Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 157 - 173

 

ANALYTICAL TECHNIQUES OF BIOACTIVE COMPOUNDS FROM MEDICINAL PLANTS WITH THE POTENTIAL TO ADDRESS ALZHEIMER'S DISEASE AND ASSOCIATED SYMPTOMS: A BRIEF OVERVIEW

 

(Teknik Analisis bagi Sebatian Bioaktif daripada Tumbuhan Ubatan dengan Potensi untuk Merawat Penyakit Alzheimer dan Gejala Berkaitan: Ulasan Ringkas)

 

Syaza Syazwani Shaifol1,2, Noorfatimah Yahaya1,3*, Siti Nurfazilah Awang1,2, Nur ‘Ain Syaheeda Azizan1,2,

Nur Nadhirah Mohamad Zain1,3, Nik Nur Syazni Nik Mohamad Kamal1,3, Mazidatulakmam Miskam2,

and Wan Nazwanie Wan Abdullah2

 

1Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia

2School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM Pulau, Pinang, Malaysia

3Dementia Multidisciplinary Research Program of IPPT (DMR-IPPT), Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia

 

*Corresponding author: noorfatimah@usm.my

 

 

Received: 18 August 2023; Accepted: 17 December 2023; Published:   February 2024

 

Abstract

Alzheimer’s disease (AD) is a progressive neurological disorder of the brain, named after the German physician Alois Alzheimer, who first documented it in 1906. AD is the most prevalent form of dementia, affecting approximately ten million individuals worldwide. The literature on the extraction and available analytical methods is very helpful in treating AD owing to the diverse and synergistic effects of bioactive compounds. The extraction methodologies allow researchers to concentrate and isolate specific compounds, optimizing their potency and purity for effective treatment. By reviewing these isolated compounds, scientists could have better understanding of their mechanisms, and tailor the dosage and formulation for precise treatments with fewer side effects. This method utilizes the natural qualities of plants and provides a hopeful path for creating safer and more focused treatments for AD. While certain herbal remedies may aid in enhancing brain function, scientific evidence supporting their effectiveness in treating AD remains limited. Thus, the main objective of this review is mainly to provide insight pertaining to AD as well as the analytical techniques of bioactive compounds from medicinal plants that show the potential to treat AD and its associated symptoms.

 

Keywords: Alzheimer’s disease, medicinal plants, analytical techniques, natural products

 

Abstrak

Penyakit Alzheimer (AD) adalah gangguan neurologi progresif dalam otak, dinamakan sempena doktor Germany, Alois Alzheimer, yang pertama kali mendokumentasikannya pada tahun 1906. AD merupakan bentuk demensia yang paling meluas, memberi kesan terhadap lebih kurang sepuluh juta individu di seluruh dunia. Kajian literatur mengenai kaedah pengekstrakan dan analisis yang sedia ada amat membantu dalam rawatan AD disebabkan kesan pelbagai dan sinergistik sebatian bioaktif ini. Kaedah-kaedah pengekstrakan membolehkan saintis mengumpul dan mengasingkan sebatian khusus, mengoptimumkan keberkesanan dan ketulenan mereka untuk rawatan yang berkesan. Dengan mengkaji sebatian-sebatian yang diasingkan ini, saintis dapat memahami mekanisme mereka dengan lebih baik, menyesuaikan dos dan rumusan rawatan yang tepat dengan kesan sampingan yang kurang. Kaedah ini menggunakan sifat semula jadi tumbuhan dan kaedah yang boleh digunakan untuk mencipta rawatan yang lebih selamat dan tertumpu untuk AD. Walaupun beberapa ubatan herba mungkin membantu meningkatkan fungsi otak, bukti saintifik yang menyokong keberkesanan mereka dalam merawat AD masih terhad. Oleh itu, objektif utama kajian ini adalah untuk memberikan pandangan ringkas tentang AD serta teknik analisis sebatian bioaktif daripada tumbuhan ubatan yang menunjukkan potensi dalam merawat AD dan gejala yang berkaitan dengannya.

 

Kata kunci: penyakit Alzheimer, tumbuhan ubatan, teknik analisis, produk semulajadi


References

1.      Grodzicki, W. and Dziendzikowska, K. (2020). The role of selected bioactive compounds in the prevention of alzheimer’s disease. Antioxidants, 9(3): 1-18.

