Malaysian Journal of Analytical
Sciences, Vol 28
No 1 (2024): 220 - 235
INHIBITION EFFECTS OF TRIDENTATE HYDRAZONE LIGANDS
AS CORROSION INHIBITORS ON MILD STEEL IN
SATURATED CO2 ENVIRONMENT
(Kesan Perencatan Ligan Hidrazon Tridentat Sebagai
Perencat Kakisan Pada Keluli Lembut
Dalam Persekitaran CO2 Tepu)
Balqis
Auni Badrul Hisyam1, Zainiharyati Mohd Zain2,
Nurulfazlina Edayah Rasol1,3 and
Amalina
Mohd Tajuddin 1,3*
1Faculty of Applied Sciences,
Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
2Electrochemical Material and Sensor (EMaS), Universiti
Teknologi MARA (UiTM),
40450 Shah Alam, Selangor, Malaysia
3Atta-ur-Rahman Institute for Natural Product Discovery
(AuRIns), UiTM Puncak Alam,
42300, Bandar Puncak Alam, Selangor, Malaysia
*Corresponding author: amalina9487@uitm.edu.my
Received: 15 September 2023;
Accepted: 25 November 2023; Published: 28
February 2024
Abstract
Two tridentate
hydrazone ligands (AL01, AL02) were synthesized by condensation of an aldehyde
and two hydrazides, benzohydrazide and 2-hydroxybenzohydrazide with OH substituent
at the ortho position of the benzene ring. They were characterized using
melting point, FTIR, NMR, elemental analysis, UV-Vis as well as mass
spectroscopy. The formation of hydrazone ligands was confirmed by the
appearance of v(C=N) peak in the range of 1608 to 1648 cm-1. The significant peak of N-H protons for
AL01 and AL02 appeared at 8.82 and 8.41 ppm respectively, while the peak of
phenolic proton (O-H) for AL01 was found at 12.28 ppm. Two peaks were observed
in the wavelength range of 198-220 nm that can be attributed to π-π*(C=C)
and n-π*(C=C) transitions of aromatic benzene,
while the peaks for π -π*(C=N) were observed in
the range of 297–303 nm. The mass-to-charge (m/z) [M+H]+
values of AL01 and AL02, which are 242.09 and 226.10, respectively, further
confirmed their structures. The effectiveness of hydrazone ligands as corrosion
inhibitors on mild steel in 3.5% NaCl solution saturated with CO2
was examined using polarization and electrochemical impedance spectroscopy
(EIS). The elemental constituents of the protective layer forms on mild steel
immersed in the solution were further observed using scanning electron
microscopy (SEM) coupled with energy-dispersive X-Ray (EDX)). Therefore, new
corrosion inhibitors of tridentate hydrazone ligands, AL01 and AL02 were
successfully synthesized and characterized using FTIR, NMR, elemental analysis,
mass spectroscopy and UV-Vis. From polarization and EIS study, AL01 can be
concluded to have higher inhibition efficiency, 84.30% at 500 ppm concentration
compared to AL02, 74.90%. SEM-EDX analysis has confirmed the formation of the
inhibitors’ layer on mild steel as the surface of the mild steel immersed in
solution with the presence of inhibitors have a smoother surface compared to
that of untreated mild steel in 3.5% NaCl solution saturated with CO2.
