Malaysian Journal
of Analytical Sciences, Vol 28 No 1 (2024): 157 - 173
ANALYTICAL
TECHNIQUES OF BIOACTIVE COMPOUNDS FROM MEDICINAL PLANTS WITH THE POTENTIAL TO
ADDRESS ALZHEIMER'S DISEASE AND ASSOCIATED SYMPTOMS: A BRIEF OVERVIEW
(Teknik Analisis bagi Sebatian Bioaktif daripada Tumbuhan
Ubatan dengan Potensi untuk Merawat Penyakit Alzheimer dan Gejala Berkaitan: Ulasan
Ringkas)
Syaza Syazwani Shaifol1,2, Noorfatimah Yahaya1,3*, Siti
Nurfazilah Awang1,2, Nur ‘Ain Syaheeda Azizan1,2,
Nur Nadhirah Mohamad Zain1,3, Nik Nur Syazni Nik Mohamad Kamal1,3,
Mazidatulakmam Miskam2,
and Wan Nazwanie Wan Abdullah2
1Department of Toxicology, Advanced
Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200
Kepala Batas, Penang, Malaysia
2School of Chemical Sciences, Universiti
Sains Malaysia, 11800 USM Pulau, Pinang, Malaysia
3Dementia Multidisciplinary Research
Program of IPPT (DMR-IPPT), Advanced Medical and Dental Institute (AMDI), Universiti
Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
*Corresponding author: noorfatimah@usm.my
Received: 18
August 2023; Accepted: 17 December 2023; Published: February 2024
Abstract
Alzheimer’s
disease (AD) is a progressive neurological disorder of the brain, named after
the German physician Alois Alzheimer, who first documented it in 1906. AD is
the most prevalent form of dementia, affecting approximately ten million
individuals worldwide. The literature on the extraction and available
analytical methods is very helpful in treating AD owing to the diverse and
synergistic effects of bioactive compounds. The extraction methodologies allow
researchers to concentrate and isolate specific compounds, optimizing their
potency and purity for effective treatment. By reviewing these isolated
compounds, scientists could have better understanding of their mechanisms, and
tailor the dosage and formulation for precise treatments with fewer side effects.
This method utilizes the natural qualities of plants and provides a hopeful
path for creating safer and more focused treatments for AD. While certain
herbal remedies may aid in enhancing brain function, scientific evidence
supporting their effectiveness in treating AD remains limited. Thus, the main
objective of this review is mainly to provide insight pertaining to AD as well
as the analytical techniques of bioactive compounds from medicinal plants that
show the potential to treat AD and its associated symptoms.
Keywords: Alzheimer’s disease, medicinal plants, analytical
techniques, natural products
Abstrak
Penyakit Alzheimer (AD) adalah gangguan neurologi
progresif dalam otak, dinamakan sempena doktor Germany, Alois Alzheimer, yang
pertama kali mendokumentasikannya pada tahun 1906. AD merupakan bentuk demensia
yang paling meluas, memberi kesan terhadap lebih kurang sepuluh juta individu
di seluruh dunia. Kajian literatur mengenai kaedah pengekstrakan dan analisis
yang sedia ada amat membantu dalam rawatan AD disebabkan kesan pelbagai dan
sinergistik sebatian bioaktif ini. Kaedah-kaedah pengekstrakan membolehkan
saintis mengumpul dan mengasingkan sebatian khusus, mengoptimumkan keberkesanan
dan ketulenan mereka untuk rawatan yang berkesan. Dengan mengkaji
sebatian-sebatian yang diasingkan ini, saintis dapat memahami mekanisme mereka
dengan lebih baik, menyesuaikan dos dan rumusan rawatan yang tepat dengan kesan
sampingan yang kurang. Kaedah ini menggunakan sifat semula jadi tumbuhan dan
kaedah yang boleh digunakan untuk mencipta rawatan yang lebih selamat dan
tertumpu untuk AD. Walaupun beberapa ubatan herba mungkin membantu meningkatkan
fungsi otak, bukti saintifik yang menyokong keberkesanan mereka dalam merawat
AD masih terhad. Oleh itu, objektif utama kajian ini adalah untuk memberikan
pandangan ringkas tentang AD serta teknik analisis sebatian bioaktif daripada
tumbuhan ubatan yang menunjukkan potensi dalam merawat AD dan gejala yang
berkaitan dengannya.
