Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 188 - 219

 

A REVIEW ON THE SYNTHESIS STRATEGIES AND FACTORS CONTRIBUTING TO THE FORMATION OF ZEOLITIC IMIDAZOLATE FRAMEWORKS (ZIFs) AND THEIR APPLICATIONS

 

(Ulasan Strategi Sintesis dan Faktor yang Menyumbang Pembentukan Kerangka Zeolit Imidazolat (ZIFs) dan Aplikasi)

 

Nazhirah Muhammad Nasri1,2, Enis Nadia Md Yusof3, Velan Raman1,2, Abdul Halim Abdullah1,4,

and Mohamed Ibrahim Mohamed Tahir1,2*

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

2Foundry of Reticular Materials for Sustainability (FORMS), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

3Chemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia

4Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

 

*Corresponding author: ibra@upm.edu.my 

 

 

Received: 6 November 2023; Accepted: 5 January 2024; Published:  28 February 2024

 

 

Abstract

Zeolitic Imidazolate Frameworks (ZIFs) are a subclass of Metal-Organic Frameworks (MOFs) that have attracted significant attention due to their unique properties such as high surface area, tunable pore size, and excellent thermal and chemical stability. The review aims to discuss reported single and mixed-linker of ZIFs. The synthesis of ZIFs can be achieved through various methods such as solvothermal, hydrothermal, ionothermal, microwave-assisted, sonochemical, contra-diffusion synthesis, and mechanochemical. The review discusses the benefits and disadvantages of each method as well as a critical analysis of their effectiveness. The synthesis factors of ZIFs are classified into several types such as organic solvents, additives, concentration, temperatures, metal salt variations and the reaction time. Furthermore, the paper highlights several applications of ZIFs, including their impact on adsorption of pollutants, catalysis and drug delivery system. The paper concludes by summarising the recent advances in ZIFs research which leads to future directions for further research in this field.

 

Keywords: zeolitic imidazolate frameworks (ZIFs), method, factors, application

 

Abstrak

Kerangka kerja zeolit imidazolat (ZIF) adalah subkelas kerangka kerja logam organik (MOF) yang telah menarik perhatian kerana sifat uniknya seperti permukaan yang luas, saiz liang yang boleh dilaraskan dan mempunyai kestabilan terma dan kimia yang sangat baik. Ulasan ini bertujuan untuk membincangkan ZIF dengan satu dan pelbagai penyambung yang telah dilaporkan sebelum ini. Sintesis ZIF boleh dicapai melalui pelbagai kaedah seperti solvoterma, hidroterma, ionoterma, bantuan gelombang mikro, sonokimia, sintesis kontra-resapan dan mekanokimia. Kajian ini membincangkan kelebihan dan kekurangan setiap kaedah serta menyediakan analisis yang kritikal tentang keberkesanan sesuatu kaedah. Faktor sintesis ZIF juga dikelaskan kepada beberapa jenis seperti pelarut organik, bahan tambahan, kepekatan, suhu, variasi garam logam dan masa tindak balas. Tambahan pula, kertas kerja ini membincangkan beberapa aplikasi ZIF, termasuk kesan ZIF terhadap penjerapan bahan pencemar, pemangkin dan sistem penghantaran ubat. Kertas kajian ini jugak meringkaskan kemajuan terkini dalam penyelidikan ZIF yang membawa ke menyerlahkan hala tuju masa depan untuk bidang ini dengan lebih lanjut.

 

Kata kunci: kerangka zeolit imidazolat, kaedah, faktor, aplikasi

 

References

1.    Banerjee R., Furukawa H., Britt D., Knobler C., O’Keeffe M., and Yaghi O.M. (2009). Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 131: 3875-3877.

2.    Wang B., Côté A.P., Furukawa H., O’Keeffe M., and Yaghi O.M. (2008). Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453(7192): 207-211.

3.    Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K., O’Keeffe M., and Yaghi O.M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 103(27): 10186-91.

4.    Nguyen N.T.T., Furukawa H., Gándara F., Nguyen H.T., Cordova K.E., and Yaghi O.M. (2014). Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angewandte Chemie - International Edition, 53: 10645-10648.

