Malaysian Journal of Analytical
Sciences, Vol 28
No 1 (2024): 188 - 219
A
REVIEW ON THE SYNTHESIS STRATEGIES AND FACTORS CONTRIBUTING TO THE FORMATION OF
ZEOLITIC IMIDAZOLATE FRAMEWORKS (ZIFs) AND THEIR APPLICATIONS
(Ulasan
Strategi Sintesis dan Faktor yang Menyumbang Pembentukan Kerangka Zeolit Imidazolat
(ZIFs) dan Aplikasi)
Nazhirah Muhammad Nasri1,2, Enis Nadia Md Yusof3,
Velan Raman1,2, Abdul Halim Abdullah1,4,
and Mohamed Ibrahim Mohamed Tahir1,2*
1Department of Chemistry, Faculty of Science, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Foundry of Reticular Materials for Sustainability
(FORMS), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra
Malaysia, Serdang 43400, Selangor, Malaysia
3Chemical Sciences Programme, School of Distance
Education, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
4Institute of Nanoscience and Nanotechnology (ION2),
Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
*Corresponding author: ibra@upm.edu.my
Received: 6 November 2023; Accepted: 5
January 2024; Published: 28 February 2024
Abstract
Zeolitic Imidazolate Frameworks (ZIFs) are a subclass of Metal-Organic
Frameworks (MOFs) that have attracted significant attention due to their unique
properties such as high surface area, tunable pore
size, and excellent thermal and chemical stability. The review aims to discuss
reported single and mixed-linker of ZIFs. The
synthesis of ZIFs can be achieved through various methods such as solvothermal,
hydrothermal, ionothermal, microwave-assisted, sonochemical, contra-diffusion synthesis, and mechanochemical.
The review discusses the benefits and disadvantages of each method as well as a
critical analysis of their effectiveness. The synthesis factors of ZIFs are
classified into several types such as organic solvents, additives, concentration,
temperatures, metal salt variations and the reaction time. Furthermore, the paper highlights several applications of ZIFs,
including their impact on adsorption of pollutants, catalysis
and drug delivery system. The paper concludes by summarising the recent
advances in ZIFs research which leads to future directions for further research
in this field.
Keywords: zeolitic imidazolate frameworks (ZIFs), method,
factors, application
Abstrak
Kerangka kerja zeolit imidazolat (ZIF) adalah subkelas
kerangka kerja logam organik (MOF) yang telah menarik perhatian kerana sifat
uniknya seperti permukaan yang luas, saiz liang yang boleh dilaraskan dan
mempunyai kestabilan terma dan kimia yang sangat baik. Ulasan ini bertujuan
untuk membincangkan ZIF dengan satu dan pelbagai penyambung yang telah
dilaporkan sebelum ini. Sintesis ZIF boleh dicapai melalui pelbagai kaedah
seperti solvoterma, hidroterma, ionoterma, bantuan gelombang mikro, sonokimia,
sintesis kontra-resapan dan mekanokimia. Kajian ini membincangkan kelebihan dan
kekurangan setiap kaedah serta menyediakan analisis yang kritikal tentang
keberkesanan sesuatu kaedah. Faktor sintesis ZIF juga dikelaskan kepada
beberapa jenis seperti pelarut organik, bahan tambahan, kepekatan, suhu,
variasi garam logam dan masa tindak balas. Tambahan pula, kertas kerja ini
membincangkan beberapa aplikasi ZIF, termasuk kesan ZIF terhadap penjerapan
bahan pencemar, pemangkin dan sistem penghantaran ubat. Kertas kajian ini jugak
meringkaskan kemajuan terkini dalam penyelidikan ZIF yang membawa ke
menyerlahkan hala tuju masa depan untuk bidang ini dengan lebih lanjut.
Kata kunci:
kerangka zeolit imidazolat, kaedah, faktor, aplikasi
References
1. Banerjee R., Furukawa H., Britt D., Knobler C., O’Keeffe M., and
Yaghi O.M. (2009). Control of pore size and functionality in isoreticular
zeolitic imidazolate frameworks and their carbon dioxide selective capture
properties. Journal of the American Chemical Society, 131: 3875-3877.
2. Wang
B., Côté A.P., Furukawa H., O’Keeffe M., and Yaghi O.M. (2008). Colossal cages
in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature,
453(7192): 207-211.