2.      Weller, J. and Budson, A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research, 7(0), 1–9.

3.      World Health Organization: Dementia. (2023). https://www.who.int/news-room/fact-sheets/detail/dementia (accessed Aug. 18, 2023).

4.      Arvanitakis, Z., Shah, R. C. and Bennett, D. A. (2019). Diagnosis and management of dementia: Review. JAMA - Journal of the American Medical Association, 322(16): 1589-1599.

5.      Wiegmann, C., Mick, I., Brandl, E. J., Heinz, A. and Gutwinski, S. (2020). Alcohol and dementia – What is the link? A systematic review. Neuropsychiatric Disease and Treatment, 16: 87-99.

6.      Morgan, A. R., Touchard, S., Leckey, C., O’Hagan, C., Nevado-Holgado, A. J., Barkhof, F., Bertram, L., Blin, O., Bos, I., Dobricic, V., Engelborghs, S., Frisoni, G., Frölich, L., Gabel, S., Johannsen, P., Kettunen, P., Kłoszewska, I., Legido-Quigley, C., Lleó, A., … and Mount, H. (2019). Inflammatory biomarkers in Alzheimer’s disease plasma. Alzheimer’s and Dementia, 15(6): 776-787.

7.      Gleerup, H. S., Hasselbalch, S. G. and Simonsen, A. H. (2019). Biomarkers for Alzheimer’s disease in saliva: A systematic review. Disease Markers, 2019: 4761054.

8.      Mohd Sairazi, N. S. and Sirajudeen, K. N. S. (2020). Natural products and their bioactive compounds: Neuroprotective Potentials against neurodegenerative diseases. Evidence-Based Complementary and Alternative Medicine, 2020: 5-7.

9.      Islam, F., Khadija, J. F., Harun-Or-Rashid, M., Rahaman, M. S., Nafady, M. H., Islam, M. R., Akter, A., Emran, T. Bin, Wilairatana, P. and Mubarak, M. S. (2022). Bioactive compounds and their derivatives: An insight into prospective phytotherapeutic approach against Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2022: 5100904.

10.   Wolters, F. J. and Arfan Ikram, M. (2019). Epidemiology of vascular dementia: Nosology in a time of epiomics. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(8): 1542-1549.

11.   Suvarna, A. and Faheem Arshad, A. P. (2022). Encyclopedia of Behavioral Neuroscience, 2nd edition: Vascular Dementia. Elsevier Science.

12.   Agbomi, L. L., Onuoha, C. P., Nathaniel, S. I., Coker-Ayo, O. O., Bailey-Taylor, M. J., Roley, L. T., Poupore, N., Goodwin, R. L. and Nathaniel, T. I. (2022). Gender differences in Parkinson’s disease with dementia and dementia with Lewy bodies. Aging and Health Research, 2(4): 100096.

13.   Amin, J., Erskine, D., Donaghy, P. C., Surendranathan, A., Swann, P., Kunicki, A. P., Boche, D., Holmes, C., McKeith, I. G., O’Brien, J. T., Teeling, J. L. and Thomas, A. J. (2022). Inflammation in dementia with Lewy bodies. Neurobiology of Disease, 168(3): 105698.

14.   Boeve, B. F., Boxer, A. L., Kumfor, F., Pijnenburg, Y. and Rohrer, J. D. (2022). Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. The Lancet Neurology, 21(3): 258-272.

15.   Bruun, M., Koikkalainen, J., Rhodius-Meester, H. F. M., Baroni, M., Gjerum, L., van Gils, M., Soininen, H., Remes, A. M., Hartikainen, P., Waldemar, G., Mecocci, P., Barkhof, F., Pijnenburg, Y., van der Flier, W. M., Hasselbalch, S. G., Lötjönen, J. and Frederiksen, K. S. (2019). Detecting frontotemporal dementia syndromes using MRI biomarkers. NeuroImage: Clinical, 22(11): 101711.

16.   Moreno Cervantes, C., Mimenza Alvarado, A., Aguilar Navarro, S., Alvarado Ávila, P., Gutiérrez Gutiérrez, L., Juárez Arellano, S. and Ávila Funes, J. A. (2017). Factors associated with mixed dementia vs Alzheimer disease in elderly Mexican  adults. Neurologia (Barcelona, Spain), 32(5): 309-315.

17.   Rehm, J., Hasan, O. S. M., Black, S. E., Shield, K. D. and Schwarzinger, M. (2019). Alcohol use and dementia: A systematic scoping review. Alzheimer’s Research and Therapy, 11(1): 1-11.