5.    Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O’Keeffe M., and Yaghi O.M. (2008). High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 319: 939-944.

6.    Morris W., Doonan C.J., Furukawa H., Banerjee R., and Yaghi O.M. (2008). Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society, 130(38): 12626-12627.

7.    Lee Y.R., Kim J., and Ahn W.S. (2013). Synthesis of Metal-Organic Frameworks: A Mini Review. Korean Journal of Chemical Engineering, 30(9): 1667-1680.

8.    Yang J., Zhang Y.B., Liu Q., Trickett C.A., Gutiérrez-Puebla E., Monge M.Á., Cong H., Aldossary A., Deng H., and Yaghi O.M. (2017). Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. Journal of the American Chemical Society, 139(18): 6448-6455.

9.    Kamal K., Bustam M.A., Ismail M., Grekov D., Shariff A.M., and Pré P. (2020). Optimization of washing processes in solvothermal synthesis of nickel-based MOF-74. Materials, 13(12): 1-10.

10.  Hasan M.R., Paseta L., Malankowska M., Téllez C., and Coronas J. (2022). Synthesis of ZIF-94 from recycled mother liquors: Study of the influence of its loading on postcombustion CO2 capture with pebax based mixed matrix membranes. Advanced Sustainable Systems, 6(1): 2100317.

11.  Kenyotha K., Chanapattharapol K.C., McCloskey S., and Jantaharn P. (2020). Water based synthesis of ZIF-8 assisted by hydrogen bond acceptors and enhancement of CO2 uptake by solvent assisted ligand exchange, Crystals, 10(7): 1-23.

12.  Wu R., Fan T., Chen J., and Li Y. (2019). Synthetic factors affecting the scalable production of zeolitic imidazolate frameworks. ACS Sustainable Chemistry and Engineering, 7(4): 3632-3646.

13.  Chen B., Yang Z., Zhu Y., and Xia Y. (2014). Zeolitic imidazolate framework materials: recent progress in synthesis and applications. Journal of Materials Chemistry A, 2(40): 16811-16831.

14.  Sankar S.S., Karthick K., Sangeetha K., Karmakar A., Madhu R., and Kundu S. (2021). Current perspectives on 3D ZIFs incorporated with 1D carbon matrices as fibers via electrospinning processes towards electrocatalytic water splitting: A review. Journal of Materials Chemistry A, 9(20): 11961-12002.

15.  Cheong V.F., and Moh P.Y. (2018). Recent advancement in metal–organic framework: synthesis, activation, functionalisation, and bulk production. Materials Science and Technology, 34(9): 1025-1045.

16.  Hu L., Chen L., Fang Y., Wang A., Chen C., and Yan Z. (2018). Facile synthesis of zeolitic imidazolate framework-8 (ZIF-8) by forming imidazole-based deep eutectic solvent. Microporous and Mesoporous Materials, 268: 207-215.

17.  Wang Y., Xu Y., Li D., Liu H., Li X., Tao S., and Tian Z. (2015). Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism, Chinese Journal of Catalysis, 36(6): 855-865.

18.  Gangu K.K., Maddila S., Mukkamala S.B., and Jonnalagadda S.B. (2016). A review on contemporary Metal-Organic Framework materials. Inorganica Chimica Acta, 446: 61-74.

19.  Wang Q., Sun Y., Li S., Zhang P., and Yao Q. (2020). Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Advances, 10(62): 37600-37620.

20.  Xiao T., and Liu D. (2019). Progress in the synthesis, properties and applications of ZIF-7 and its derivatives. Materials Today Energy, 14(3): 100357.

21.  Lucero J.M., Self T.J., and Carreon M.A. (2020). Synthesis of ZIF-11 crystals by microwave heating. New Journal of Chemistry, 44(9): 3562-3565.

22.  Tran T. Van, Nguyen H., Le P.H.A., Nguyen D.T.C., Nguyen T.T., Nguyen C. Van, Vo D.V.N., and Nguyen T.D. (2020). Microwave-assisted solvothermal fabrication of hybrid zeolitic-imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology, Journal of Environmental Chemical Engineering, 8(4): 104189.