3. Park
K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K.,
O’Keeffe M., and Yaghi O.M. (2006). Exceptional chemical and thermal stability
of zeolitic imidazolate frameworks. Proceedings of the National Academy of
Sciences of the United States of America, 103(27): 10186-91.
4. Nguyen
N.T.T., Furukawa H., Gándara F., Nguyen H.T., Cordova K.E., and Yaghi O.M.
(2014). Selective capture of carbon dioxide under humid conditions by
hydrophobic chabazite-type zeolitic imidazolate frameworks. Angewandte
Chemie - International Edition, 53: 10645-10648.
5. Banerjee
R., Phan A., Wang B., Knobler C., Furukawa H., O’Keeffe M., and Yaghi O.M.
(2008). High-throughput synthesis of zeolitic imidazolate frameworks and
application to CO2 capture. Science, 319: 939-944.
6. Morris
W., Doonan C.J., Furukawa H., Banerjee R., and Yaghi O.M. (2008). Crystals as
molecules: Postsynthesis covalent functionalization of zeolitic imidazolate
frameworks. Journal of the American Chemical Society, 130(38):
12626-12627.
7. Lee
Y.R., Kim J., and Ahn W.S. (2013). Synthesis of Metal-Organic Frameworks: A
Mini Review. Korean Journal of Chemical Engineering, 30(9): 1667-1680.
8. Yang
J., Zhang Y.B., Liu Q., Trickett C.A., Gutiérrez-Puebla E., Monge M.Á., Cong
H., Aldossary A., Deng H., and Yaghi O.M. (2017). Principles of designing
extra-large pore openings and cages in zeolitic imidazolate frameworks. Journal
of the American Chemical Society, 139(18): 6448-6455.
9. Kamal
K., Bustam M.A., Ismail M., Grekov D., Shariff A.M., and Pré P. (2020).
Optimization of washing processes in solvothermal synthesis of nickel-based
MOF-74. Materials, 13(12): 1-10.
10. Hasan
M.R., Paseta L., Malankowska M., Téllez C., and Coronas J. (2022). Synthesis of
ZIF-94 from recycled mother liquors: Study of the influence of its loading on
postcombustion CO2 capture with pebax based mixed matrix membranes. Advanced
Sustainable Systems, 6(1): 2100317.
11. Kenyotha
K., Chanapattharapol K.C., McCloskey S., and Jantaharn P. (2020). Water based
synthesis of ZIF-8 assisted by hydrogen bond acceptors and enhancement of CO2
uptake by solvent assisted ligand exchange, Crystals, 10(7): 1-23.
12. Wu
R., Fan T., Chen J., and Li Y. (2019). Synthetic factors affecting the scalable
production of zeolitic imidazolate frameworks. ACS Sustainable Chemistry and
Engineering, 7(4): 3632-3646.
13. Chen
B., Yang Z., Zhu Y., and Xia Y. (2014). Zeolitic imidazolate framework
materials: recent progress in synthesis and applications. Journal of
Materials Chemistry A, 2(40): 16811-16831.
14. Sankar
S.S., Karthick K., Sangeetha K., Karmakar A., Madhu R., and Kundu S. (2021).
Current perspectives on 3D ZIFs incorporated with 1D carbon matrices as fibers
via electrospinning processes towards electrocatalytic water splitting: A
review. Journal of Materials Chemistry A, 9(20): 11961-12002.
15. Cheong
V.F., and Moh P.Y. (2018). Recent advancement in metal–organic framework:
synthesis, activation, functionalisation, and bulk production. Materials
Science and Technology, 34(9): 1025-1045.
16. Hu
L., Chen L., Fang Y., Wang A., Chen C., and Yan Z. (2018). Facile synthesis of
zeolitic imidazolate framework-8 (ZIF-8) by forming imidazole-based deep
eutectic solvent. Microporous and Mesoporous Materials, 268: 207-215.
17. Wang
Y., Xu Y., Li D., Liu H., Li X., Tao S., and Tian Z. (2015). Ionothermal
synthesis of zeolitic imidazolate frameworks and the synthesis
dissolution-crystallization mechanism, Chinese Journal of Catalysis,
36(6): 855-865.
