jiang, J., Zhang, G. and Zhao, Q. (2020). A Review study on
sulfate-radical-based advanced oxidation processes for domestic/industrial
wastewater treatment: degradation, efficiency, and mechanism. Frontiers in
Chemistry 8: 1092.
6. Gasim, M. F., Veksha, A., Lisak, G., Low,
S.C., Hamidon, T.S., Hussin, M.H. and Oh, W. Da (2023). Importance of carbon
structure for nitrogen and sulfur co-doping to promote superior ciprofloxacin
removal via peroxymonosulfate activation. Journal of Colloid and Interface
Science, 634: 586-600.
7. Song, H., Yan, L., Wang, Y., Jiang, J., Ma,
J., Li, C., Wang, G., Gu, J. and Liu, P. (2020). Electrochemically activated
PMS and PDS: Radical oxidation versus nonradical oxidation. Chemical
Engineering Journal, 391: 123560.
8. Gasim, M. F., Choong, Z. Y., Koo, P. L., Low,
S. C., Abdurahman, M. H., Ho, Y. C.,
Mohamad, M., Suryawan, I. W. K., Lim, J. W. and Oh, W. Da (2022).
Application of biochar as functional material for remediation of organic
pollutants in water: an overview. Catalysts, 12(2): 210.
9. Wang, J., Cai, J., Wang, S., Zhou, X., Ding,
X., Ali, J., Zheng, L., Wang, S., Yang, L., Xi, S. et al. (2022). Biochar-based
activation of peroxide: multivariate-controlled performance, modulatory surface
reactive sites and tunable oxidative species. Chemical Engineering Journal,
428: 131233.
10. Han, R., Fang, Y., Sun, P., Xie, K., Zhai, Z.,
Liu, H. and Liu, H. (2021). N-doped biochar as a new metal-free activator of
peroxymonosulfate for singlet oxygen-dominated catalytic degradation of acid
orange 7. Nanomaterials, 11(9): 2288.
11. Gasim, M. F., Lim, J.-W., Low, S.-C., Lin,
K.-Y.A. and Oh, W.-D. (2022). Can biochar and hydrochar be used as sustainable
catalyst for persulfate activation? Chemosphere, 287: 132458.
12. Oh, W. Da, Veksha, A., Chen, X., Adnan, R.,
Lim, J. W., Leong, K. H. and Lim, T.T. (2019). Catalytically active
nitrogen-doped porous carbon derived from biowastes for organics removal via
peroxymonosulfate activation. Chemical Engineering Journal, 374:
947-957.
13. Ungár, T., Gubicza, J., Ribárik, G., Pantea, C.
and Zerda, T. W. (2002). Microstructure of carbon blacks determined by X-ray
diffraction profile analysis. Carbon, 40(6): 929-937.
14. Ng, W.-Y., Choong, Z.-Y., Gasim, M. F.,
Khoerunnisa, F., Lin, K.-Y.A. and Oh, W.-D. (2002). Insights into the
performance and kinetics of face mask-derived nitrogen-doped porous carbon as
peroxymonosulfate activator for gatifloxacin removal. Journal of Water
Process Engineering, 50: 103239.
15. Lawrinenko, M. and Laird, D. A. (2015). Anion
exchange capacity of biochar. Green Chemistry, 17(9): 4628-4636.
16. Guo, D., Xin, R., Wang, Y., Jiang, W., Gao, Q.,
Hu, G. and Fan, M. (2019). N-doped carbons with hierarchically micro- and
mesoporous structure derived from sawdust for high performance supercapacitors.
Microporous and Mesoporous Materials, 279: 323-333.
17. Dey, R. S., Hajra, S., Sahu, R. K., Raj, C. R.
and Panigrahi, M. K. (2012). A rapid room temperature chemical route for the
synthesis of graphene: metal-mediated reduction of graphene oxide. Chemical
Communications, 48(12): 1787-1789.