23.  Hayati P., Rezvani A.R., Morsali A., Molina D.R., Geravand S., Suarez-Garcia S., Villaecija M.A.M., García-Granda S., Mendoza-Merońo R., and Retailleau P. (2017). Sonochemical synthesis, characterization, and effects of temperature, power ultrasound and reaction time on the morphological properties of two new nanostructured mercury(II) coordination supramolecule compounds. Ultrasonics Sonochemistry, 37: 382–393.

24.  Kukkar P., Kim K.H., Kukkar D., and Singh P. (2021). Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coordination Chemistry Reviews, 446: 214109.

25.  Nalesso S., Varlet G., Bussemaker M.J., Sear R.P., Hodnett M., Monteagudo-Oliván R., Sebastián V., Coronas J., and Lee J. (2021). Sonocrystallisation of ZIF-8 in water with high excess of ligand: Effects of frequency, power and sonication time. Ultrasonics Sonochemistry, 76: 105616.

26.  Abuzalat O., Wong D., Elsayed M., Park S., and Kim S. (2018). Sonochemical fabrication of Cu(II) and Zn(II) metal-organic framework films on metal substrates, Ultrasonics Sonochemistry, 45: 180-188.

27.  Jiang S., Shi X., Zu Y., Sun F., and Zhu G. (2021). Interfacial growth of 2D MOF membranes Via contra-diffusion for CO2 separation. Materials Chemistry Frontiers, 5(13): 5150-5157.

28.  Long X., Chen Y.S., Zheng Q., Xie X.X., Tang H., Jiang L.P., Jiang J.T., and Qiu J.H. (2020). Removal of iodine from aqueous solution by PVDF/ZIF-8 nanocomposite membranes. Separation and Purification Technology, 238: 116488.

29.  Karimi A., Vatanpour V., Khataee A., and Safarpour M. (2019). Contra-diffusion synthesis of ZIF-8 layer on polyvinylidene fluoride ultrafiltration membranes for improved water purification. Journal of Industrial and Engineering Chemistry, 73: 95-105.

30.  Tanaka S., Nagaoka T., Yasuyoshi A., Hasegawa Y., and Denayer J.F.M. (2018). Hierarchical pore development of ZIF-8 MOF by simple salt-assisted mechanosynthesis. Crystal Growth and Design, 18(1): 274-279.

31.  Thorne M.F., Gómez M.L.R., Bumstead A.M., Li S., and Bennett T.D. (2020). Mechanochemical synthesis of mixed metal, mixed linker glass-forming metal-organic frameworks. Green Chemistry, 22(8): 2505-2512.

32.  Desai A. V., Sharma S., Let S., and Ghosh S.K. (2019). N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 395: 146-192.

33.  Utpalla P., Mor J., Sharma S.K., Bahadur J., and Pujari P.K. (2022). Pore interconnectivity and surface accessibility in stiffened mixed linker MOFs: An investigation using variable energy positron spectroscopy, Journal of Solid State Chemistry, 307: 122738.

34.  Ding R., Zheng W., Yang K., Dai Y., Ruan X., Yan X., and He G. (2020). Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation. Separation and Purification Technology, 236: 116209.

35.  Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O’Keeffe M., and Yaghi O.M. (2002). Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295 (5554): 469-472.

36.  Furukawa H., Go Y.B., Ko N., Park Y.K., Uribe-romo F.J., Kim J., Kee M.O., and Yaghi O.M. (2011). Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorganic Chemistry, 50: 9147-9152.

37.  Gotzias A. (2017). The effect of gme topology on multicomponent adsorption in zeolitic imidazolate frameworks. Physical Chemistry Chemical Physics, 19(1): 871-877.

38.  Reif B., Fabisch F., Hovestadt M., Hartmann M., and Schwieger W. (2017). Synthesis of ZIF-11 - Effect of water residues in the solvent onto the phase transition from ZIF-11 to ZIF-7-III. Microporous and Mesoporous Materials, 243(3):65-68.

39.  Pimentel B.R., Parulkar A., Zhou E.K., Brunelli N.A., and Lively R.P. (2014). Zeolitic imidazolate frameworks: Next-generation materials for energy-efficient gas separations. ChemSusChem, 7(12):  3202-3240.