18. Gangu
K.K., Maddila S., Mukkamala S.B., and Jonnalagadda S.B. (2016). A review on
contemporary Metal-Organic Framework materials. Inorganica Chimica Acta,
446: 61-74.
19. Wang
Q., Sun Y., Li S., Zhang P., and Yao Q. (2020). Synthesis and modification of
ZIF-8 and its application in drug delivery and tumor therapy. RSC Advances,
10(62): 37600-37620.
20. Xiao
T., and Liu D. (2019). Progress in the synthesis, properties and applications
of ZIF-7 and its derivatives. Materials Today Energy, 14(3): 100357.
21. Lucero
J.M., Self T.J., and Carreon M.A. (2020). Synthesis of ZIF-11 crystals by
microwave heating. New Journal of Chemistry, 44(9): 3562-3565.
22. Tran
T. Van, Nguyen H., Le P.H.A., Nguyen D.T.C., Nguyen T.T., Nguyen C. Van, Vo
D.V.N., and Nguyen T.D. (2020). Microwave-assisted solvothermal fabrication of
hybrid zeolitic-imidazolate framework (ZIF-8) for optimizing dyes adsorption
efficiency using response surface methodology, Journal of Environmental
Chemical Engineering, 8(4): 104189.
23. Hayati
P., Rezvani A.R., Morsali A., Molina D.R., Geravand S., Suarez-Garcia S.,
Villaecija M.A.M., García-Granda S., Mendoza-Merońo R., and Retailleau P.
(2017). Sonochemical synthesis, characterization, and effects of temperature,
power ultrasound and reaction time on the morphological properties of two new
nanostructured mercury(II) coordination supramolecule compounds. Ultrasonics
Sonochemistry, 37: 382–393.
24. Kukkar
P., Kim K.H., Kukkar D., and Singh P. (2021). Recent advances in the synthesis
techniques for zeolitic imidazolate frameworks and their sensing applications. Coordination
Chemistry Reviews, 446: 214109.
25. Nalesso
S., Varlet G., Bussemaker M.J., Sear R.P., Hodnett M., Monteagudo-Oliván R.,
Sebastián V., Coronas J., and Lee J. (2021). Sonocrystallisation of ZIF-8 in
water with high excess of ligand: Effects of frequency, power and sonication
time. Ultrasonics Sonochemistry, 76: 105616.
26. Abuzalat
O., Wong D., Elsayed M., Park S., and Kim S. (2018). Sonochemical fabrication
of Cu(II) and Zn(II) metal-organic framework films on metal substrates, Ultrasonics
Sonochemistry, 45: 180-188.
27. Jiang
S., Shi X., Zu Y., Sun F., and Zhu G. (2021). Interfacial growth of 2D MOF
membranes Via contra-diffusion for CO2 separation. Materials Chemistry
Frontiers, 5(13): 5150-5157.
28. Long
X., Chen Y.S., Zheng Q., Xie X.X., Tang H., Jiang L.P., Jiang J.T., and Qiu
J.H. (2020). Removal of iodine from aqueous solution by PVDF/ZIF-8
nanocomposite membranes. Separation and Purification Technology, 238:
116488.
29. Karimi
A., Vatanpour V., Khataee A., and Safarpour M. (2019). Contra-diffusion
synthesis of ZIF-8 layer on polyvinylidene fluoride ultrafiltration membranes
for improved water purification. Journal of Industrial and Engineering
Chemistry, 73: 95-105.
30. Tanaka
S., Nagaoka T., Yasuyoshi A., Hasegawa Y., and Denayer J.F.M. (2018).
Hierarchical pore development of ZIF-8 MOF by simple salt-assisted
mechanosynthesis. Crystal Growth and Design, 18(1): 274-279.
31. Thorne
M.F., Gómez M.L.R., Bumstead A.M., Li S., and Bennett T.D. (2020).
Mechanochemical synthesis of mixed metal, mixed linker glass-forming
metal-organic frameworks. Green Chemistry, 22(8): 2505-2512.
32. Desai
A. V., Sharma S., Let S., and Ghosh S.K. (2019). N-donor linker based
metal-organic frameworks (MOFs): Advancement and prospects as functional
materials. Coordination Chemistry Reviews, 395: 146-192.
