Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 220 - 235

 

INHIBITION EFFECTS OF TRIDENTATE HYDRAZONE LIGANDS

AS CORROSION INHIBITORS ON MILD STEEL IN

SATURATED CO2 ENVIRONMENT

 

(Kesan Perencatan Ligan Hidrazon Tridentat Sebagai Perencat Kakisan Pada Keluli Lembut

Dalam Persekitaran CO2 Tepu)

 

Balqis Auni Badrul Hisyam1, Zainiharyati Mohd Zain2, Nurulfazlina Edayah Rasol1,3 and

Amalina Mohd Tajuddin 1,3*

 

1Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

2Electrochemical Material and Sensor (EMaS), Universiti Teknologi MARA (UiTM),

40450 Shah Alam, Selangor, Malaysia

3Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), UiTM Puncak Alam,

42300, Bandar Puncak Alam, Selangor, Malaysia

 

*Corresponding author: amalina9487@uitm.edu.my

 

 

Received: 15 September 2023; Accepted: 25 November 2023; Published:  28 February 2024

 

 

Abstract

Two tridentate hydrazone ligands (AL01, AL02) were synthesized by condensation of an aldehyde and two hydrazides, benzohydrazide and 2-hydroxybenzohydrazide with OH substituent at the ortho position of the benzene ring. They were characterized using melting point, FTIR, NMR, elemental analysis, UV-Vis as well as mass spectroscopy. The formation of hydrazone ligands was confirmed by the appearance of v(C=N) peak in the range of 1608 to 1648 cm-1. The significant peak of N-H protons for AL01 and AL02 appeared at 8.82 and 8.41 ppm respectively, while the peak of phenolic proton (O-H) for AL01 was found at 12.28 ppm. Two peaks were observed in the wavelength range of 198-220 nm that can be attributed to π-π*(C=C) and n-π*(C=C) transitions of aromatic benzene, while the peaks for π -π*(C=N) were observed in the range of 297–303 nm. The mass-to-charge (m/z) [M+H]+ values of AL01 and AL02, which are 242.09 and 226.10, respectively, further confirmed their structures. The effectiveness of hydrazone ligands as corrosion inhibitors on mild steel in 3.5% NaCl solution saturated with CO2 was examined using polarization and electrochemical impedance spectroscopy (EIS). The elemental constituents of the protective layer forms on mild steel immersed in the solution were further observed using scanning electron microscopy (SEM) coupled with energy-dispersive X-Ray (EDX)). Therefore, new corrosion inhibitors of tridentate hydrazone ligands, AL01 and AL02 were successfully synthesized and characterized using FTIR, NMR, elemental analysis, mass spectroscopy and UV-Vis. From polarization and EIS study, AL01 can be concluded to have higher inhibition efficiency, 84.30% at 500 ppm concentration compared to AL02, 74.90%. SEM-EDX analysis has confirmed the formation of the inhibitors’ layer on mild steel as the surface of the mild steel immersed in solution with the presence of inhibitors have a smoother surface compared to that of untreated mild steel in 3.5% NaCl solution saturated with CO2.

 

Keywords: CO2, corrosion inhibitor, mild steel, protective layer, tridentate hydrazone

 