Kata
kunci: penyakit Alzheimer, tumbuhan ubatan, teknik analisis, produk semulajadi
References
1.
Grodzicki, W. and Dziendzikowska, K.
(2020). The role of selected bioactive compounds in the prevention of
alzheimer’s disease. Antioxidants, 9(3): 1-18.
2.
Weller, J. and Budson, A. (2018). Current understanding of
Alzheimer’s disease diagnosis and treatment. F1000Research, 7(0), 1–9.
3.
World Health Organization: Dementia. (2023).
https://www.who.int/news-room/fact-sheets/detail/dementia (accessed Aug. 18,
2023).
4.
Arvanitakis, Z., Shah, R. C. and Bennett, D. A. (2019).
Diagnosis and management of dementia: Review. JAMA - Journal of the American
Medical Association, 322(16): 1589-1599.
5.
Wiegmann, C., Mick, I., Brandl, E. J., Heinz, A. and Gutwinski,
S. (2020). Alcohol and dementia – What is the link? A systematic review. Neuropsychiatric
Disease and Treatment, 16: 87-99.
6.
Morgan, A. R., Touchard, S., Leckey, C., O’Hagan, C.,
Nevado-Holgado, A. J., Barkhof, F., Bertram, L., Blin, O., Bos, I., Dobricic,
V., Engelborghs, S., Frisoni, G., Frölich, L., Gabel, S., Johannsen, P.,
Kettunen, P., Kłoszewska, I., Legido-Quigley, C., Lleó, A., … and Mount,
H. (2019). Inflammatory biomarkers in Alzheimer’s disease plasma. Alzheimer’s
and Dementia, 15(6): 776-787.
7.
Gleerup, H. S., Hasselbalch, S. G. and Simonsen, A. H.
(2019). Biomarkers for Alzheimer’s disease in saliva: A systematic review. Disease
Markers, 2019: 4761054.
8.
Mohd Sairazi, N. S. and Sirajudeen, K. N. S. (2020). Natural products
and their bioactive compounds: Neuroprotective Potentials against
neurodegenerative diseases. Evidence-Based Complementary and Alternative
Medicine, 2020: 5-7.
9.
Islam, F., Khadija, J. F., Harun-Or-Rashid, M., Rahaman, M.
S., Nafady, M. H., Islam, M. R., Akter, A., Emran, T. Bin, Wilairatana, P. and Mubarak,
M. S. (2022). Bioactive compounds and their derivatives: An insight into
prospective phytotherapeutic approach against Alzheimer’s disease. Oxidative
Medicine and Cellular Longevity, 2022: 5100904.
10.
Wolters, F. J. and Arfan Ikram, M. (2019). Epidemiology of
vascular dementia: Nosology in a time of epiomics. Arteriosclerosis,
Thrombosis, and Vascular Biology, 39(8): 1542-1549.
11.
Suvarna, A. and Faheem Arshad, A. P. (2022). Encyclopedia of
Behavioral Neuroscience, 2nd edition: Vascular Dementia. Elsevier
Science.
12.
Agbomi, L. L., Onuoha, C. P., Nathaniel, S. I., Coker-Ayo, O.
O., Bailey-Taylor, M. J., Roley, L. T., Poupore, N., Goodwin, R. L. and Nathaniel,
T. I. (2022). Gender differences in Parkinson’s disease with dementia and
dementia with Lewy bodies. Aging and Health Research, 2(4): 100096.
13.
Amin, J., Erskine, D., Donaghy, P. C., Surendranathan, A.,
Swann, P., Kunicki, A. P., Boche, D., Holmes, C., McKeith, I. G., O’Brien, J.
T., Teeling, J. L. and Thomas, A. J. (2022). Inflammation in dementia with Lewy
bodies. Neurobiology of Disease, 168(3): 105698.
14.
Boeve, B. F., Boxer, A. L., Kumfor, F., Pijnenburg, Y. and Rohrer,
J. D. (2022). Advances and controversies in frontotemporal dementia: diagnosis,
biomarkers, and therapeutic considerations. The Lancet Neurology, 21(3):
258-272.
15.
Bruun, M., Koikkalainen, J., Rhodius-Meester, H. F. M.,
Baroni, M., Gjerum, L., van Gils, M., Soininen, H., Remes, A. M., Hartikainen,
P., Waldemar, G., Mecocci, P., Barkhof, F., Pijnenburg, Y., van der Flier, W.
