Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 236 - 246

 

IONIC TRANSPORT AND STRUCTURAL ANALYSIS OF BIOPOLYMER ELECTROLYTE BASED ON AGAROSE INTEGRATED WITH SODIUM NITRATE

 

(Kajian Pengangkutan Ion dan Struktur kepada Elektrolit Biopolimer Berdasarkan Penggabungan antara Agarose dan Natrium Nitrat)

 

Nur Farisha Sulthan Hussain1, Siti Zafirah Zainal Abidin1,2*, Nora Aishah Ahmad Shaharuddin1,

Raja Nur Qurratu Ain Raja Syiarizzad1, Siti Rudhziah Che Balian3

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Ionic Materials and Devices (iMADE) Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia

 

*Corresponding author: szafirah@uitm.edu.my

 

 

Received: 15 September 2023; Accepted: 30 December 2023; Published:  28 February 2024

 

 

Abstract

The central focus of this paper revolves around investigating biopolymer electrolyte films characterized by exceptional ionic conductivity, a prerequisite for the practical implementation of sodium-ion batteries. This study successfully prepared the agarose-based biopolymer electrolyte using the solution casting method. The effects of adding various weight percentages (0, 10, 20, 30 and 40 wt.%) of sodium nitrate salt (NaNO3) to agarose-based biopolymer electrolytes were characterized. Electrochemical Impedance Spectroscopy (EIS) was adapted to analyze the conductivity and dielectric relaxation phenomena of the agarose-NaNO3 complex. The conductivity of agarose-based biopolymer electrolytes increases with the increasing salt concentration. The increase in ionic conductivity is due to the increase in the number of charge carriers and the mobility of the sodium ions. The highest room temperature conductivity was 3.44×10-5 Scm-1 for the agarose-NaNO3 biopolymer electrolytes containing 30 wt.% sodium nitrate. X-ray diffractometer (XRD) spectroscopy was employed to investigate the crystallinity of the agarose-based biopolymer electrolyte. It was confirmed that the agarose-based biopolymer with 30 wt.% of sodium nitrate is the most amorphous compared to the others, as it has the largest full width at half maximum (FWHM) and the smallest crystallite size. This indicated that the amorphousness of the biopolymer electrolyte boosts the Na+ ions' mobility, increasing the ionic conductivity of the samples.

 

Keywords: biopolymer electrolyte, agarose, sodium nitrate, conductivity, dielectric constant, crystallite size

 

Abstrak

Tumpuan utama dalam artikel ini adalah berkisar tentang penyelidikan untuk filem electrolit biopolymer yang dicirikan oleh kekonduksian ionik yang luar biasa, prasyarat untuk pelaksanaan praktikal dalam bateri natrium-ion. Dalam kajian ini, elektrolit biopolimer berasaskan agarosa telah disediakan dengan jayanya menggunakan kaedah penuangan larutan. Kesan penambahan pelbagai peratusan berat (0, 10, 20, 30 dan 40 wt.%) garam natrium nitrat (NaNO3) kepada elektrolit biopolimer berasaskan agarosa dicirikan.  Spektroskopi impedans elektrokimia (EIS) telah disesuaikan untuk menganalisis fenomena masa pengenduran kekonduksian dan dielektrik kompleks agarosa-NaNO3. Kekonduksian elektrolit biopolimer berasaskan agarosa meningkat dengan kepekatan garam yang semakin meningkat. Peningkatan kekonduksian ionik adalah disebabkan oleh peningkatan bilangan pembawa cas dan mobiliti ion natrium. Kekonduksian suhu bilik tertinggi ialah 3.44×10-5 Scm-1 untuk elektrolit biopolimer agarose-NaNO3 yang mengandungi 30 wt.% natrium nitrat. Spektroskopi pembelauan sinar-X (XRD) digunakan untuk menyiasat kehabluran elektrolit biopolimer berasaskan agarosa. Telah disahkan bahawa biopolimer berasaskan agarosa dengan 30 wt.% natrium nitrat adalah yang paling amorf berbanding yang lain, kerana ia mempunyai lebar penuh terbesar pada separuh maksimum (FWHM) dan saiz hablur halus terkecil. Ini menunjukkan bahawa amorfus elektrolit biopolimer meningkatkan mobiliti ion-ion Na+ sekali gus meningkatkan kekonduksian ionik sampel.

