Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 174 - 187

 

POTENTIAL GREEN LIQUID FROM TERNARY DEEP EUTECTIC SOLVENT COMPOSED OF GALLIC ACID, UREA, AND ZINC CHLORIDE: CHARACTERIZATION OF THEIR PHYSICOCHEMICAL AND THERMAL PROPERTIES

 

(Potensi Cecair Hijau daripada Pelarut Eutektik Terdalam Ternari daripada Asid Galik, Urea, dan Zink Klorida: Pencirian Sifat Fisikokimia dan Termanya)

 

Nuraqilah Mohd Hatta and Siti Abd Halim*

 

Universiti Kuala Lumpur, Malaysian Institute of Chemical Engineering Technology, 78000 Alor Gajah, Melaka

 

*Corresponding author: sitinurulatikah@unikl.edu.my

 

 

Received: 15 September 2023; Accepted: 17 December 2023; Published:  28 February 2024

 

 

Abstract

Deep eutectic solvents (DESs) have attracted wide attention due to their cheaper cost, ease of manufacture, lower toxicity, and higher biological compatibility. In this study, we offer a more affordable and adaptable path to similar systems using gallic acid (GA), urea (U), and zinc chloride (ZnCl2). The mixture produced, called GA-based DES, was prepared at varying molar ratios of 1:5:1, 1:6:1, 1:7:1, and 1:8:1 (GA:U:ZnCl2). The eutectic liquid form of the GA-based DES mixture was obtained when heated at an operating temperature of 120 °C, below the melting temperature of each individual chemical. The structural and physicochemical properties of the DESs were studied via Fourier transform infrared spectroscopy, thermogravimetric analysis, and viscosity test. Different molar ratios of the DES mixture affected the hydrogen bond interaction formed between GA and U as the hydrogen bond donors and ZnCl2 as the hydrogen bond acceptor in the DES mixture with the presence of O–H stretching and N–H stretching vibration bands as an association effect of GA, U, and ZnCl2. An increase in the U ratio weakened the hydrogen bond and reduced the viscosity of the liquid in the DES mixture due to an increase in O–H stretching. The current findings provide a potential justification for the viscosity of DES mixtures and aid in tailoring the design and development of new DES mixtures for further applications, such as extraction, separation, conversion to functional porous carbon, and biochemical technology.

 

Keywords: chemical properties, deep eutectic solvent, gallic acid, urea, physical properties

 

Abstrak

Pelarut eutektik terdalam (DES) telah menarik perhatian luas kerana kosnya yang lebih murah, kemudahan pembuatan, ketoksikan yang lebih rendah, dan keserasian biologi yang lebih tinggi. Dalam kajian ini, kami menawarkan laluan yang lebih berpatutan dan boleh disesuaikan kepada sistem serupa menggunakan asid galik (GA), urea (U), dan zink klorida (ZnCl2). DES berasaskan GA yang dihasilkan dalam kajian ini adalah daripada campuran GA-U-ZnCl2 yang terdiri daripada empat nisbah molar berbeza iaitu 1:5:1, 1:6:1, 1:7:1, dan 1:8:1. Cecair eutektik campuran DES berasaskan GA diperoleh apabila dipanaskan pada suhu operasi 120 °C di bawah suhu lebur setiap bahan kimia. Sifat struktur dan fizikokimia DES dikaji melalui spektroskopi inframerah transformasi Fourier, analisis termogravimetri, dan ujian kelikatan. Nisbah molar campuran DES yang berbeza mempengaruhi interaksi ikatan hidrogen yang terbentuk antara GA dan U sebagai penderma ikatan hidrogen dan ZnCl2 sebagai penerima ikatan hidrogen dalam campuran DES dengan kehadiran regangan O–H dan jalur getaran regangan N–H sebagai kesan persatuan GA, U, dan ZnCl2. Peningkatan nisbah U melemahkan ikatan hidrogen dan mengurangkan kelikatan cecair dalam campuran DES disebabkan oleh peningkatan dalam regangan O–H. Penemuan semasa memberikan justifikasi yang berpotensi untuk kelikatan hasil daripada campuran DES dan membantu dalam menyesuaikan reka bentuk dan perkembangan campuran DES baharu untuk aplikasi selanjutnya.

 

Kata kunci: sifat kimia, pelarut eutektik dalam, asid galik, urea, ciri-ciri fizikal


References

1.      Zhang, Q., Vigier, K. D. O. and Jerome, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chemistry Society Review, 41: 7108-7146.

2.      Hikmawanti, N. P. E., Ramadon, D., Jantan, I. and Mun’im, A. (2021). Natural deep eutectic solvents (Nades): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants, 10(10): 2091.