M., Hasselbalch, S. G., Lötjönen, J. and Frederiksen, K. S. (2019). Detecting
frontotemporal dementia syndromes using MRI biomarkers. NeuroImage: Clinical,
22(11): 101711.
16.
Moreno Cervantes, C., Mimenza
Alvarado, A., Aguilar Navarro, S., Alvarado Ávila, P., Gutiérrez Gutiérrez, L.,
Juárez Arellano, S. and Ávila Funes, J. A. (2017). Factors associated with mixed dementia
vs Alzheimer disease in elderly Mexican
adults. Neurologia (Barcelona, Spain), 32(5): 309-315.
17.
Rehm, J., Hasan, O. S. M., Black, S. E., Shield, K. D. and Schwarzinger,
M. (2019). Alcohol use and dementia: A systematic scoping review. Alzheimer’s
Research and Therapy, 11(1): 1-11.
18.
Hamlett, E. D., Ledreux, A., Potter, H., Chial, H. J.,
Patterson, D., Espinosa, J. M., Bettcher, B. M. and Granholm, A. C. (2018).
Exosomal biomarkers in Down syndrome and Alzheimer’s disease. Free Radical
Biology and Medicine, 114(9): 110-121.
19.
Fortea, J., Zaman, S. H., Hartley, S., Rafii, M. S., Head, E.
and Carmona-Iragui, M. (2021). Alzheimer’s disease associated with Down
syndrome: a genetic form of dementia. The Lancet Neurology, 20(11): 930-942.
20.
Kimani, R. W. (2018). Assessment and Diagnosis of
HIV-Associated Dementia. Journal for Nurse Practitioners, 14(3): 190-195.
21.
Rosca, E. C., Tadger, P., Cornea, A., Tudor, R., Oancea, C.
and Simu, M. (2021). International hiv dementia scale for hiv-associated
neurocognitive disorders: A systematic review and meta-analysis. Diagnostics,
11(6): 1124.
22.
VanItallie, T. B. (2019). Traumatic brain injury (TBI) in
collision sports: Possible mechanisms of transformation into chronic traumatic
encephalopathy (CTE). Metabolism: Clinical and Experimental, 100: 1-6.
23.
Donley, G. A. R., Lönnroos, E., Tuomainen, T. P. and Kauhanen,
J. (2018). Association of childhood stress with late-life dementia and
Alzheimer’s disease: The KIHD study. European Journal of Public Health,
28(6): 1069-1073.
24.
Dutta, S. S. (2019). Childhood dementia causes.
https://www.news-medical.net/health/Childhood-Dementia-Causes.aspx.
25.
Iwasaki, Y. (2017). Creutzfeldt-Jakob disease. Neuropathology, 37(2): 174-188.
26.
Centers for Disease Control and Prevention: Creutzfeldt-Jakob
disease, classic (CJD) (2021). https://www.cdc.gov/prions/cjd/index.html
(accessed Aug. 18, 2023).
27.
Pickett, E. K., Herrmann, A. G., McQueen, J., Abt, K., Dando,
O., Tulloch, J., Jain, P., Dunnett, S., Sohrabi, S., Fjeldstad, M. P., Calkin,
W., Murison, L., Jackson, R. J., Tzioras, M., Stevenson, A., d’Orange, M.,
Hooley, M., Davies, C., Colom-Cadena, M. and Spires-Jones, T. L. (2019).
Amyloid beta and tau cooperate to cause reversible behavioral and
transcriptional deficits in a model of Alzheimer’s disease. Cell Reports,
29(11): 3592-3604.
28.
Götz, J., Bodea, L. G. and Goedert, M. (2018). Rodent models
for Alzheimer disease. Nature Reviews Neuroscience, 19(10): 583-598.
29.
Bird, T. D. (1993). Alzheimer disease overview. Adam, M. P.,
Ardinger, H. H., Pagon, R. A., Wallace, S. E., Bean, L. J. H., Stephens, K.,
& Amemiya, A. (Eds.). (1993). Variegate porphyria. GeneReviews®.
30.
James, B. D. and Bennett, D. A. (2019). Causes and patterns
of dementia: an update in the era of redefining Alzheimer's disease. Annual
Review of Public Health, 40: 65-84.
31.
Zvěřová, M. (2019). Clinical aspects of Alzheimer’s
disease. Clinical Biochemistry, 72(4): 3-6.