 

Kata kunci: elektrolit biopolimer, agarose, natrium nitrat, kekonduksian, pemalar dielektrik, saiz kristal

 


References

1.      Zheng, J., Li, W., Liu, X., Zhang, J., Feng, X. and Chen, W. (2023). Progress in gel polymer electrolytes for sodium-ion batteries. Energy Environment Materials, 6(4): e12422.

2.      Ali, N. I., Abidin S. Z. Z., Majid S. R. and Jaafar N. K. (2021). Role of Mg(NO3)2 as defective agent in ameliorating the electrical conductivity, structural and electrochemical properties of agarose–based polymer electrolytes. Polymers, 13(19): 3357.

3.      Rani, M. S. A., Mohamed, N. S., and Isa, M. I. N. (2015). Investigation of the ionic conduction mechanism in carboxymethyl cellulose/chitosan biopolymer blend electrolyte impregnated with ammonium nitrate. International Journal of


Polymer Analysis and Characterization, 20(6): 491-503.

4.      Fuzlin, A. F., Bakri, N. A., Sahraoui, B. and Samsudin, A. S. (2019). Study on the effect of lithium nitrate in ionic conduction properties based alginate biopolymer electrolytes. Materials Research Express, 7: 015902.

5.      Lizundia, E., and Kundu, D. (2021). Advances in natural biopolymer‐based electrolytes and separators for battery applications. Advanced Functional Materials, 31(3): 2005646.

6.      Kiruthika, S., Malathi, M., Selvasekarapandian, S., Tamilarasan, K. and Maheshwari, T. (2020). Conducting biopolymer electrolyte based on pectin with magnesium chloride salt for magnesium battery application. Polymer Bulletin, 77: 6299-6317.

7.      Jinisha, B., Anilkumar, K. M., Manoj, M., Abhilash, A., Pradeep, V. S. and Jayalekshmi, S. (2018). Poly (ethylene oxide) (PEO)-based, Poly (ethylene oxide) (PEO)-based, sodium ion-conducting‚ solid polymer electrolyte films, dispersed with Al2O3 filler, for applications in sodium ion cells. Ionics, 24: 1675-1683.

8.      Mohd Rafi, N. S., Abidin, S. Z. Z., Majid, S. R. and Zakaria, R. (2022). Preparation of agarose-based biopolymer electrolytes containing calcium thiocyanate: Electrical and electrochemical properties. International Journal of Electrochemical Science, 17(7): 220713.

9.      Hafiza, M. N. and Isa, M. I. N. (2017). Solid polymer electrolyte production from 2-hydroxyethyl cellulose: Effect of NH4NO3 composition on its structural properties. Carbohydrate Polymers, 165: 123-131.

10.   Leš, K. and Jordan, C.S. (2020). Ionic conductivity enhancement in solid polymer electrolytes by electrochemical in situ formation of an interpenetrating network. RSC Advances, 10: 41296-41304.

11.   Das, S. and Ghosh, A. (2015). Effect of plasticizers on ionic conductivity and dielectric relaxation of PEO-LiClO4 polymer electrolyte. Electrochimica Acta, 171: 59-65.

12.   Singh, R., Bhattacharya, B., Tomar, S. K., Singh, V. and Singh, P. K. (2017). Electrical, optical and electrophotochemical studies on agarose based biopolymer electrolyte towards dye sensitized solar cell application. Measurement, 102: 214-219.

13.   Shetty, S. K., Ismayil and Noor, I. M. (2021). Effect of new crystalline phase on the ionic conduction properties of sodium perchlorate salt doped carboxymethyl cellulose biopolymer electrolyte films. Journal of Polymer Research, 28(11): 415.

14.   Hafiza, M. N. and Isa, M. I. N. (2020). Correlation between structure, ion transport and ionic conductivity of plasticized 2-hydroxyethyl cellulose based solid biopolymer electrolyte. Journal Membrane Science, 597: 117176.

15.   Shetty, S. K., Ismayil, Hegde, S. Ravindrachary, V., Sanjeev, G., Bhajantri R. F. and Masti, S. P. (2021). Dielectric relaxations and ion transport study of NaCMC:NaNO3 solid polymer electrolyte films. Ionics, 27: 2509-2525.