40.  Reif B., Paula C., Fabisch F., Hartmann M., Kaspereit M., and Schwieger W. (2019). Synthesis of ZIF-11 – Influence of the synthesis parameters on the phase purity. Microporous and Mesoporous Materials, 275 (7):102-110.

41.  Feng X., Wu T., and Carreon M.A. (2016). Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (Dimethyl Sulfoxide) as solvent and kinetic transformation studies. Journal of Crystal Growth, 455(10): 152-156.

42.  Lively R.P., Dose M.E., Thompson J.A., McCool B.A., Chance R.R., and Koros W.J. (2011). Ethanol and water adsorption in methanol-derived ZIF-71. Chemical Communications, 47(30): 8667-8669.

43.  Fu F., Zheng B., Xie L.H., Du H., Du S., and Dong Z. (2018). Size-controllable synthesis of zeolitic imidazolate framework/carbon nanotube composites. Crystals, 8(10): 1-12.

44.  Zhang Y., Jia Y., Li M., and Hou L. (2018). Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific Reports, 8(1): 1-7.

45.  Kida K., Okita M., Fujita K., Tanaka S., and Miyake Y. (2013). Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 15(9): 1794-1801.

46.  Shi Z., Yu Y., Fu C., Wang L., and Li X. (2017). Water-based synthesis of zeolitic imidazolate framework-8 for CO2 capture, RSC Advances, 7(46): 29227-29232.

47.  Jian M., Liu B., Liu R., Qu J., Wang H., and Zhang X. (2015). Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances, 5(60): 48433-48441.

48.  Lai L.S., Yeong Y.F., Lau K.K., and Shariff A.M. (2016). Effect of synthesis parameters on the formation of ZIF-8 under microwave-assisted solvothermal. Procedia Engineering, 148: 35-42.

49.  Abdelhamid H.N., Huang Z., El-Zohry A.M., Zheng H., and Zou X. (2017). A sast and scalable approach for synthesis of hierarchical porous zeolitic imidazolate frameworks and one-pot encapsulation of target molecules, Inorganic Chemistry, 56(15): 9139-9146.

50.  Gross A.F., Sherman E., and Vajo J.J. (2012). Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks, Dalton Transactions, 41(18): 5458-5460.

51.  Cravillon J., Nayuk R., Springer S., Feldhoff A., Huber K., and Wiebcke M. (2011). Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering, Chemistry of Materials, 23(8): 2130-2141.

52.  Ebrahimi A., and Mansournia M. (2017). Cost-effective fabrication of thermal- and chemical-stable ZIF-9 nanocrystals at ammonia atmosphere, Journal of Physics and Chemistry of Solids, 111: 12-17.

53.  Li Y., Zhou K., He M., and Yao J. (2016). Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption, Microporous and Mesoporous Materials, 234: 287-292.

54.  Huang X.C., Lin Y.Y., Zhang J.P., and Chen X.M. (2006). Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies, Angewandte Chemie - International Edition, 45(10): 1557-1559.

55.  Zheng W., Ding R., Yang K., Dai Y., Yan X., and He G. (2019). ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs. Separation and Purification Technology, 214: 111-119.

56.  Cravillon J., Schröder C.A., Bux H., Rothkirch A., Caro J., and Wiebcke M. (2012). Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 14(2): 492-498.

57.  Seoane B., Castellanos S., Dikhtiarenko A., Kapteijn F., and Gascon J. (2016). Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 307: 147-187.

58.  Oozeerally R., Ramkhelawan S.D.K., Burnett D.L., Tempelman C.H.L., and Degirmenci V. (2019). ZIF-8 metal organic framework for the conversion of glucose to fructose and 5-hydroxymethyl furfural, Catalysts, 9(812): 1-14.

59.  Zhao X., Fang X., Wu B., Zheng L., and Zheng N. (2014). Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors, Science China Chemistry, 57(1): 141-146.

60.  Cheetham A.K., Kieslich G., and Yeung H.H.M. (2018). Thermodynamic and kinetic effects in the crystallization of metal-organic frameworks. Accounts of Chemical Research, 51(3): 659-667.