32.
Du, X., Wang, X. and Geng, M. (2018). Alzheimer’s disease hypothesis and
related therapies. Translational Neurodegeneration, 7(1): 1-7.
33.
Chen, F., He, Y., Wang, P., Wei, P., Feng, H., Rao, Y., Shi,
J. and Tian, J. (2018). Curcumin can influence synaptic dysfunction in
APPswe/PS1dE9 mice. Journal of Traditional Chinese Medical Sciences, 5(2):
168-176.
34.
Benedec, D., Oniga, I., Hanganu, D., Gheldiu, A. M.,
Puşcaş, C., Silaghi-Dumitrescu, R., Duma, M., Tiperciuc, B., Vârban,
R. and Vlase, L. (2018). Sources for developing new medicinal products:
Biochemical investigations on alcoholic extracts obtained from aerial parts of
some Romanian Amaryllidaceae species. BMC Complementary and Alternative
Medicine, 18(1): 1-12.
35.
[35] Eruygur, N.,
Koçyiğit, U. M., Taslimi, P., Ataş, M., Tekin, M. and Gülçin. (2019).
Screening the in vitro antioxidant, antimicrobial, anticholinesterase,
antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol
extract. South African Journal of Botany, 120: 141-145.
36.
Fujimori, H., Ohba, T., Mikami, M., Nakamura, S., Ito, K.,
Kojima, H., Takahashi, T., Iddamalgoda, A., Shimazawa, M. and Hara, H. (2022).
The protective effect of Centella asiatica and its constituent,
araliadiol on neuronal cell damage and cognitive impairment. Journal of
Pharmacological Sciences, 148(1): 162-171.
37.
Yu, Z., Jin, W., Cui, Y., Ao, M.,
Liu, H., Xu, H. and Yu, L. (2019). Protective effects of macamides from: Lepidium meyenii
Walp. against corticosterone-induced neurotoxicity in PC12 cells. RSC
Advances, 9(40): 23096-23108.
38.
Kumaran, A., Ho, C. C. and Hwang, L. S. (2018). Protective
effect of Nelumbo nucifera extracts on beta amyloid protein induced
apoptosis in PC12 cells, in vitro model of Alzheimer’s disease. Journal of
Food and Drug Analysis, 26(1): 172-181.
39.
El-Hawary, S. S., Sobeh, M., Badr, W. K., Abdelfattah, M. A.
O., Ali, Z. Y., El-Tantawy, M. E., Rabeh, M. A. and Wink, M. (2020).
HPLC-PDA-MS/MS profiling of secondary metabolites from Opuntia ficus-indica
cladode, peel and fruit pulp extracts and their antioxidant, neuroprotective
effect in rats with aluminum chloride induced neurotoxicity. Saudi Journal
of Biological Sciences, 27(10): 2829-2838.
40.
Rajalakshmi, S., Vijayakumar, S. and Praseetha, P. K. (2019).
Neuroprotective behaviour of Phyllanthus emblica (L) on human neural
cell lineage (PC12) against glutamate-induced cytotoxicity. Gene Reports,
17(9): 100545.
41.
Adib, M., Islam, R., Ahsan, M., Rahman, A., Hossain, M.,
Rahman, M. M., Alshehri, S. M., Kazi, M. and Mazid, M. A. (2021).
Cholinesterase inhibitory activity of tinosporide and 8-hydroxytinosporide
isolated from Tinospora cordifolia: In vitro and in silico studies
targeting management of Alzheimer’s disease. Saudi Journal of Biological
Sciences, 28(7): 3893-3900.
42.
Sajjad Haider, M., Ashraf, W., Javaid, S., Fawad Rasool, M.,
Muhammad Abdur Rahman, H., Saleem, H., Muhammad Muneeb Anjum, S., Siddique, F.,
Morales-Bayuelo, A., Kaya, S., Alqahtani, F., Alasmari, F., and Imran, I.
(2021). Chemical characterization and evaluation of the neuroprotective
potential of Indigofera sessiliflora through in-silico studies and
behavioral tests in scopolamine-induced memory compromised rats. Saudi
Journal of Biological Sciences, 28(8): 4384-4398.
43.