Abstrak

Dua ligan hidrazon tridentat (AL01, AL02) telah disintesis melalui pemeluwapan antara aldehid dan dua hidrazida, benzohidrazida dan 2-hidroksibenzohidrazida, dengan kumpulan pengganti OH pada kedudukan orto hidrazida. Mereka dicirikan menggunakan takat lebur, FTIR, NMR, analisis unsur, UV-Vis serta spektroskopi jisim. Pembentukan ligan hidrazon telah disahkan oleh kemunculan puncak v(C=N) dalam julat 1608 hingga 1648 cm-1. Puncak utama proton N-H untuk AL01 dan AL02 masing-masing muncul pada 8.82 dan 8.41 ppm, manakala puncak proton fenolik (O-H) untuk AL01 didapati pada 12.28 ppm. Dua puncak diperhatikan dalam julat 198-220 nm yang boleh dikaitkan kepada peralihan π-π*(C=C) dan n-π*(C=C) Kumpulan benzena aromatik manakala pucak bagi peralihan π-π*(C=N) telah diperhatikan dalam julat 297-303 nm. Nilai jisim-ke-cas (m/z) [M+H]+ bagi AL01 dan AL02, iaitu 242.09 dan 226.10, masing-masing, memberikan pengesahan lanjut tentang strukturnya. Keberkesanan ligan hidrazon sebagai perencat kakisan pada keluli lembut dalam larutan NaCl 3.5% tepu dengan CO2 telah diperiksa menggunakan polarisasi dan spektroskopi impedans elektrokimia (EIS). Kehadiran unsur pada lapisan pelindung yang terbentuk pada keluli lembut yang direndam dalam larutan diperhatikan selanjutnya menggunakan mikroskop elektron pengimbasan (SEM) ditambah dengan X-Ray penyebaran tenaga (EDX). Oleh itu, perencat kakisan baru, ligan hidrazon tridentat, AL01 dan AL02 telah berjaya disintesis dan dicirikan menggunakan FTIR, NMR, analisis unsur, spektroskopi jisim dan UV-Vis. Daripada kajian polarisasi dan EIS, dapat disimpulkan bahawa AL01 mempunyai kecekapan perencatan yang lebih tinggi iaitu, 84.30% pada 500 ppm berbanding AL02 iaitu, 74.90%. Analisis SEM-EDX telah mengesahkan pembentukan lapisan perencat pada keluli lembut kerana permukaan keluli lembut dengan kehadiran perencat mempunyai permukaan yang lebih licin berbanding keluli lembut yang tidak dirawat dengan perencat kakisan dalam larutan 3.5% NaCl tepu dengan CO2.

 

Kata kunci: CO2, perencat kakisan, keluli lembut, lapisan pelindung, hidrazon tridentat

 


References

1.      Mashitah A., N., Athena Z., F. and Hazwan H., M. (2021). The study of electroless Ni-Cu-P plating on corrosion resistance of aluminium in 3.5% NaCl physicochemical characteristics of microcrystalline cellulose and cellulose nanowhiskers from lignocellulosic biomass. International Journal Electroactive Materials, 9: 12-26.

2.      Sulzer Pumps. (2010). Materials and corrosion. Centrifugal Pump Handbook: pp. 227-250.

3.      Jafar M. M. A. (2020). Global impact of corrosion: Occurrence, cost and mitigation. Global Journal of Engineering Sciences, 5(4): 1-4.

4.      Tamalmani, K. and Husin, H. (2020). Review on corrosion inhibitors for oil and gas corrosion issues. In Applied Sciences, 10(10): 3389,

5.      Adam, M. S. S., Soliman, K. A. and Abd El-Lateef, H. M. (2020). Homo-dinuclear VO2+ and Ni2+ dihydrazone complexes: Synthesis, characterization, catalytic activity and CO2-corrosion inhibition under sustainable conditions. Inorganica Chimica Acta, 499(9): 119212.

6.      Askari, M., Aliofkhazraei, M. and Afroukhteh, S. (2019). A comprehensive review on internal corrosion and cracking of oil and gas pipelines. Journal of Natural Gas Science and Engineering, 71: 102971.

7.      Oyekunle, D. T., Agboola, O. and Ayeni, A. O. (2019). Corrosion inhibitors as building evidence for mild steel: A review. Journal of Physics: Conference Series, 1378(3).

8.      Usman, B. J., Umoren, S. A. and Gasem, Z. M. (2017). Inhibition of API 5L X60 steel corrosion in CO2-saturated 3.5% NaCl solution by tannic acid and synergistic effect of KI additive. Journal of Molecular Liquids, 237: 146-156.

9.      Hamidon, T. S. and Hussin, M. H. (2020). Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl. Progress in Organic Coatings, 140: 105478.

10.   Lin, B., Tang, J., Wang, Y., Wang, H. and Zuo, Y. (2020). Study on synergistic corrosion inhibition effect between calcium lignosulfonate (CLS) and inorganic inhibitors on Q235 carbon steel in alkaline environment with Cl−. Molecules, 25(18): 4200.