61.  Ta D.N., Nguyen H.K.D., Trinh B.X., Le Q.T.N., Ta H.N., and Nguyen H.T. (2018). Preparation of nano-ZIF-8 in methanol with high yield. Canadian Journal of Chemical Engineering, 96(7): 1518-1531.

62.  Tsai C.W., and Langner E.H.G. (2016). The effect of synthesis temperature on the particle size of nano-ZIF-8, Microporous and Mesoporous Materials, 221: 8-13.

63.  Feng Y., Li Y., Xu M., Liu S., and Yao J. (2016). Fast adsorption of methyl blue on zeolitic imidazolate framework-8 and its adsorption mechanism, RSC Advances, 6(111): 109608-109612.

64.  Luan Tran B., Chin H.Y., Chang B.K., and Chiang A.S.T. (2019). Dye adsorption in ZIF-8: The importance of external surface area. Microporous and Mesoporous Materials, 277: 149-153.

65.  Fan X., Wang W., Li W., Zhou J., Wang B., Zheng J., and Li X. (2014). Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Applied Materials and Interfaces, 17: 14994-14999.

66.  Fernandez-Perez A., and Marban G. (2020). Visible light spectroscopic analysis of methylene blue in water; what comes after dimer? ACS Omega, 5(46): 29801-29815.

67.  Heydari Moghaddam M., Nabizadeh R., Dehghani M.H., Akbarpour B., Azari A., and Yousefi M. (2019). Performance investigation of Zeolitic Imidazolate Framework – 8 (ZIF-8) in the removal of trichloroethylene from aqueous solutions. Microchemical Journal, 150: 104185.

68.  Saracco G., Vankova S., Pagliano C., Bonelli B., and Garrone E. (2014). Outer Co(II) ions in Co-ZIF-67 reversibly adsorb oxygen from both gas phase and liquid water. Physical Chemistry Chemical Physics, 16 (13): 6139-6145.

69.  Tu N.T.T., Thien T.V., Du P.D., Thanh Chau V.T., Mau T.X., and Khieu D.Q. (2018). Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework-67. Journal of Environmental Chemical Engineering, 6(2): 2269-2280.

70.  Lin K.Y.A., and Chang H.A. (2015). Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere, 139: 624-631.

71.  Bekçi Z., Özveri C., Seki Y., and Yurdakoç K. (2008). Sorption of malachite green on chitosan bead. Journal of Hazardous Materials, 154: 254-261.

72.  Huo S.H., and Yan X.P. (2012). Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution, Journal of Materials Chemistry, 22(15): 7449-7455.

73.  Liao S.-M., Du Q.-S., Meng J.-Z., Pang Z.-W., and Huang R.-B. (2013). Evidence for a functionally important histidine residue in human tyrosine hydroxylase, Chemistry Central Journal, 7(44): 1-12.

74.  Yu R., and Wu Z. (2020). High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment. Microporous and Mesoporous Materials, 308 (3): 110494.

75.  Daghrir R., and Drogui P. (2013). Tetracycline antibiotics in the environment: A review. Environmental Chemistry Letters, 11(3): 209-227.

76.  Golet E.M., Alder A.C., and Giger W. (2002). Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley watershed, Switzerland. Environmental Science and Technology, 36(17): 3645-3651.

77.  Zhou L., Li N., Owens G., and Chen Z. (2019). Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chemical Engineering Journal, 362: 628-637.

78.  Wu C.S., Xiong Z.H., Li C., and Zhang J.M. (2015). Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Advances, 5(100): 82127-82137.

79.  Xiang Y., Yang X., Xu Z., Hu W., Zhou Y., Wan Z., Yang Y., Wei Y., Yang J., and Tsang D.C.W. (2020). Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. Science of the Total Environment, 709: 136079.

80.  Li N., Zhou L., Jin X., Owens G., and Chen Z. (2018). Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. Journal of Hazardous Materials, 366: 563-572.