Gürbüz, P., Dokumacı, A. H., Gündüz, M. G., Perez, C.,
Göger, F., Paksoy, M. Y., Yerer, M. B. and Ömür Demirezer, L. (2021). In
vitro biological activity of Salvia fruticosa Mill. infusion against
amyloid β-peptide-induced toxicity and inhibition of GSK-3β,
CK-1δ, and BACE-1 enzymes relevant to Alzheimer’s disease. Saudi
Pharmaceutical Journal, 29(3): 236-243.
44.
Rho, T., Jeong, H. W., Hong, Y. D., Yoon, K., Cho, J. Y. and Yoon,
K. D. (2020). Identification of a novel triterpene saponin from Panax ginseng
seeds, pseudoginsenoside RT8, and its antiinflammatory activity. Journal of
Ginseng Research, 44(1): 145-153.
45.
Gargouri, B., Carstensen, J., Bhatia, H. S., Huell, M.,
Dietz, G. P. H. and Fiebich, B. L. (2018). Anti-neuroinflammatory effects of Ginkgo
biloba extract EGb761 in LPS-activated primary microglial cells. Phytomedicine,
44(4): 45-55.
46.
Ionita, R., Postu, P. A., Mihasan, M., Gorgan, D. L.,
Hancianu, M., Cioanca, O. and Hritcu, L. (2018). Ameliorative effects of Matricaria
chamomilla L. hydroalcoholic extract on scopolamine-induced memory
impairment in rats: A behavioral and molecular study. Phytomedicine, 47(11):
113-120.
47.
Naseri, M., Arabi Mianroodi, R., Pakzad, Z., Falahati, P.,
Borbor, M., Azizi, H. and Nasri, S. (2021). The effect of Melissa
officinalis L. extract on learning and memory: Involvement of hippocampal
expression of nitric oxide synthase and brain-derived neurotrophic factor in
diabetic rats. Journal of Ethnopharmacology, 276: 114210.
48.
Callizot, N., Campanari, M. L.,
Rouvière, L., Jacquemot, G., Henriques, A., Garayev, E. and Poindron, P.
(2021). Huperzia serrata extract ‘NSP01’ with neuroprotective effects-potential
synergies of huperzine a and polyphenols. Frontiers in Pharmacology, 12(8):
1-13.
49.
Ooh, K.-F., Ong, H.-C., Wong, F.-C., Sit, N.-W. and Chai,
T.-T. (2014). High performance liquid chromatography profiling of
health-promoting phytochemicals and
evaluation of antioxidant, anti-lipoxygenase, iron chelating and
anti-glucosidase activities of wetland macrophytes. Pharmacognosy Magazine,
10: S443-55.
50.
Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M. and Yoga
Latha, L. (2011). Extraction, isolation and characterization of bioactive
compounds from plants’ extracts. African
Journal of Traditional, Complementary, and Alternative Medicines, 8(1): 1-10.
51.
Nemetchek, M. D., Stierle, A. A., Stierle, D. B. and Lurie,
D. I. (2017). The Ayurvedic plant Bacopa monnieri inhibits inflammatory
pathways in the brain. Journal of Ethnopharmacology, 197: 92-100.
52.
Karim, N., Khan, I., Abdelhalim, A., Abdel-Halim, H. and Hanrahan,
J. R. (2017). Molecular docking and antiamnesic effects of nepitrin isolated
from Rosmarinus officinalis on scopolamine-induced memory impairment in
mice. Biomedicine and Pharmacotherapy, 96(9): 700-709.
53.
Vajic, U. J., Grujic-Milanovic, J., Miloradovic, Z., Jovovic,
D., Ivanov, M., Karanovic, D., Savikin, K., Bugarski, B. and Mihailovic-Stanojevic,
N. (2018). Urtica dioica L. leaf extract modulates blood pressure and
oxidative stress in spontaneously hypertensive rats. Phytomedicine, 46(5):
39-45.
54.
Pandey, A., Bani, S., Dutt, P., Kumar
Satti, N., Avtar Suri, K. and Nabi Qazi, G. (2018). Multifunctional neuroprotective effect
of Withanone, a compound from Withania somnifera roots in alleviating cognitive
dysfunction. Cytokine, 102(10): 211-221.
55.
Gabbas, Z. El, Bezza, K., Laadraoui,
J., Makbal, R., Aboufatima, R. and Chait, A. (2018). Salvia officinalis induces antidepressant-like effect,
anxiolytic activity and learning improvement in hippocampal lesioned and intact
adult rats. Bangladesh Journal of Pharmacology, 13(4): 367-378.