Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 174 - 187
POTENTIAL GREEN LIQUID FROM TERNARY DEEP EUTECTIC SOLVENT
COMPOSED OF GALLIC ACID, UREA, AND ZINC CHLORIDE: CHARACTERIZATION OF THEIR
PHYSICOCHEMICAL AND THERMAL PROPERTIES
(Potensi Cecair Hijau daripada Pelarut Eutektik Terdalam Ternari
daripada Asid Galik, Urea, dan Zink Klorida: Pencirian Sifat Fisikokimia dan
Termanya)
Nuraqilah Mohd Hatta and Siti Abd Halim*
Universiti Kuala Lumpur, Malaysian Institute of Chemical Engineering
Technology, 78000 Alor Gajah, Melaka
*Corresponding author: sitinurulatikah@unikl.edu.my
Received: 15
September 2023; Accepted: 17 December 2023; Published: 28 February 2024
Abstract
Deep
eutectic solvents (DESs) have attracted wide attention due to their cheaper
cost, ease of manufacture, lower toxicity, and higher biological compatibility.
In this study, we offer a more affordable and adaptable path to similar systems
using gallic acid (GA), urea (U), and zinc chloride (ZnCl2). The
mixture produced, called GA-based DES, was prepared at varying molar ratios of
1:5:1, 1:6:1, 1:7:1, and 1:8:1 (GA:U:ZnCl2).
The eutectic liquid form of the GA-based DES mixture was obtained when heated
at an operating temperature of 120 °C, below the melting temperature of each
individual chemical. The structural and physicochemical properties of the DESs
were studied via Fourier transform infrared spectroscopy, thermogravimetric
analysis, and viscosity test. Different molar ratios of the DES mixture affected
the hydrogen bond interaction formed between GA and U as the hydrogen bond
donors and ZnCl2 as the hydrogen bond acceptor in the DES mixture with
the presence of O–H stretching and N–H stretching vibration bands as an
association effect of GA, U, and ZnCl2. An increase in the U ratio weakened
the hydrogen bond and reduced the viscosity of the liquid in the DES mixture
due to an increase in O–H stretching. The current findings provide a potential
justification for the viscosity of DES mixtures and aid in tailoring the design
and development of new DES mixtures for further applications, such as
extraction, separation, conversion to functional porous carbon, and biochemical
technology.
Keywords: chemical properties, deep eutectic
solvent, gallic acid, urea, physical properties
Abstrak
Pelarut eutektik terdalam (DES) telah menarik perhatian luas kerana
kosnya yang lebih murah, kemudahan pembuatan, ketoksikan yang lebih rendah, dan
keserasian biologi yang lebih tinggi. Dalam kajian ini, kami menawarkan laluan
yang lebih berpatutan dan boleh disesuaikan kepada sistem serupa menggunakan
asid galik (GA), urea (U), dan zink klorida (ZnCl2). DES berasaskan GA
yang dihasilkan dalam kajian ini adalah daripada campuran GA-U-ZnCl2
yang terdiri daripada empat nisbah molar berbeza iaitu 1:5:1, 1:6:1, 1:7:1, dan
1:8:1. Cecair eutektik campuran DES berasaskan GA diperoleh apabila dipanaskan
pada suhu operasi 120 °C di bawah suhu
lebur setiap bahan kimia. Sifat struktur dan fizikokimia DES dikaji melalui
spektroskopi inframerah transformasi Fourier, analisis termogravimetri, dan
ujian kelikatan. Nisbah molar campuran DES yang berbeza mempengaruhi interaksi
ikatan hidrogen yang terbentuk antara GA dan U sebagai penderma ikatan hidrogen
dan ZnCl2 sebagai penerima ikatan hidrogen dalam campuran DES
dengan kehadiran regangan O–H dan jalur getaran regangan N–H sebagai kesan
persatuan GA, U, dan ZnCl2. Peningkatan nisbah U melemahkan ikatan hidrogen
dan mengurangkan kelikatan cecair dalam campuran DES disebabkan oleh
peningkatan dalam regangan O–H. Penemuan semasa memberikan justifikasi yang
berpotensi untuk kelikatan hasil daripada campuran DES dan membantu dalam menyesuaikan
reka bentuk dan perkembangan campuran DES baharu untuk aplikasi selanjutnya.
Kata kunci: sifat kimia, pelarut eutektik dalam, asid galik, urea, ciri-ciri fizikal
References
1. Zhang, Q., Vigier, K. D. O. and Jerome, F. (2012). Deep
eutectic solvents: syntheses, properties and applications. Chemistry Society
Review, 41: 7108-7146.
2. Hikmawanti,
N. P. E., Ramadon, D., Jantan, I. and Mun’im, A. (2021). Natural deep eutectic
solvents (Nades): Phytochemical extraction performance enhancer for
pharmaceutical and nutraceutical product development. Plants, 10(10):
2091.
3. Chandran,
K., Kait, C. F., Wilfred, C. D. and Zaid, H. F. M. (2021). A review on deep
eutectic solvents: Physiochemical properties and its application as an
absorbent for sulfur dioxide. Journal of Molecular Liquids, 338: 117021.