81.  Petkovic H., Lukežic T., and Šuškovic J. (2017). Biosynthesis of oxytetracycline by streptomyces rimosus: Past, present and future directions in the development of tetracycline antibiotics. Food Technology and Biotechnology, 55(1): 3-13.

82.  Ocampo-Pérez R., Rivera-Utrilla J., Gómez-Pacheco C., Sánchez-Polo M., and López-Peńalver J.J. (2012). Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase. Chemical Engineering Journal, 213: 88-96.

83.  Enayati M., Gong Y., and Abbaspourrad A. (2019). Synthesis of lactose lauryl ester in organic solvents using aluminosilicate zeolite as a catalyst. Food Chemistry, 279: 401-407.

84. Sarmah B., Satpati B., and Srivastava R. (2017). Highly efficient and recyclable basic mesoporous zeolite catalyzed condensation, hydroxylation, and cycloaddition reactions. Journal of Colloid and Interface Science, 493: 307-316.

85.  Shalaby N.H., Elsalamony R.A., and El Naggar A.M.A. (2018). Mesoporous waste-extracted SiO2-Al2O3-supported Ni and Ni-H3PW12O40 nano-catalysts for photo-degradation of methyl orange dye under UV irradiation. New Journal of Chemistry, 42(11): 9177-9186.

86.  Terrade F.G., van Krieken J., Verkuijl B.J.V., and Bouwman E. (2017). Catalytic cracking of lactide and poly(lactic acid) to acrylic acid at low temperatures. ChemSusChem, 10(9): 1904-1908.

87.  VanWouwe P., Dusselier M., Vanleeuw E., and Sels B. (2016). Lactide synthesis and chirality control for polylactic acid production, ChemSusChem, 9(9): 907-921.

88.  Kricheldorf H.R. (2001). Syntheses and application of polylactides. Chemosphere, 43(1): 49-54.

89.  Luo Z., Chaemchuen S., Zhou K., and Verpoort F. (2017). Ring-opening polymerization of L-lactide to cyclicpoly(lactide) by zeolitic imidazole framework ZIF-8 catalyst. ChemSusChem, 10(21): 4135-4139.

90.  Aresta M., Dibenedetto A., and Angelini A. (2014). Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials and fuels. Technological use of CO2. Encyclopedia of Inorganic and Bioinorganic Chemistry, 3: 1709-1742.

91.  Bhin K.M., Tharun J., Roshan K.R., Kim D., Chung Y., and Park D. (2017). Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides. Journal of CO2 Utilization, 17: 112-118.

92.  Jose T., Hwang Y., Kim D.W., Kim M. Il, and Park D.W. (2015). Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether, Catalysis Today, 245: 61-67.

93.  Ivanchikova I.D., Evtushok V.Y., Zalomaeva O. V., Kolokolov D.I., Stepanov A.G., and Kholdeeva O.A. (2020). Heterogeneous epoxidation of menadione with hydrogen peroxide over the zeolite imidazolate framework ZIF-8. Dalton Transactions, 49(36): 12546-12549.

94.  Chin M., Cisneros C., Araiza S.M., Vargas K.M., Ishihara K.M., and Tian F. (2018). Rhodamine B degradation by nanosized zeolitic imidazolate framework-8 (ZIF-8). RSC Advances, 8(47): 26987-26997.

95.  Wang T., Wang Y., Sun M., Hanif A., Wu H., Gu Q., Ok Y.S., Tsang D.C.W., Li J., Yu J., and Shang J. (2020). Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chemical Science, 11(26): 6670-6681.

96.  Park H., Amaranatha Reddy D., Kim Y., Ma R., Choi J., Kim T.K., and Lee K.S. (2016). Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation. Solid State Sciences, 62: 82-89.

97.  Wang M., Liu J., Guo C., Gao X., Gong C., Wang Y., Liu B., Li X., Gurzadyan G.G., and Sun L. (2018). Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect, Journal of Materials Chemistry A, 6: 4768-4775.

98.  White J.L., Baruch M.F., Pander J.E., Hu Y., Fortmeyer I.C., Park J.E., Zhang T., Liao K., Gu J., Yan Y., Shaw T.W., Abelev E., and Bocarsly A.B. (2015). Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chemical Reviews, 115(23): 12888-12935.