Keywords: CO2, corrosion inhibitor, mild steel,
protective layer, tridentate hydrazone
Abstrak
Dua ligan
hidrazon tridentat (AL01, AL02) telah disintesis melalui pemeluwapan antara
aldehid dan dua hidrazida, benzohidrazida dan 2-hidroksibenzohidrazida, dengan
kumpulan pengganti OH pada kedudukan orto hidrazida. Mereka dicirikan
menggunakan takat lebur, FTIR, NMR, analisis unsur, UV-Vis serta spektroskopi
jisim. Pembentukan ligan hidrazon telah disahkan oleh kemunculan puncak v(C=N)
dalam julat 1608 hingga 1648 cm-1. Puncak utama proton N-H untuk
AL01 dan AL02 masing-masing muncul pada 8.82 dan 8.41 ppm, manakala puncak
proton fenolik (O-H) untuk AL01 didapati pada 12.28 ppm. Dua puncak
diperhatikan dalam julat 198-220 nm yang boleh dikaitkan kepada peralihan
π-π*(C=C) dan n-π*(C=C) Kumpulan
benzena aromatik manakala pucak bagi peralihan π-π*(C=N) telah
diperhatikan dalam julat 297-303 nm. Nilai jisim-ke-cas (m/z) [M+H]+
bagi AL01 dan AL02, iaitu 242.09 dan 226.10, masing-masing, memberikan
pengesahan lanjut tentang strukturnya. Keberkesanan ligan hidrazon sebagai
perencat kakisan pada keluli lembut dalam larutan NaCl 3.5% tepu dengan CO2
telah diperiksa menggunakan polarisasi dan spektroskopi impedans elektrokimia
(EIS). Kehadiran unsur pada lapisan pelindung yang terbentuk pada keluli lembut
yang direndam dalam larutan diperhatikan selanjutnya menggunakan mikroskop
elektron pengimbasan (SEM) ditambah dengan X-Ray penyebaran tenaga (EDX). Oleh
itu, perencat kakisan baru, ligan hidrazon tridentat, AL01 dan AL02 telah
berjaya disintesis dan dicirikan menggunakan FTIR, NMR, analisis unsur,
spektroskopi jisim dan UV-Vis. Daripada kajian polarisasi dan EIS, dapat
disimpulkan bahawa AL01 mempunyai kecekapan perencatan yang lebih tinggi iaitu,
84.30% pada 500 ppm berbanding AL02 iaitu, 74.90%. Analisis SEM-EDX telah
mengesahkan pembentukan lapisan perencat pada keluli lembut kerana permukaan
keluli lembut dengan kehadiran perencat mempunyai permukaan yang lebih licin
berbanding keluli lembut yang tidak dirawat dengan perencat kakisan dalam
larutan 3.5% NaCl tepu dengan CO2.
Kata
kunci: CO2,
perencat kakisan, keluli lembut, lapisan pelindung, hidrazon tridentat
References
1. Mashitah A., N., Athena Z., F. and Hazwan H., M. (2021).
The study of electroless Ni-Cu-P plating on corrosion
resistance of aluminium in 3.5% NaCl physicochemical
characteristics of microcrystalline cellulose and cellulose nanowhiskers
from lignocellulosic biomass. International Journal Electroactive Materials,
9: 12-26.
2. Sulzer Pumps. (2010). Materials and corrosion. Centrifugal Pump
Handbook: pp. 227-250.
3. Jafar M. M. A. (2020). Global impact of corrosion: Occurrence, cost and mitigation. Global Journal of Engineering
Sciences, 5(4): 1-4.
4. Tamalmani, K. and Husin, H. (2020). Review on corrosion inhibitors for oil and
gas corrosion issues. In Applied Sciences, 10(10): 3389,
5. Adam, M. S. S., Soliman, K. A. and Abd El-Lateef, H. M. (2020). Homo-dinuclear VO2+ and Ni2+ dihydrazone
complexes: Synthesis, characterization, catalytic activity
and CO2-corrosion inhibition under sustainable conditions. Inorganica Chimica Acta,
499(9): 119212.
6. Askari, M., Aliofkhazraei, M. and Afroukhteh, S. (2019). A comprehensive review on internal
corrosion and cracking of oil and gas pipelines. Journal of Natural Gas
Science and Engineering, 71: 102971.
7. Oyekunle, D. T., Agboola, O. and Ayeni, A. O. (2019). Corrosion inhibitors as
building evidence for mild steel: A review. Journal of Physics: Conference
Series, 1378(3).
8. Usman, B. J., Umoren, S. A. and Gasem, Z. M. (2017). Inhibition of API
5L X60 steel corrosion in CO2-saturated 3.5% NaCl solution by tannic
acid and synergistic effect of KI additive. Journal of Molecular Liquids,
237: 146-156.
9. Hamidon, T. S. and Hussin, M. H. (2020). Susceptibility of hybrid
sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective
coatings for mild steel in 3.5 wt.% NaCl. Progress in Organic Coatings,
140: 105478.
10. Lin, B., Tang, J., Wang, Y., Wang, H. and Zuo, Y. (2020). Study on
synergistic corrosion inhibition effect between calcium lignosulfonate (CLS)
and inorganic inhibitors on Q235 carbon steel in alkaline environment with
Cl−. Molecules, 25(18): 4200.