4. Smith,
E. L., Abbott, A. P. and Ryder, K. S. (2014). Deep eutectic solvents (DESs) and
their applications. Chemical Reviews, 114(21): 11060-11082.
5. Sekharan,
T. R., Chandira, R. M., Tamilvanan, S., Rajesh, S. C. and Venkateswarlu, B. S.
(2022). Deep eutectic solvents as an alternate to other harmful solvents. Biointerface
Research in Applied Chemistry, 12(1): 847-860.
6. El
Achkar, T., Greige-Gerges, H. and Fourmentin, S. (2021). Basics and properties
of deep eutectic solvents: a review. In Environmental Chemistry Letters,
19(4): 3397-3408.
7. Ghaedi,
H., Ayoub, M., Sufian, S., Shariff, A. M. and Lal, B. (2017). The study on
temperature dependence of viscosity and surface tension of several
Phosphonium-based deep eutectic solvents. Journal of Molecular Liquids,
241: 500-510.
8. Chen,
L., Deng, J., Song, Y., Hong, S. and Lian, H. (2020). Deep eutectic solvent
promoted tunable synthesis of nitrogen-doped nanoporous carbons from enzymatic
hydrolysis lignin for supercapacitors. Materials Research Bulletin, 123:
110708.
9. Wang,
T., Guo, J., Guo, Y., Feng, J. and Wu, D. (2021). Nitrogen-doped carbon derived
from deep eutectic solvent as a high-performance supercapacitor. ACS Applied
Energy Materials, 4(3): 2190-2200.
10. Hansen,
B. B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J. M., Horton, A.,
Adhikari, L., Zelovich, T., Doherty, B. W., Gurkan, B., Maginn, E. J.,
Ragauskas, A., Dadmun, M., Zawodzinski, T. A., Baker, G. A., Tuckerman, M. E.,
Savinell, R. F. and Sangoro, J. R. (2021). Deep Eutectic Solvents: A Review of
Fundamentals and Applications. Chemical Reviews, 121(3): 1232-1285.
11. Wang,
B., Cheng, J., Wang, D. D., Li, X., Meng, Q., Zhang, Z., An, J., Liu, X. and Li,
M. (2020). Study on the desulfurization and regeneration performance of
functional deep eutectic solvents. ACS Omega, 5(25): 15353-15361.
12. Ge, X., Gu, C., Wang, X. and Tu, J. (2017). Deep eutectic
solvents (DESs)-derived advanced functional materials for energy and
environmental applications: Challenges, opportunities, and future vision. Journal
of Materials Chemistry A, 5(18): 8209-8229.
13. Wei,
Y., Wu, P., Luo, J., Dai, L., Li, H., Zhang, M., Chen, L., Wang, L., Zhu, W.
and Li, H. (2020). Synthesis of hierarchical porous BCN using ternary deep
eutectic solvent as precursor and template for aerobic oxidative
desulfurization. Microporous and Mesoporous Materials, 293: 109788.
14. Chemat,
F., Abert-Vian, M., Fabiano-Tixier, A. S., Strube, J., Uhlenbrock, L.,
Gunjevic, V. and Cravotto, G. (2019). Green extraction of natural products.
Origins, current status, and future challenges. TrAC Trends in Analytical
Chemistry, 118: 248-263.
15. Singh,
S. (2018). Applications of green solvents in extraction of phytochemicals from
medicinal plants: A review Promila and Sushila Singh. The Pharma Innovation
Journal, 7(3): 238-245.
16. Zainal-Abidin,
M. H., Hayyan, M., Hayyan, A. and Jayakumar, N. S. (2017). New horizons in the
extraction of bioactive compounds using deep eutectic solvents: A review. Analytica
Chimica Acta, 979: 1-23.
17. Ali, M.
C., Yang, Q., Fine, A. A., Jin, W., Zhang, Z., Xing, H. and Ren, Q. (2015).
Efficient removal of both basic and non-basic nitrogen compounds from fuels by
deep eutectic solvents. Green Chemistry, 18(1): 157-164.
18. Li, Y.,
Ali, M. C., Yang, Q., Zhang, Z., Bao, Z., Su, B., Xing, H. and Ren, Q. (2017).
Hybrid deep eutectic solvents with flexible hydrogen-bonded supramolecular
networks for highly efficient uptake of NH3. ChemSusChem,
10(17): 3368-3377.
19. Chemat,
F., Anjum, H., Shariff, A. M., Kumar, P. and Murugesan, T. (2016). Thermal and
physical properties of (Choline
chloride + urea + l-arginine) deep eutectic solvents. Journal
of Molecular Liquids, 218: 301-308.
20. Luo,
R., Liu, C., Li, J., Wang, C., Sun, X., Shen, J., Han, W. and Wang, L. (2017).
Deep-eutectic solvents derived nitrogen-doped graphitic carbon as a superior
electrocatalyst for oxygen reduction. ACS Applied Materials and Interfaces,
9(38): 32737-32744.