99.  Pattengale B., Santalucia D.J., Yang S., Hu W., Liu C., Zhang X., Berry J.F., and Huang J. (2018). Direct observation of node-to-node communication in zeolitic imidazolate frameworks, Journal of the American Chemical Society, 140(37): 11573-11576.

100. Saper R.B., and Rash R. (2009). Zinc: An essential micronutrient. American Family Physician, 79(9): 768-772.

101. Karagiaridi O., Lalonde M.B., Bury W., Sarjeant A.A., Farha O.K., and Hupp J.T. (2012). Opening ZIF-8: A catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers, Journal of the American Chemical Society, 134(45): 18790-18796.

102. Aarbakke J., Janka-Schaub G., and Elion G.B. (1997). Thiopurine biology and pharmacology. Trends in Pharmacological Sciences, 18(1): 3-7.

103. Hanauer S.B., Korelitz B.I., Rutgeerts P., Peppercorn M.A., Thisted R.A., Cohen R.D., and Present D.H. (2004). Postoperative maintenance of Crohn’s disease remission with 6-mercaptopurine, mesalamine, or placebo: A 2-year trial, Gastroenterology, 127(3): 723-729.

104. Hübener S., Oo Y.H., Than N.N., Hübener P., Weiler-Normann C., Lohse A.W., and Schramm C. (2016). Efficacy of 6-mercaptopurine as second-line treatment for patients with autoimmune hepatitis and azathioprine intolerance. Clinical Gastroenterology and Hepatology, 14(3): 445-453.

105. Kaur H., Mohanta G.C., Gupta V., Kukkar D., and Tyagi S. (2017). Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. Journal of Drug Delivery Science and Technology, 41: 106-112.

106. Müller Kratz J., Garcia Bournissen F., Forsyth C.J., and Sosa-Estani S. (2018). Clinical and pharmacological profile of benznidazole for treatment of chagas disease. Taylor & Francis.

107. Coudert F.X. (2017). Molecular mechanism of swing effect in zeolitic imidazolate framework ZIF-8: Continuous deformation upon adsorption. ChemPhysChem, 18(19): 2732-2738.

108. Xia Y., Hong Y., Geng R., Li X., Qu A., Zhou Z., and Zhang Z. (2020). Amine-functionalized ZIF-8 as a fluorescent probe for breath volatile organic compound biomarker detection of lung cancer patients. ACS Omega, 5(7): 3478-3486.

109. Tiwari A., Singh A., Garg N., and Randhawa J.K. (2017). Curcumin encapsulated zeolitic imidazolate frameworks as stimuli responsive drug delivery system and their interaction with biomimetic environment. Scientific Reports, 7(1): 1-12.

110. Moura Ferraz L.R. de, Tabosa A.É.G.A., da Silva Nascimento D.D.S., Ferreira A.S., de Albuquerque Wanderley Sales V., Silva J.Y.R., Júnior S.A., Rolim L.A., de Souza Pereira J.J., and Rolim-Neto P.J. (2020). ZIF-8 as a promising drug delivery system for benznidazole: development, characterization, in vitro dialysis release and cytotoxicity. Scientific Reports, 10(1): 1-14.

111. Sun Q., Bi H., Wang Z., Li C., Wang X., Xu J., Zhu H., Zhao R., He F., Gai S., and Yang P. (2019). Biomaterials hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials, 223: 119473.

112. Lin C.W., Lu K.Y., Wang S.Y., Sung H.W., and Mi F.L. (2016). CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Acta Biomaterialia, 35: 280-292.

113. Song L., Pan Z., Zhang H., Li Y., Zhang Y., Lin J., Su G., Ye S., Xie L., Li Y., and Hou Z. (2017). Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. Journal of Materials Chemistry B, 5(33): 6835-6846.

114. Yan J., Liu C., Wu Q., Zhou J., Xu X., Zhang L., Wang D., Yang F., and Zhang H. (2020). Mineralization of pH-sensitive doxorubicin prodrug in ZIF-8 to enable targeted delivery to solid tumors. Analytical Chemistry, 92(16): 11453-11461.