33. Utpalla
P., Mor J., Sharma S.K., Bahadur J., and Pujari P.K. (2022). Pore
interconnectivity and surface accessibility in stiffened mixed linker MOFs: An
investigation using variable energy positron spectroscopy, Journal of Solid
State Chemistry, 307: 122738.
34. Ding
R., Zheng W., Yang K., Dai Y., Ruan X., Yan X., and He G. (2020).
Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker
strategy and the enhanced CO2/N2 separation. Separation
and Purification Technology, 236: 116209.
35. Eddaoudi
M., Kim J., Rosi N., Vodak D., Wachter J., O’Keeffe M., and Yaghi O.M. (2002).
Systematic design of pore size and functionality in isoreticular MOFs and their
application in methane storage. Science, 295 (5554): 469-472.
36. Furukawa
H., Go Y.B., Ko N., Park Y.K., Uribe-romo F.J., Kim J., Kee M.O., and Yaghi
O.M. (2011). Isoreticular expansion of metal-organic frameworks with triangular
and square building units and the lowest calculated density for porous
crystals. Inorganic Chemistry, 50: 9147-9152.
37. Gotzias
A. (2017). The effect of gme topology on multicomponent adsorption in zeolitic
imidazolate frameworks. Physical Chemistry Chemical Physics, 19(1):
871-877.
38. Reif
B., Fabisch F., Hovestadt M., Hartmann M., and Schwieger W. (2017). Synthesis
of ZIF-11 - Effect of water residues in the solvent onto the phase transition
from ZIF-11 to ZIF-7-III. Microporous and Mesoporous Materials,
243(3):65-68.
39. Pimentel
B.R., Parulkar A., Zhou E.K., Brunelli N.A., and Lively R.P. (2014). Zeolitic
imidazolate frameworks: Next-generation materials for energy-efficient gas
separations. ChemSusChem, 7(12):
3202-3240.
40. Reif
B., Paula C., Fabisch F., Hartmann M., Kaspereit M., and Schwieger W. (2019).
Synthesis of ZIF-11 – Influence of the synthesis parameters on the phase
purity. Microporous and Mesoporous Materials, 275 (7):102-110.
41. Feng
X., Wu T., and Carreon M.A. (2016). Synthesis of ZIF-67 and ZIF-8 crystals
using DMSO (Dimethyl Sulfoxide) as solvent and kinetic transformation studies. Journal
of Crystal Growth, 455(10): 152-156.
42. Lively
R.P., Dose M.E., Thompson J.A., McCool B.A., Chance R.R., and Koros W.J.
(2011). Ethanol and water adsorption in methanol-derived ZIF-71. Chemical
Communications, 47(30): 8667-8669.
43. Fu F., Zheng B.,
Xie L.H., Du H., Du S., and Dong Z. (2018). Size-controllable synthesis of
zeolitic imidazolate framework/carbon nanotube composites. Crystals,
8(10): 1-12.
44. Zhang
Y., Jia Y., Li M., and Hou L. (2018). Influence of the 2-methylimidazole/zinc
nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate
framework-8 crystals at room temperature. Scientific Reports, 8(1): 1-7.
45. Kida
K., Okita M., Fujita K., Tanaka S., and Miyake Y. (2013). Formation of high
crystalline ZIF-8 in an aqueous solution. CrystEngComm, 15(9):
1794-1801.
46. Shi
Z., Yu Y., Fu C., Wang L., and Li X. (2017). Water-based synthesis of zeolitic
imidazolate framework-8 for CO2 capture, RSC Advances, 7(46):
29227-29232.
47. Jian
M., Liu B., Liu R., Qu J., Wang H., and Zhang X. (2015). Water-based synthesis
of zeolitic imidazolate framework-8 with high morphology level at room
temperature. RSC Advances, 5(60): 48433-48441.
48. Lai
L.S., Yeong Y.F., Lau K.K., and Shariff A.M. (2016). Effect of synthesis
parameters on the formation of ZIF-8 under microwave-assisted solvothermal. Procedia
Engineering, 148: 35-42.
49. Abdelhamid
H.N., Huang Z., El-Zohry A.M., Zheng H., and Zou X. (2017). A sast and scalable
approach for synthesis of hierarchical porous zeolitic imidazolate frameworks
and one-pot encapsulation of target molecules, Inorganic Chemistry,
56(15): 9139-9146.