11. George, K. S. and Nes, S. (1944). Investigation of carbon dioxide
corrosion of mild steel in the presence of acetic acid-part 1: basic mechanisms.
Corrosion Science Section Corrosion-February 2007: 1-30.
12. Singh, A., Ansari, K. R., Xu, X., Sun, Z., Kumar, A. and Lin, Y. (2017).
An impending inhibitor useful for the oil and gas production industry: Weight
loss, electrochemical, surface and quantum chemical calculation. Scientific
Reports, 7(1): 14904.
13. Das Chagas Almeida, T., Bandeira, M. C. E., Moreira, R. M. and Mattos,
O. R. (2017). New insights on the role of CO2 in the mechanism of
carbon steel corrosion. Corrosion Science, 120: 239-250.
14. Chaouiki, A., Chafiq, M., Lgaz, H., Al-Hadeethi, M. R., Ali, I. H., Masroor, S. and Chung, I. M.
(2020). Green corrosion inhibition of mild steel by hydrazone derivatives in
1.0 M HCl. Coatings, 10(7): 1-17.
15. Saady, A., Rais, Z., Benhiba, F., Salim, R.,
Ismaily Alaoui, K., Arrousse, N., Elhajjaji,
F., Taleb, M., Jarmoni, K., Kandri
Rodi, Y., Warad, I. and Zarrouk,
A. (2021). Chemical, electrochemical, quantum, and surface analysis evaluation
on the inhibition performance of novel imidazo[4,5-b]
pyridine derivatives against mild steel corrosion. Corrosion Science,
189(7): 109621.
16. Subbiah, K., Lee, H.-S., Al-Hadeethi, M. R.,
Park, T. and Lgaz, H. (2023). Unraveling the
anti-corrosion mechanisms of a novel hydrazone derivative on steel in
contaminated concrete pore solutions: An integrated study. Journal of
Advanced Research, 8: 16.
17. Khamaysa, O. M. A., Selatnia, I., Zeghache,
H., Lgaz, H., Sid, A., Chung, I. M., Benahmed, M., Gherraf, N., and Mosset, P. (2020). Enhanced corrosion
inhibition of carbon steel in HCl solution by a newly synthesized hydrazone
derivative: Mechanism exploration from electrochemical, XPS, and computational
studies. Journal of Molecular Liquids, 315: 113805.
18. Ansari, K. R., Chauhan, D. S., Singh, A., Saji, V. S. and Quraishi, M.
A. (2020). Corrosion inhibitors for acidizing process in oil and gas sectors. Corrosion
Inhibitors in the Oil and Gas Industry, 2020: 153-176.
19. Khamaysa, O. M. A., Selatnia, I., Lgaz,
H., Sid, A., Lee, H. S., Zeghache, H., Benahmed, M.,
Ali, I. H. and Mosset, P. (2021). Hydrazone-based green corrosion inhibitors
for API grade carbon steel in HCl: Insights from electrochemical, XPS, and
computational studies. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 626: 127047.
20. Boukazoula, S., Haffar, D., Bourzami, R., Toukal, L. and Dorcet, V. (2022).
Synthesis, characterizations, crystal structure, inhibition effects and
theoretical study of novel Schiff base on the corrosion of carbon steel in 1 M
HCl. Journal of Molecular Structure, 1261: 132852.
21. Kamal, N. K. M., Fadzil, A. H., Kassim, K., Rashid, S. H. and Mastuli, M. S. (2014). Synthesis, characterization and
corrosion inhibition studies of o, m, p-decanoyl thiourea derivatives on mild
steel in 0.1 M H2SO4 solutions. Malaysian Journal of
Analytical Sciences, 18(1): 21-27.
22. Latifah R., H., Bahron, H., Ramasamy, K. and
Tajuddin, A. M. (2019). Synthesis and characterization of benzohydroxamic acid
and methylbenzohydroxamic acid metal complexes and
their cytotoxicty study. Malaysian Journal of
Analytical Sciences, 23(2), 263-273.
23. Shahrul Nizam, A., Bahron, H. and Tajuddin, A. M.
(2019). Effect of temperature on the catalytic activity of new symmetrical
tetradentate palladium(II) schiff
base complexes in copper-free sonogashira reaction. Malaysian
Journal of Analytical Sciences, 23(2): 247-254.
