Malaysian Journal of Analytical
Sciences, Vol 28
No 1 (2024): 236 - 246
IONIC TRANSPORT AND STRUCTURAL ANALYSIS OF BIOPOLYMER ELECTROLYTE BASED
ON AGAROSE INTEGRATED WITH SODIUM NITRATE
(Kajian Pengangkutan Ion dan Struktur kepada Elektrolit Biopolimer Berdasarkan Penggabungan antara Agarose dan Natrium Nitrat)
Nur Farisha Sulthan Hussain1, Siti Zafirah Zainal
Abidin1,2*, Nora Aishah Ahmad Shaharuddin1,
Raja Nur Qurratu Ain Raja Syiarizzad1, Siti
Rudhziah Che Balian3
1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450
Shah Alam, Selangor, Malaysia
2Ionic Materials and Devices (iMADE) Research Laboratory,
Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
3Centre of Foundation Studies, Universiti Teknologi MARA,
Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia
*Corresponding author: szafirah@uitm.edu.my
Received: 15 September 2023;
Accepted: 30 December 2023; Published: 28
February 2024
Abstract
The
central focus of this paper revolves around investigating biopolymer
electrolyte films characterized by exceptional ionic conductivity, a
prerequisite for the practical implementation of sodium-ion batteries. This
study successfully prepared the agarose-based biopolymer electrolyte using the
solution casting method. The effects of adding various weight percentages (0,
10, 20, 30 and 40 wt.%) of sodium nitrate salt (NaNO3) to
agarose-based biopolymer electrolytes were characterized. Electrochemical
Impedance Spectroscopy (EIS) was adapted to analyze the conductivity and
dielectric relaxation phenomena of the agarose-NaNO3 complex. The
conductivity of agarose-based biopolymer electrolytes increases with the
increasing salt concentration. The increase in ionic conductivity is due to the
increase in the number of charge carriers and the mobility of the sodium ions.
The highest room temperature conductivity was 3.44×10-5 S⋅cm-1 for the agarose-NaNO3 biopolymer electrolytes
containing 30 wt.% sodium nitrate. X-ray diffractometer (XRD) spectroscopy was
employed to investigate the crystallinity of the agarose-based biopolymer
electrolyte. It was confirmed that the agarose-based biopolymer with 30 wt.% of
sodium nitrate is the most amorphous compared to the others, as it has the
largest full width at half maximum (FWHM) and the smallest crystallite size.
This indicated that the amorphousness of the biopolymer electrolyte boosts the
Na+ ions' mobility, increasing the ionic
conductivity of the samples.
Keywords: biopolymer electrolyte,
agarose, sodium nitrate, conductivity, dielectric constant, crystallite size
Abstrak
Tumpuan utama dalam artikel ini adalah berkisar tentang
penyelidikan untuk filem electrolit
biopolymer yang dicirikan oleh kekonduksian ionik yang luar biasa,
prasyarat untuk pelaksanaan praktikal dalam bateri natrium-ion. Dalam kajian
ini, elektrolit biopolimer berasaskan agarosa telah disediakan dengan jayanya
menggunakan kaedah penuangan larutan. Kesan penambahan pelbagai peratusan berat
(0, 10, 20, 30 dan 40 wt.%) garam natrium nitrat (NaNO3) kepada
elektrolit biopolimer berasaskan agarosa dicirikan. Spektroskopi impedans elektrokimia (EIS)
telah disesuaikan untuk menganalisis fenomena masa pengenduran kekonduksian dan
dielektrik kompleks agarosa-NaNO3. Kekonduksian elektrolit
biopolimer berasaskan agarosa meningkat dengan kepekatan garam yang semakin
meningkat. Peningkatan kekonduksian ionik adalah disebabkan oleh peningkatan
bilangan pembawa cas dan mobiliti ion natrium. Kekonduksian suhu bilik tertinggi
ialah 3.44×10-5 S⋅cm-1
untuk elektrolit biopolimer agarose-NaNO3 yang mengandungi 30 wt.%
natrium nitrat. Spektroskopi pembelauan sinar-X (XRD) digunakan untuk menyiasat
kehabluran elektrolit biopolimer berasaskan agarosa. Telah disahkan bahawa
biopolimer berasaskan agarosa dengan 30 wt.% natrium nitrat adalah yang paling
amorf berbanding yang lain, kerana ia mempunyai lebar penuh terbesar pada
separuh maksimum (FWHM) dan saiz hablur halus terkecil. Ini menunjukkan bahawa
amorfus elektrolit biopolimer meningkatkan mobiliti ion-ion Na+
sekali gus meningkatkan kekonduksian ionik sampel.