50. Gross
A.F., Sherman E., and Vajo J.J. (2012). Aqueous room temperature synthesis of
cobalt and zinc sodalite zeolitic imidizolate frameworks, Dalton
Transactions, 41(18): 5458-5460.
51. Cravillon
J., Nayuk R., Springer S., Feldhoff A., Huber K., and Wiebcke M. (2011).
Controlling zeolitic imidazolate framework nano- and microcrystal formation:
Insight into crystal growth by time-resolved in situ static light scattering, Chemistry
of Materials, 23(8): 2130-2141.
52. Ebrahimi
A., and Mansournia M. (2017). Cost-effective fabrication of thermal- and
chemical-stable ZIF-9 nanocrystals at ammonia atmosphere, Journal of Physics
and Chemistry of Solids, 111: 12-17.
53. Li
Y., Zhou K., He M., and Yao J. (2016). Synthesis of ZIF-8 and ZIF-67 using
mixed-base and their dye adsorption, Microporous and Mesoporous Materials,
234: 287-292.
54. Huang
X.C., Lin Y.Y., Zhang J.P., and Chen X.M. (2006). Ligand-directed strategy for
zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual
zeolitic topologies, Angewandte Chemie - International Edition, 45(10):
1557-1559.
55. Zheng
W., Ding R., Yang K., Dai Y., Yan X., and He G. (2019). ZIF-8 nanoparticles
with tunable size for enhanced CO2 capture of Pebax based MMMs. Separation
and Purification Technology, 214: 111-119.
56. Cravillon
J., Schröder C.A., Bux H., Rothkirch A., Caro J., and Wiebcke M. (2012).
Formate modulated solvothermal synthesis of ZIF-8 investigated using
time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm,
14(2): 492-498.
57. Seoane
B., Castellanos S., Dikhtiarenko A., Kapteijn F., and Gascon J. (2016).
Multi-scale crystal engineering of metal organic frameworks. Coordination
Chemistry Reviews, 307: 147-187.
58. Oozeerally
R., Ramkhelawan S.D.K., Burnett D.L., Tempelman C.H.L., and Degirmenci V.
(2019). ZIF-8 metal organic framework for the conversion of glucose to fructose
and 5-hydroxymethyl furfural, Catalysts, 9(812): 1-14.
59. Zhao
X., Fang X., Wu B., Zheng L., and Zheng N. (2014). Facile synthesis of
size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors, Science
China Chemistry, 57(1): 141-146.
60. Cheetham
A.K., Kieslich G., and Yeung H.H.M. (2018). Thermodynamic and kinetic effects
in the crystallization of metal-organic frameworks. Accounts of Chemical
Research, 51(3): 659-667.
61. Ta
D.N., Nguyen H.K.D., Trinh B.X., Le Q.T.N., Ta H.N., and Nguyen H.T. (2018).
Preparation of nano-ZIF-8 in methanol with high yield. Canadian Journal of
Chemical Engineering, 96(7): 1518-1531.
62. Tsai
C.W., and Langner E.H.G. (2016). The effect of synthesis temperature on the
particle size of nano-ZIF-8, Microporous and Mesoporous Materials, 221:
8-13.
63. Feng
Y., Li Y., Xu M., Liu S., and Yao J. (2016). Fast adsorption of methyl blue on
zeolitic imidazolate framework-8 and its adsorption mechanism, RSC Advances,
6(111): 109608-109612.
64. Luan
Tran B., Chin H.Y., Chang B.K., and Chiang A.S.T. (2019). Dye adsorption in
ZIF-8: The importance of external surface area. Microporous and Mesoporous
Materials, 277: 149-153.
65. Fan
X., Wang W., Li W., Zhou J., Wang B., Zheng J., and Li X. (2014). Highly porous
ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution
with enhanced adsorption kinetics. ACS Applied Materials and Interfaces,
17: 14994-14999.
66. Fernandez-Perez
A., and Marban G. (2020). Visible light spectroscopic analysis of methylene
blue in water; what comes after dimer? ACS Omega, 5(46): 29801-29815.
67. Heydari
Moghaddam M., Nabizadeh R., Dehghani M.H., Akbarpour B., Azari A., and Yousefi
M. (2019). Performance investigation of Zeolitic Imidazolate Framework – 8
(ZIF-8) in the removal of trichloroethylene from aqueous solutions. Microchemical
Journal, 150: 104185.