24. Gao, H., Li, J. Q., Kang, P. W., Chigan, J.
Z., Wang, H., Liu, L., Xu, Y. S., Zhai, L. and Yang, K. W. (2021). N-acylhydrazones confer inhibitory efficacy against New Delhi
metallo-β-lactamase-1. Bioorganic Chemistry,
114: 105138.
25. Kant, R., Yang, M. H., Tseng, C. H., Yen, C. H., Li, W. Y., Tyan, Y. C.,
Chen, M., Tzeng, C. C., Chen, W. C., You, K., Wang, W. C., Chen, Y. L. and
Chen, Y. M. A. (2021). Discovery of an orally efficacious MYC inhibitor for
liver cancer using a GNMT-based high-throughput screening system and
structure-activity relationship analysis. Journal of Medicinal Chemistry,
64(13): 8992-9009.
26. Singh, Y., Patel, R. N., Patel, S. K., Patel, A. K., Patel, N., Singh,
R., Butcher, R. J., Jasinski, J. P. and Gutierrez, A. (2019). Experimental and
quantum computational study of two new bridged copper(II)
coordination complexes as possible models for antioxidant superoxide dismutase:
Molecular structures, X-band electron paramagnetic spectra and cryogenic
magnetic properties. Polyhedron, 171: 155-171.
27. Bononi, F. C., Chen, Z., Rocca, D., Andreussi, O., Hullar, T., Anastasio, C. and Donadio, D. (2020).
Bathochromic shift in the UV-visible absorption spectra of phenols at ice
surfaces: Insights from first-principles calculations. Journal of Physical
Chemistry A, 124(44): 9288-9298.
28. Khaidir, S. S., Bahron, H., Tajuddin, A. M. and
Ramasamy, K. (2022). Microwave-assisted synthesis, characterization
and anticancer activity of tetranuclear Schiff base complexes. Journal of
Sustainability Science and Management, 17(4): 32-48.
29. Kakaei, K., Esrafili, M. D. and Ehsani, A. (2019). Graphene and anticorrosive properties. In Interface Science and
Technology, (Vol. 27, pp. 303-337). Elsevier.
30. Lgaz, H., Chung, I. M., Albayati, M. R., Chaouiki,
A., Salghi, R. and Mohamed, S. K. (2020). Improved
corrosion resistance of mild steel in acidic solution by hydrazone derivatives:
An experimental and computational study. Arabian Journal of Chemistry,
13(1): 2934-2954.
31. Hazani, N. N., Mohd, Y., Ghazali, S. A. I. S. M. and Dzulkifli, N. N. (2019).
Electrochemical studies of thiosemicarbazone derivative and its tin(IV) complex as corrosion inhibitor for mild steel in 1 M
hydrochloric acid. Chemistry Journal of Moldova, 14(1): 98-106.
32. Rustandi, A., Adyutatama, M., Fadly, E. and Subekti, N. (2012). Corrosion rate of carbon steel for
flowline and pipeline as transmission pipe in natural gas production with CO2
content. Makara Journal of Technology, 16(1): 57-62.
33. Chafiq, M., Chaouiki, A., Al-Hadeethi, M. R., Ali, I. H., Mohamed, S. K., Toumiat, K. and Salghi, R.
(2020). Naproxen-based hydrazones as effective corrosion inhibitors for mild
steel in 1.0 M HCl. Coatings, 10(7): 700.
34. Lgaz, H., Chaouiki, A., Albayati, M. R., Salghi, R., El Aoufir, Y., Ali,
I. H., Khan, M. I., Mohamed, S. K. and Chung, I. M. (2019). Synthesis and
evaluation of some new hydrazones as corrosion inhibitors for mild steel in
acidic media. Research on Chemical Intermediates, 45(4): 2269-2286.
35.
El-Haddad, M. A.
M., Bahgat Radwan, A., Sliem, M. H., Hassan, W. M. I.
and Abdullah, A. M. (2019). Highly efficient eco-friendly corrosion inhibitor
for mild steel in 5 M HCl at elevated temperatures: experimental &
molecular dynamics study. Scientific Reports, 9(1): 1-15.