21. Carriazo, D., Gutiérrez, M. C., Ferrer, M. L. and Del Monte,
F. (2010). Resorcinol-based deep eutectic solvents as both carbonaceous
precursors and templating agents in the synthesis of hierarchical porous carbon
monoliths. Chemistry of Materials, 22(22): 6146-6152.
22. Li, C.,
Wang, Y., Xiao, N., Li, H., Ji, Y., Guo, Z., Liu, C. and Qiu, J. (2019).
Nitrogen-doped porous carbon from coal for high efficiency CO2
electrocatalytic reduction. Carbon, 151: 46-52.
23. Gutiérrez, M. C., Carriazo, D., Tamayo, A., Jiménez, R.,
Picõ, F., Rojo, J. M., Ferrer, M. L. and Del Monte, F. (2011). Deep-eutectic-solvent-assisted
synthesis of hierarchical carbon electrodes exhibiting capacitance retention at
high current densities. Chemistry - A European Journal, 17(38): 10533-10537.
24. Haghbakhsh,
R., Parvaneh, K., Raeissi, S. and Shariati, A. (2018). A general viscosity
model for deep eutectic solvents: The free volume theory coupled with
association equations of state. Fluid Phase Equilibria, 470: 193-202.
25. Manurung,
R., Simanjuntak, G. C., Perez, R. N., Syahputra, A., Alhamdi, M. A., Siregar,
H. and Syahputri Zuhri, R. R. (2019). Production of choline chloride-based deep
eutectic solvent with hydrogen bond donor d-glucose and ethylene glycol. IOP
Conference Series: Materials Science and Engineering, 505(1): 012134.
26. Liu,
Y., Friesen, J. B., McAlpine, J. B., Lankin, D. C., Chen, S.-N. and Pauli, G.
F. (2018). Natural deep eutectic solvents: Properties, applications, and
perspectives. Journal of Natural Products, 81(3): 679-690.
27. Savi,
L. K., Dias, M. C. G. C., Carpine, D., Waszczynskyj, N., Ribani, R. H. and Haminiuk,
C. W. I. (2019). Natural deep eutectic solvents (NADES) based on citric acid
and sucrose as a potential green technology: a comprehensive study of water
inclusion and its effect on thermal, physical and rheological properties. International
Journal of Food Science and Technology, 54(3): 898-907.
28. Tan,
P., Xue, D. M., Zhu, J., Jiang, Y., He, Q. X., Hou, Z. F., Liu, X. Q. and Sun,
L. B. (2018). Hierarchical N-doped carbons from designed N-rich polymer:
Adsorbents with a record-high capacity for desulfurization. AIChE Journal,
64(11): 3786-3793.
29. Penã-Solórzano,
D., Kouznetsov, V. V. and Ochoa-Puentes, C. (2020). Physicochemical properties
of a urea/zinc chloride eutectic mixture and its improved effect on the fast
and high yield synthesis of indeno[2,1-: C] quinolines. New Journal of
Chemistry, 44(19): 7987-7997.
30. Mariappan,
M., Madhurambal, G., Ravindran, B. and Mojumdar, S. C. (2011). Thermal, FTIR
and microhardness studies of bisthiourea-urea single crystal. Journal of
Thermal Analysis and Calorimetry, 104(3): 915-921.
31. Sun,
Z., Chen, Y., Ke, Q., Yang, Y. and Yuan, J. (2002). Photocatalytic degradation
of a cationic azo dye by TiO2/bentonite nanocomposite. Journal of
Photochemistry and Photobiology A: Chemistry, 149(1): 169-174.
32. Xu, L.,
Guo, L., Hu, G., Chen, J., Hu, X., Wang, S., Dai, W. and Fan, M. (2015).
Nitrogen-doped porous carbon spheres derived from d-glucose as highly-efficient
CO2 sorbents. RSC Advances, 5(48): 37964-37969.
33. Chen,
W., Xue, Z., Wang, J., Jiang, J., Zhao, X. and Mu, T. (2018). Investigation on
the thermal stability of deep eutectic solvents. Wuli Huaxue Xuebao/Acta
Physico - Chimica Sinica, 34(8): 904-911.
34. Jurić,
T., Uka, D., Holló, B. B., Jović, B., Kordić, B. and Popović, B.
M. (2021). Comprehensive physicochemical evaluation of choline chloride-based
natural deep eutectic solvents. Journal of Molecular Liquids, 343:
116968.
35. González-Rivera,
J., Husanu, E., Mero, A., Ferrari, C., Duce, C., Tinè, M. R., D’Andrea, F.,
Pomelli, C. S., and Guazzelli, L. (2020). Insights into microwave heating
response and thermal decomposition behavior of deep eutectic solvents. Journal
of Molecular Liquids, 300: 112357.
36. Kadhom,
M. A., Abdullah, G. H. and Al-Bayati, N. (2017). Studying two series of ternary
deep eutectic solvents (choline chloride–urea–glycerol) and (choline
chloride–malic acid–glycerol), synthesis and characterizations. Arabian
Journal for Science and Engineering, 42(4): 1579-1589.