68. Saracco
G., Vankova S., Pagliano C., Bonelli B., and Garrone E. (2014). Outer Co(II)
ions in Co-ZIF-67 reversibly adsorb oxygen from both gas phase and liquid
water. Physical Chemistry Chemical Physics, 16 (13): 6139-6145.
69. Tu
N.T.T., Thien T.V., Du P.D., Thanh Chau V.T., Mau T.X., and Khieu D.Q. (2018).
Adsorptive removal of Congo red from aqueous solution using zeolitic
imidazolate framework-67. Journal of Environmental Chemical Engineering,
6(2): 2269-2280.
70. Lin
K.Y.A., and Chang H.A. (2015). Ultra-high adsorption capacity of zeolitic
imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere,
139: 624-631.
71. Bekçi
Z., Özveri C., Seki Y., and Yurdakoç K. (2008). Sorption of malachite green on
chitosan bead. Journal of Hazardous Materials, 154: 254-261.
72. Huo
S.H., and Yan X.P. (2012). Metal-organic framework MIL-100(Fe) for the
adsorption of malachite green from aqueous solution, Journal of Materials
Chemistry, 22(15): 7449-7455.
73. Liao
S.-M., Du Q.-S., Meng J.-Z., Pang Z.-W., and Huang R.-B. (2013). Evidence for a
functionally important histidine residue in human tyrosine hydroxylase, Chemistry
Central Journal, 7(44): 1-12.
74. Yu
R., and Wu Z. (2020). High adsorption for ofloxacin and reusability by the use
of ZIF-8 for wastewater treatment. Microporous and Mesoporous Materials,
308 (3): 110494.
75. Daghrir
R., and Drogui P. (2013). Tetracycline antibiotics in the environment: A
review. Environmental Chemistry Letters, 11(3): 209-227.
76. Golet
E.M., Alder A.C., and Giger W. (2002). Environmental exposure and risk
assessment of fluoroquinolone antibacterial agents in wastewater and river
water of the Glatt Valley watershed, Switzerland. Environmental Science and
Technology, 36(17): 3645-3651.
77. Zhou
L., Li N., Owens G., and Chen Z. (2019). Simultaneous removal of mixed
contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chemical
Engineering Journal, 362: 628-637.
78. Wu
C.S., Xiong Z.H., Li C., and Zhang J.M. (2015). Zeolitic imidazolate metal
organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline
in aqueous solution. RSC Advances, 5(100): 82127-82137.
79. Xiang
Y., Yang X., Xu Z., Hu W., Zhou Y., Wan Z., Yang Y., Wei Y., Yang J., and Tsang
D.C.W. (2020). Fabrication of sustainable manganese ferrite modified biochar
from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects
and mechanisms. Science of the Total Environment, 709: 136079.
80. Li
N., Zhou L., Jin X., Owens G., and Chen Z. (2018). Simultaneous removal of
tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8
metal organic-framework. Journal of Hazardous Materials, 366: 563-572.
81. Petkovic
H., Lukežic T., and Šuškovic J. (2017). Biosynthesis of oxytetracycline by streptomyces rimosus: Past, present and
future directions in the development of tetracycline antibiotics. Food
Technology and Biotechnology, 55(1): 3-13.
82. Ocampo-Pérez
R., Rivera-Utrilla J., Gómez-Pacheco C., Sánchez-Polo M., and López-Peńalver
J.J. (2012). Kinetic study of tetracycline adsorption on sludge-derived
adsorbents in aqueous phase. Chemical Engineering Journal, 213: 88-96.
83. Enayati
M., Gong Y., and Abbaspourrad A. (2019). Synthesis of lactose lauryl ester in
organic solvents using aluminosilicate zeolite as a catalyst. Food Chemistry,
279: 401-407.
84. Sarmah B., Satpati B., and Srivastava R. (2017). Highly efficient
and recyclable basic mesoporous zeolite catalyzed condensation, hydroxylation,
and cycloaddition reactions. Journal of Colloid and Interface Science,
493: 307-316.