3.      Chandran, K., Kait, C. F., Wilfred, C. D. and Zaid, H. F. M. (2021). A review on deep eutectic solvents: Physiochemical properties and its application as an absorbent for sulfur dioxide. Journal of Molecular Liquids, 338: 117021.

4.      Smith, E. L., Abbott, A. P. and Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114(21): 11060-11082.

5.      Sekharan, T. R., Chandira, R. M., Tamilvanan, S., Rajesh, S. C. and Venkateswarlu, B. S. (2022). Deep eutectic solvents as an alternate to other harmful solvents. Biointerface Research in Applied Chemistry, 12(1): 847-860.

6.      El Achkar, T., Greige-Gerges, H. and Fourmentin, S. (2021). Basics and properties of deep eutectic solvents: a review. In Environmental Chemistry Letters, 19(4): 3397-3408.

7.      Ghaedi, H., Ayoub, M., Sufian, S., Shariff, A. M. and Lal, B. (2017). The study on temperature dependence of viscosity and surface tension of several Phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 241: 500-510.

8.      Chen, L., Deng, J., Song, Y., Hong, S. and Lian, H. (2020). Deep eutectic solvent promoted tunable synthesis of nitrogen-doped nanoporous carbons from enzymatic hydrolysis lignin for supercapacitors. Materials Research Bulletin, 123: 110708.

9.      Wang, T., Guo, J., Guo, Y., Feng, J. and Wu, D. (2021). Nitrogen-doped carbon derived from deep eutectic solvent as a high-performance supercapacitor. ACS Applied Energy Materials, 4(3): 2190-2200.

10.   Hansen, B. B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J. M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B. W., Gurkan, B., Maginn, E. J., Ragauskas, A., Dadmun, M., Zawodzinski, T. A., Baker, G. A., Tuckerman, M. E., Savinell, R. F. and Sangoro, J. R. (2021). Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chemical Reviews, 121(3): 1232-1285.

11.   Wang, B., Cheng, J., Wang, D. D., Li, X., Meng, Q., Zhang, Z., An, J., Liu, X. and Li, M. (2020). Study on the desulfurization and regeneration performance of functional deep eutectic solvents. ACS Omega, 5(25): 15353-15361.

12.   Ge, X., Gu, C., Wang, X. and Tu, J. (2017). Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: Challenges, opportunities, and future vision. Journal of Materials Chemistry A, 5(18): 8209-8229.

13.   Wei, Y., Wu, P., Luo, J., Dai, L., Li, H., Zhang, M., Chen, L., Wang, L., Zhu, W. and Li, H. (2020). Synthesis of hierarchical porous BCN using ternary deep eutectic solvent as precursor and template for aerobic oxidative desulfurization. Microporous and Mesoporous Materials, 293: 109788.

14.   Chemat, F., Abert-Vian, M., Fabiano-Tixier, A. S., Strube, J., Uhlenbrock, L., Gunjevic, V. and Cravotto, G. (2019). Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends in Analytical Chemistry, 118: 248-263.

15.   Singh, S. (2018). Applications of green solvents in extraction of phytochemicals from medicinal plants: A review Promila and Sushila Singh. The Pharma Innovation Journal, 7(3): 238-245.

16.   Zainal-Abidin, M. H., Hayyan, M., Hayyan, A. and Jayakumar, N. S. (2017). New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta, 979: 1-23.

17.   Ali, M. C., Yang, Q., Fine, A. A., Jin, W., Zhang, Z., Xing, H. and Ren, Q. (2015). Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents. Green Chemistry, 18(1): 157-164.

18.   Li, Y., Ali, M. C., Yang, Q., Zhang, Z., Bao, Z., Su, B., Xing, H. and Ren, Q. (2017). Hybrid deep eutectic solvents with flexible hydrogen-bonded supramolecular networks for highly efficient uptake of NH3. ChemSusChem, 10(17): 3368-3377.

19.   Chemat, F., Anjum, H., Shariff, A. M., Kumar, P. and Murugesan, T. (2016). Thermal and physical properties of (Choline chloride + urea + l-arginine) deep eutectic solvents. Journal of Molecular Liquids, 218: 301-308.

20.   Luo, R., Liu, C., Li, J., Wang, C., Sun, X., Shen, J., Han, W. and Wang, L. (2017). Deep-eutectic solvents derived nitrogen-doped graphitic carbon as a superior electrocatalyst for oxygen reduction. ACS Applied Materials and Interfaces, 9(38): 32737-32744.