11.   George, K. S. and Nes, S. (1944). Investigation of carbon dioxide corrosion of mild steel in the presence of acetic acid-part 1: basic mechanisms. Corrosion Science Section Corrosion-February 2007: 1-30.

12.   Singh, A., Ansari, K. R., Xu, X., Sun, Z., Kumar, A. and Lin, Y. (2017). An impending inhibitor useful for the oil and gas production industry: Weight loss, electrochemical, surface and quantum chemical calculation. Scientific Reports, 7(1): 14904.

13.   Das Chagas Almeida, T., Bandeira, M. C. E., Moreira, R. M. and Mattos, O. R. (2017). New insights on the role of CO2 in the mechanism of carbon steel corrosion. Corrosion Science, 120: 239-250.

14.   Chaouiki, A., Chafiq, M., Lgaz, H., Al-Hadeethi, M. R., Ali, I. H., Masroor, S. and Chung, I. M. (2020). Green corrosion inhibition of mild steel by hydrazone derivatives in 1.0 M HCl. Coatings, 10(7): 1-17.

15.   Saady, A., Rais, Z., Benhiba, F., Salim, R., Ismaily Alaoui, K., Arrousse, N., Elhajjaji, F., Taleb, M., Jarmoni, K., Kandri Rodi, Y., Warad, I. and Zarrouk, A. (2021). Chemical, electrochemical, quantum, and surface analysis evaluation on the inhibition performance of novel imidazo[4,5-b] pyridine derivatives against mild steel corrosion. Corrosion Science, 189(7): 109621.

16.   Subbiah, K., Lee, H.-S., Al-Hadeethi, M. R., Park, T. and Lgaz, H. (2023). Unraveling the anti-corrosion mechanisms of a novel hydrazone derivative on steel in contaminated concrete pore solutions: An integrated study. Journal of Advanced Research, 8: 16.

17.   Khamaysa, O. M. A., Selatnia, I., Zeghache, H., Lgaz, H., Sid, A., Chung, I. M., Benahmed, M., Gherraf, N., and Mosset, P. (2020). Enhanced corrosion inhibition of carbon steel in HCl solution by a newly synthesized hydrazone derivative: Mechanism exploration from electrochemical, XPS, and computational studies. Journal of Molecular Liquids, 315: 113805.

18.   Ansari, K. R., Chauhan, D. S., Singh, A., Saji, V. S. and Quraishi, M. A. (2020). Corrosion inhibitors for acidizing process in oil and gas sectors. Corrosion Inhibitors in the Oil and Gas Industry, 2020: 153-176.

19.   Khamaysa, O. M. A., Selatnia, I., Lgaz, H., Sid, A., Lee, H. S., Zeghache, H., Benahmed, M., Ali, I. H. and Mosset, P. (2021). Hydrazone-based green corrosion inhibitors for API grade carbon steel in HCl: Insights from electrochemical, XPS, and computational studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626: 127047.

20.   Boukazoula, S., Haffar, D., Bourzami, R., Toukal, L. and Dorcet, V. (2022). Synthesis, characterizations, crystal structure, inhibition effects and theoretical study of novel Schiff base on the corrosion of carbon steel in 1 M HCl. Journal of Molecular Structure, 1261: 132852.

21.   Kamal, N. K. M., Fadzil, A. H., Kassim, K., Rashid, S. H. and Mastuli, M. S. (2014). Synthesis, characterization and corrosion inhibition studies of o, m, p-decanoyl thiourea derivatives on mild steel in 0.1 M H2SO4 solutions. Malaysian Journal of Analytical Sciences, 18(1): 21-27.

22.   Latifah R., H., Bahron, H., Ramasamy, K. and Tajuddin, A. M. (2019). Synthesis and characterization of benzohydroxamic acid and methylbenzohydroxamic acid metal complexes and their cytotoxicty study. Malaysian Journal of Analytical Sciences, 23(2), 263-273.

23.   Shahrul Nizam, A., Bahron, H. and Tajuddin, A. M. (2019). Effect of temperature on the catalytic activity of new symmetrical tetradentate palladium(II) schiff base complexes in copper-free sonogashira reaction. Malaysian Journal of Analytical Sciences, 23(2): 247-254.