85. Shalaby N.H., Elsalamony R.A., and El Naggar A.M.A. (2018).
Mesoporous waste-extracted SiO2-Al2O3-supported
Ni and Ni-H3PW12O40 nano-catalysts for
photo-degradation of methyl orange dye under UV irradiation. New Journal of
Chemistry, 42(11): 9177-9186.
86. Terrade F.G., van Krieken J., Verkuijl B.J.V., and Bouwman E.
(2017). Catalytic cracking of lactide and poly(lactic acid) to acrylic acid at
low temperatures. ChemSusChem, 10(9): 1904-1908.
87. VanWouwe P., Dusselier M., Vanleeuw E., and Sels B. (2016). Lactide
synthesis and chirality control for polylactic acid production, ChemSusChem,
9(9): 907-921.
88. Kricheldorf H.R. (2001). Syntheses and application of polylactides.
Chemosphere, 43(1): 49-54.
89. Luo Z., Chaemchuen S., Zhou K., and Verpoort F. (2017).
Ring-opening polymerization of L-lactide to cyclicpoly(lactide) by
zeolitic imidazole framework ZIF-8 catalyst. ChemSusChem, 10(21):
4135-4139.
90. Aresta M., Dibenedetto A., and Angelini A. (2014). Catalysis for
the valorization of exhaust carbon: from CO2 to chemicals, materials
and fuels. Technological use of CO2. Encyclopedia of Inorganic
and Bioinorganic Chemistry, 3: 1709-1742.
91. Bhin K.M., Tharun J., Roshan K.R., Kim D., Chung Y., and Park D.
(2017). Catalytic performance of zeolitic imidazolate framework ZIF-95 for the
solventless synthesis of cyclic carbonates from CO2 and epoxides. Journal
of CO2 Utilization, 17: 112-118.
92. Jose T., Hwang Y., Kim D.W., Kim M. Il, and Park D.W. (2015).
Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst
for the cycloaddition of carbon dioxide to allyl glycidyl ether, Catalysis
Today, 245: 61-67.
93. Ivanchikova I.D., Evtushok V.Y., Zalomaeva O. V., Kolokolov D.I.,
Stepanov A.G., and Kholdeeva O.A. (2020). Heterogeneous epoxidation of
menadione with hydrogen peroxide over the zeolite imidazolate framework ZIF-8. Dalton
Transactions, 49(36): 12546-12549.
94. Chin
M., Cisneros C., Araiza S.M., Vargas K.M., Ishihara K.M., and Tian F. (2018).
Rhodamine B degradation by nanosized zeolitic imidazolate framework-8 (ZIF-8). RSC
Advances, 8(47): 26987-26997.
95. Wang
T., Wang Y., Sun M., Hanif A., Wu H., Gu Q., Ok Y.S., Tsang D.C.W., Li J., Yu
J., and Shang J. (2020). Thermally treated zeolitic imidazolate framework-8
(ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chemical
Science, 11(26): 6670-6681.
96. Park
H., Amaranatha Reddy D., Kim Y., Ma R., Choi J., Kim T.K., and Lee K.S. (2016).
Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons as
full-spectrum light harvesting photocatalyst for environmental remediation. Solid
State Sciences, 62: 82-89.
97. Wang
M., Liu J., Guo C., Gao X., Gong C., Wang Y., Liu B., Li X., Gurzadyan G.G.,
and Sun L. (2018). Metal-organic frameworks (ZIF-67) as efficient cocatalysts
for photocatalytic reduction of CO2: The role of the morphology
effect, Journal of Materials Chemistry A, 6: 4768-4775.
98. White
J.L., Baruch M.F., Pander J.E., Hu Y., Fortmeyer I.C., Park J.E., Zhang T.,
Liao K., Gu J., Yan Y., Shaw T.W., Abelev E., and Bocarsly A.B. (2015).
Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and
photoelectrodes. Chemical Reviews, 115(23): 12888-12935.
99. Pattengale
B., Santalucia D.J., Yang S., Hu W., Liu C., Zhang X., Berry J.F., and Huang J.
(2018). Direct observation of node-to-node communication in zeolitic
imidazolate frameworks, Journal of the American Chemical Society,
140(37): 11573-11576.
100. Saper
R.B., and Rash R. (2009). Zinc: An essential micronutrient. American Family
Physician, 79(9): 768-772.