21.   Carriazo, D., Gutiérrez, M. C., Ferrer, M. L. and Del Monte, F. (2010). Resorcinol-based deep eutectic solvents as both carbonaceous precursors and templating agents in the synthesis of hierarchical porous carbon monoliths. Chemistry of Materials, 22(22): 6146-6152.

22.   Li, C., Wang, Y., Xiao, N., Li, H., Ji, Y., Guo, Z., Liu, C. and Qiu, J. (2019). Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction. Carbon, 151: 46-52.

23.   Gutiérrez, M. C., Carriazo, D., Tamayo, A., Jiménez, R., Picõ, F., Rojo, J. M., Ferrer, M. L. and Del Monte, F. (2011). Deep-eutectic-solvent-assisted synthesis of hierarchical carbon electrodes exhibiting capacitance retention at high current densities. Chemistry - A European Journal, 17(38): 10533-10537.

24.   Haghbakhsh, R., Parvaneh, K., Raeissi, S. and Shariati, A. (2018). A general viscosity model for deep eutectic solvents: The free volume theory coupled with association equations of state. Fluid Phase Equilibria, 470: 193-202.

25.   Manurung, R., Simanjuntak, G. C., Perez, R. N., Syahputra, A., Alhamdi, M. A., Siregar, H. and Syahputri Zuhri, R. R. (2019). Production of choline chloride-based deep eutectic solvent with hydrogen bond donor d-glucose and ethylene glycol. IOP Conference Series: Materials Science and Engineering, 505(1): 012134.

26.   Liu, Y., Friesen, J. B., McAlpine, J. B., Lankin, D. C., Chen, S.-N. and Pauli, G. F. (2018). Natural deep eutectic solvents: Properties, applications, and perspectives. Journal of Natural Products, 81(3): 679-690.

27.   Savi, L. K., Dias, M. C. G. C., Carpine, D., Waszczynskyj, N., Ribani, R. H. and Haminiuk, C. W. I. (2019). Natural deep eutectic solvents (NADES) based on citric acid and sucrose as a potential green technology: a comprehensive study of water inclusion and its effect on thermal, physical and rheological properties. International Journal of Food Science and Technology, 54(3): 898-907.

28.   Tan, P., Xue, D. M., Zhu, J., Jiang, Y., He, Q. X., Hou, Z. F., Liu, X. Q. and Sun, L. B. (2018). Hierarchical N-doped carbons from designed N-rich polymer: Adsorbents with a record-high capacity for desulfurization. AIChE Journal, 64(11): 3786-3793.

29.   Penã-Solórzano, D., Kouznetsov, V. V. and Ochoa-Puentes, C. (2020). Physicochemical properties of a urea/zinc chloride eutectic mixture and its improved effect on the fast and high yield synthesis of indeno[2,1-: C] quinolines. New Journal of Chemistry, 44(19): 7987-7997.

30.   Mariappan, M., Madhurambal, G., Ravindran, B. and Mojumdar, S. C. (2011). Thermal, FTIR and microhardness studies of bisthiourea-urea single crystal. Journal of Thermal Analysis and Calorimetry, 104(3): 915-921.

31.   Sun, Z., Chen, Y., Ke, Q., Yang, Y. and Yuan, J. (2002). Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 149(1): 169-174.

32.   Xu, L., Guo, L., Hu, G., Chen, J., Hu, X., Wang, S., Dai, W. and Fan, M. (2015). Nitrogen-doped porous carbon spheres derived from d-glucose as highly-efficient CO2 sorbents. RSC Advances, 5(48): 37964-37969.

33.   Chen, W., Xue, Z., Wang, J., Jiang, J., Zhao, X. and Mu, T. (2018). Investigation on the thermal stability of deep eutectic solvents. Wuli Huaxue Xuebao/Acta Physico - Chimica Sinica, 34(8): 904-911.

34.   Jurić, T., Uka, D., Holló, B. B., Jović, B., Kordić, B. and Popović, B. M. (2021). Comprehensive physicochemical evaluation of choline chloride-based natural deep eutectic solvents. Journal of Molecular Liquids, 343: 116968.

35.   González-Rivera, J., Husanu, E., Mero, A., Ferrari, C., Duce, C., Tinè, M. R., D’Andrea, F., Pomelli, C. S., and Guazzelli, L. (2020). Insights into microwave heating response and thermal decomposition behavior of deep eutectic solvents. Journal of Molecular Liquids, 300: 112357.

36.   Kadhom, M. A., Abdullah, G. H. and Al-Bayati, N. (2017). Studying two series of ternary deep eutectic solvents (choline chloride–urea–glycerol) and (choline chloride–malic acid–glycerol), synthesis and characterizations. Arabian Journal for Science and Engineering, 42(4): 1579-1589.