18. Liu, N., Zhang, Y., Xu, C., Liu, P., Lv, J.,
Liu, Y.Y. and Wang, Q. (2020). Removal mechanisms of aqueous Cr(VI) using apple
wood biochar: a spectroscopic study. Journal of Hazardous Materials,
384: 121371.
19. Yu, J., Tang, L., Pang, Y., Zeng, G., Wang,
J., Deng, Y., Liu, Y., Feng, H., Chen, S. and Ren, X. (2019). Magnetic
nitrogen-doped sludge-derived biochar catalysts for persulfate activation:
Internal
electron transfer mechanism. Chemical
Engineering Journal, 364: 146-159.
20. Maiyalagan, T. and Viswanathan, B. (2005).
Template synthesis and characterization of well-aligned nitrogen containing
carbon nanotubes. Materials Chemistry and Physics, 93(2-3): 291-295.
21. Xu, L., Wu, C., Liu, P., Bai, X., Du, X., Jin,
P., Yang, L., Jin, X., Shi, X. and Wang, Y. (2020) Peroxymonosulfate activation
by nitrogen-doped biochar from sawdust for the efficient degradation of organic
pollutants. Chemical Engineering Journal, 387: 124065.
22. Fan, Y., Zhou, Z., Feng, Y., Zhou, Y., Wen, L.
and Shih, K. (2020). Degradation mechanisms of ofloxacin and cefazolin using
peroxymonosulfate activated by reduced graphene oxide-CoFe2O4
composites. Chemical Engineering Journal, 383: 123056.
23. Li, Z., Sun, Y., Yang, Y., Han, Y., Wang, T.,
Chen, J. and Tsang, D.C.W. (2020). Biochar-supported nanoscale zero-valent iron
as an efficient catalyst for organic degradation in groundwater. Journal of
Hazardous Materials, 383: 121240.
24. Zhang, T., Zhu, H. and Croué, J. P. (2013).
Production of sulfate radical from peroxymonosulfate induced by a magnetically
separable CuFe2O4 spinel in water: Efficiency, stability,
and mechanism. Environmental Science and Technology, 47(6): 2784-2791.
25. Pérez-Urquiza, M. and Beltrán, J. L. (2001).
Determination of the dissociation constants of sulfonated azo dyes by capillary
zone electrophoresis and spectrophotometry methods. Journal of
Chromatography A 917(1–2): 331-336.
26. Khan, R., Habib, M., Gondal, M. A., Guan, K.,
Zhou, P., Zhang, J. and Zhu, L. (2020). Catalytic degradation of acid orange 7
in water by persulfate activated with CuFe2O4@RSDBC. Materials
Research Express, 7(1): 016529.
27. Zaeni, J. R. J., Lim, J. W., Wang, Z., Ding, D., Chua, Y. S., Ng, S. L. and Oh, W. Da
(2020). In situ nitrogen functionalization of biochar via one-pot
synthesis for catalytic peroxymonosulfate activation: characteristics and
performance studies. Separation and Purification Technology, 241:
116702.
28. Sun, P., Liu, H., Feng, M., Guo, L., Zhai, Z.,
Fang, Y., Zhang, X. and Sharma, V. K. (2019). Nitrogen-sulfur co-doped
industrial graphene as an efficient peroxymonosulfate activator: singlet
oxygen-dominated catalytic degradation of organic contaminants. Applied
Catalysis B: Environmental, 251: 335-345.
29. Sun, H., Peng, X., Zhang, S., Liu, S., Xiong,
Y., Tian, S. and Fang, J. (2017). Activation of peroxymonosulfate by
nitrogen-functionalized sludge carbon for efficient degradation of organic
pollutants in water. Bioresource Technology, 241: 244-251.
30. Chen, X., Oh, W. Da, Hu, Z. T., Sun, Y. M.,
Webster, R. D., Li, S. Z. and Lim, T. T. (2018). Enhancing sulfacetamide
degradation by peroxymonosulfate activation with n-doped graphene produced
through delicately-controlled nitrogen functionalization via tweaking thermal
annealing processes. Applied Catalysis B: Environmental, 225: 243-257.