101. Karagiaridi
O., Lalonde M.B., Bury W., Sarjeant A.A., Farha O.K., and Hupp J.T. (2012).
Opening ZIF-8: A catalytically active zeolitic imidazolate framework of
sodalite topology with unsubstituted linkers, Journal of the American
Chemical Society, 134(45): 18790-18796.
102. Aarbakke
J., Janka-Schaub G., and Elion G.B. (1997). Thiopurine biology and
pharmacology. Trends in Pharmacological Sciences, 18(1): 3-7.
103. Hanauer
S.B., Korelitz B.I., Rutgeerts P., Peppercorn M.A., Thisted R.A., Cohen R.D.,
and Present D.H. (2004). Postoperative maintenance of Crohn’s disease remission
with 6-mercaptopurine, mesalamine, or placebo: A 2-year trial, Gastroenterology,
127(3): 723-729.
104. Hübener
S., Oo Y.H., Than N.N., Hübener P., Weiler-Normann C., Lohse A.W., and Schramm
C. (2016). Efficacy of 6-mercaptopurine as second-line treatment for patients
with autoimmune hepatitis and azathioprine intolerance. Clinical
Gastroenterology and Hepatology, 14(3): 445-453.
105. Kaur
H., Mohanta G.C., Gupta V., Kukkar D., and Tyagi S. (2017). Synthesis and
characterization of ZIF-8 nanoparticles for controlled release of
6-mercaptopurine drug. Journal of Drug Delivery Science and Technology,
41: 106-112.
106. Müller
Kratz J., Garcia Bournissen F., Forsyth C.J., and Sosa-Estani S. (2018). Clinical and pharmacological profile of
benznidazole for treatment of chagas disease. Taylor & Francis.
107. Coudert
F.X. (2017). Molecular mechanism of swing effect in zeolitic imidazolate
framework ZIF-8: Continuous deformation upon adsorption. ChemPhysChem,
18(19): 2732-2738.
108. Xia
Y., Hong Y., Geng R., Li X., Qu A., Zhou Z., and Zhang Z. (2020).
Amine-functionalized ZIF-8 as a fluorescent probe for breath volatile organic
compound biomarker detection of lung cancer patients. ACS Omega, 5(7):
3478-3486.
109. Tiwari
A., Singh A., Garg N., and Randhawa J.K. (2017). Curcumin encapsulated zeolitic
imidazolate frameworks as stimuli responsive drug delivery system and their
interaction with biomimetic environment. Scientific Reports, 7(1): 1-12.
110. Moura
Ferraz L.R. de, Tabosa A.É.G.A., da Silva Nascimento D.D.S., Ferreira A.S., de
Albuquerque Wanderley Sales V., Silva J.Y.R., Júnior S.A., Rolim L.A., de Souza
Pereira J.J., and Rolim-Neto P.J. (2020). ZIF-8 as a promising drug delivery
system for benznidazole: development, characterization, in vitro dialysis
release and cytotoxicity. Scientific Reports, 10(1): 1-14.
111. Sun
Q., Bi H., Wang Z., Li C., Wang X., Xu J., Zhu H., Zhao R., He F., Gai S., and
Yang P. (2019). Biomaterials hyaluronic acid-targeted and pH-responsive drug
delivery system based on metal-organic frameworks for efficient antitumor
therapy. Biomaterials, 223: 119473.
112. Lin
C.W., Lu K.Y., Wang S.Y., Sung H.W., and Mi F.L. (2016). CD44-specific
nanoparticles for redox-triggered reactive oxygen species production and
doxorubicin release. Acta Biomaterialia, 35: 280-292.
113. Song
L., Pan Z., Zhang H., Li Y., Zhang Y., Lin J., Su G., Ye S., Xie L., Li Y., and
Hou Z. (2017). Dually folate/CD44 receptor-targeted self-assembled hyaluronic
acid nanoparticles for dual-drug delivery and combination cancer therapy. Journal
of Materials Chemistry B, 5(33): 6835-6846.
114. Yan
J., Liu C., Wu Q., Zhou J., Xu X., Zhang L., Wang D., Yang F., and Zhang H.
(2020). Mineralization of pH-sensitive doxorubicin prodrug in ZIF-8 to enable
targeted delivery to solid tumors. Analytical Chemistry, 92(16):
11453-11461.