Kata
kunci:
elektrolit biopolimer, agarose, natrium nitrat, kekonduksian, pemalar
dielektrik, saiz kristal
References
1.
Zheng, J., Li, W., Liu, X., Zhang, J., Feng, X. and
Chen, W. (2023). Progress in gel polymer electrolytes for sodium-ion batteries.
Energy Environment Materials, 6(4): e12422.
2.
Ali, N. I., Abidin S. Z. Z., Majid S. R. and Jaafar N. K. (2021). Role of Mg(NO3)2
as defective agent in ameliorating the electrical conductivity, structural and
electrochemical properties of agarose–based polymer electrolytes. Polymers,
13(19): 3357.
3.
Rani, M. S. A., Mohamed, N. S., and Isa, M. I. N.
(2015). Investigation of the ionic conduction mechanism in carboxymethyl
cellulose/chitosan biopolymer blend electrolyte impregnated with ammonium
nitrate. International Journal of
Polymer Analysis and
Characterization, 20(6): 491-503.
4.
Fuzlin, A. F., Bakri, N. A., Sahraoui, B.
and Samsudin, A. S. (2019). Study on the effect of lithium nitrate in ionic
conduction properties based alginate biopolymer
electrolytes. Materials Research Express, 7: 015902.
5.
Lizundia, E., and Kundu, D. (2021).
Advances in natural biopolymer‐based electrolytes and separators for
battery applications. Advanced Functional Materials, 31(3): 2005646.
6.
Kiruthika, S., Malathi, M., Selvasekarapandian,
S., Tamilarasan, K. and Maheshwari, T. (2020). Conducting biopolymer
electrolyte based on pectin with magnesium chloride salt for magnesium battery
application. Polymer Bulletin, 77:
6299-6317.
7.
Jinisha, B., Anilkumar, K. M., Manoj, M., Abhilash,
A., Pradeep, V. S. and Jayalekshmi, S. (2018). Poly
(ethylene oxide) (PEO)-based, Poly (ethylene oxide) (PEO)-based, sodium
ion-conducting‚ solid polymer electrolyte films, dispersed with Al2O3 filler,
for applications in sodium ion cells. Ionics, 24: 1675-1683.
8.
Mohd Rafi, N. S., Abidin, S. Z. Z., Majid, S. R. and
Zakaria, R. (2022). Preparation of agarose-based biopolymer electrolytes
containing calcium thiocyanate: Electrical and electrochemical properties. International
Journal of Electrochemical Science, 17(7): 220713.
9.
Hafiza, M. N. and Isa, M. I. N. (2017). Solid polymer
electrolyte production from 2-hydroxyethyl cellulose: Effect of NH4NO3
composition on its structural properties. Carbohydrate Polymers, 165:
123-131.
10.
Leš, K. and Jordan, C.S. (2020). Ionic
conductivity enhancement in solid polymer electrolytes by electrochemical in
situ formation of an interpenetrating network. RSC Advances, 10:
41296-41304.
11.
Das, S. and Ghosh, A. (2015). Effect of plasticizers
on ionic conductivity and dielectric relaxation of PEO-LiClO4
polymer electrolyte. Electrochimica Acta,
171: 59-65.
12.
Singh, R., Bhattacharya, B., Tomar, S. K., Singh, V.
and Singh, P. K. (2017). Electrical, optical and electrophotochemical
studies on agarose based biopolymer electrolyte
towards dye sensitized solar cell application. Measurement, 102:
214-219.
13.
Shetty, S. K., Ismayil and Noor, I. M. (2021). Effect
of new crystalline phase on the ionic conduction properties of sodium
perchlorate salt doped carboxymethyl cellulose biopolymer electrolyte films. Journal
of Polymer Research, 28(11): 415.
14.
Hafiza, M. N. and Isa, M. I. N. (2020). Correlation
between structure, ion transport and ionic conductivity of plasticized
2-hydroxyethyl cellulose based solid biopolymer electrolyte. Journal
Membrane Science, 597: 117176.
15.
Shetty, S. K., Ismayil, Hegde, S. Ravindrachary,
V., Sanjeev, G., Bhajantri R. F. and Masti, S. P.
(2021). Dielectric relaxations and ion transport study of NaCMC:NaNO3
solid polymer electrolyte films. Ionics, 27: 2509-2525.