24.   Gao, H., Li, J. Q., Kang, P. W., Chigan, J. Z., Wang, H., Liu, L., Xu, Y. S., Zhai, L. and Yang, K. W. (2021). N-acylhydrazones confer inhibitory efficacy against New Delhi metallo-β-lactamase-1. Bioorganic Chemistry, 114: 105138.

25.   Kant, R., Yang, M. H., Tseng, C. H., Yen, C. H., Li, W. Y., Tyan, Y. C., Chen, M., Tzeng, C. C., Chen, W. C., You, K., Wang, W. C., Chen, Y. L. and Chen, Y. M. A. (2021). Discovery of an orally efficacious MYC inhibitor for liver cancer using a GNMT-based high-throughput screening system and structure-activity relationship analysis. Journal of Medicinal Chemistry, 64(13): 8992-9009.

26.   Singh, Y., Patel, R. N., Patel, S. K., Patel, A. K., Patel, N., Singh, R., Butcher, R. J., Jasinski, J. P. and Gutierrez, A. (2019). Experimental and quantum computational study of two new bridged copper(II) coordination complexes as possible models for antioxidant superoxide dismutase: Molecular structures, X-band electron paramagnetic spectra and cryogenic magnetic properties. Polyhedron, 171: 155-171.

27.   Bononi, F. C., Chen, Z., Rocca, D., Andreussi, O., Hullar, T., Anastasio, C. and Donadio, D. (2020). Bathochromic shift in the UV-visible absorption spectra of phenols at ice surfaces: Insights from first-principles calculations. Journal of Physical Chemistry A, 124(44): 9288-9298.

28.   Khaidir, S. S., Bahron, H., Tajuddin, A. M. and Ramasamy, K. (2022). Microwave-assisted synthesis, characterization and anticancer activity of tetranuclear Schiff base complexes. Journal of Sustainability Science and Management, 17(4): 32-48.

29.   Kakaei, K., Esrafili, M. D. and Ehsani, A. (2019). Graphene and anticorrosive properties. In Interface Science and Technology, (Vol. 27, pp. 303-337). Elsevier.

30.   Lgaz, H., Chung, I. M., Albayati, M. R., Chaouiki, A., Salghi, R. and Mohamed, S. K. (2020). Improved corrosion resistance of mild steel in acidic solution by hydrazone derivatives: An experimental and computational study. Arabian Journal of Chemistry, 13(1): 2934-2954.

31.   Hazani, N. N., Mohd, Y., Ghazali, S. A. I. S. M. and Dzulkifli, N. N. (2019). Electrochemical studies of thiosemicarbazone derivative and its tin(IV) complex as corrosion inhibitor for mild steel in 1 M hydrochloric acid. Chemistry Journal of Moldova, 14(1): 98-106.

32.   Rustandi, A., Adyutatama, M., Fadly, E. and Subekti, N. (2012). Corrosion rate of carbon steel for flowline and pipeline as transmission pipe in natural gas production with CO2 content. Makara Journal of Technology, 16(1): 57-62.

33.   Chafiq, M., Chaouiki, A., Al-Hadeethi, M. R., Ali, I. H., Mohamed, S. K., Toumiat, K. and Salghi, R. (2020). Naproxen-based hydrazones as effective corrosion inhibitors for mild steel in 1.0 M HCl. Coatings, 10(7): 700.

34.   Lgaz, H., Chaouiki, A., Albayati, M. R., Salghi, R., El Aoufir, Y., Ali, I. H., Khan, M. I., Mohamed, S. K. and Chung, I. M. (2019). Synthesis and evaluation of some new hydrazones as corrosion inhibitors for mild steel in acidic media. Research on Chemical Intermediates, 45(4): 2269-2286.

35.   El-Haddad, M. A. M., Bahgat Radwan, A., Sliem, M. H., Hassan, W. M. I. and Abdullah, A. M. (2019). Highly efficient eco-friendly corrosion inhibitor for mild steel in 5 M HCl at elevated temperatures: experimental & molecular dynamics study. Scientific Reports, 9(1): 1-15.