18.   Hamlett, E. D., Ledreux, A., Potter, H., Chial, H. J., Patterson, D., Espinosa, J. M., Bettcher, B. M. and Granholm, A. C. (2018). Exosomal biomarkers in Down syndrome and Alzheimer’s disease. Free Radical Biology and Medicine, 114(9): 110-121.

19.   Fortea, J., Zaman, S. H., Hartley, S., Rafii, M. S., Head, E. and Carmona-Iragui, M. (2021). Alzheimer’s disease associated with Down syndrome: a genetic form of dementia. The Lancet Neurology, 20(11): 930-942.

20.   Kimani, R. W. (2018). Assessment and Diagnosis of HIV-Associated Dementia. Journal for Nurse Practitioners, 14(3): 190-195.

21.   Rosca, E. C., Tadger, P., Cornea, A., Tudor, R., Oancea, C. and Simu, M. (2021). International hiv dementia scale for hiv-associated neurocognitive disorders: A systematic review and meta-analysis. Diagnostics, 11(6): 1124.

22.   VanItallie, T. B. (2019). Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism: Clinical and Experimental, 100: 1-6.

23.   Donley, G. A. R., Lönnroos, E., Tuomainen, T. P. and Kauhanen, J. (2018). Association of childhood stress with late-life dementia and Alzheimer’s disease: The KIHD study. European Journal of Public Health, 28(6): 1069-1073.

24.   Dutta, S. S. (2019). Childhood dementia causes. https://www.news-medical.net/health/Childhood-Dementia-Causes.aspx.

25.   Iwasaki, Y. (2017). Creutzfeldt-Jakob disease. Neuropathology, 37(2): 174-188.

26.   Centers for Disease Control and Prevention: Creutzfeldt-Jakob disease, classic (CJD) (2021). https://www.cdc.gov/prions/cjd/index.html (accessed Aug. 18, 2023).

27.   Pickett, E. K., Herrmann, A. G., McQueen, J., Abt, K., Dando, O., Tulloch, J., Jain, P., Dunnett, S., Sohrabi, S., Fjeldstad, M. P., Calkin, W., Murison, L., Jackson, R. J., Tzioras, M., Stevenson, A., d’Orange, M., Hooley, M., Davies, C., Colom-Cadena, M. and Spires-Jones, T. L. (2019). Amyloid beta and tau cooperate to cause reversible behavioral and transcriptional deficits in a model of Alzheimer’s disease. Cell Reports, 29(11): 3592-3604.

28.   Götz, J., Bodea, L. G. and Goedert, M. (2018). Rodent models for Alzheimer disease. Nature Reviews Neuroscience, 19(10): 583-598.

29.   Bird, T. D. (1993). Alzheimer disease overview. Adam, M. P., Ardinger, H. H., Pagon, R. A., Wallace, S. E., Bean, L. J. H., Stephens, K., & Amemiya, A. (Eds.). (1993). Variegate porphyria. GeneReviews®.

30.   James, B. D. and Bennett, D. A. (2019). Causes and patterns of dementia: an update in the era of redefining Alzheimer's disease. Annual Review of Public Health, 40: 65-84.

31.   Zvěřová, M. (2019). Clinical aspects of Alzheimer’s disease. Clinical Biochemistry, 72(4): 3-6.

32.   Du, X., Wang, X. and Geng, M. (2018). Alzheimer’s disease hypothesis and related therapies. Translational Neurodegeneration, 7(1): 1-7.

33.   Chen, F., He, Y., Wang, P., Wei, P., Feng, H., Rao, Y., Shi, J. and Tian, J. (2018). Curcumin can influence synaptic dysfunction in APPswe/PS1dE9 mice. Journal of Traditional Chinese Medical Sciences, 5(2): 168-176.

34.   Benedec, D., Oniga, I., Hanganu, D., Gheldiu, A. M., Puşcaş, C., Silaghi-Dumitrescu, R., Duma, M., Tiperciuc, B., Vârban, R. and Vlase, L. (2018). Sources for developing new medicinal products: Biochemical investigations on alcoholic extracts obtained from aerial parts of some Romanian Amaryllidaceae species. BMC Complementary and Alternative Medicine, 18(1): 1-12.

35.   [35] Eruygur, N., Koçyiğit, U. M., Taslimi, P., Ataş, M., Tekin, M. and Gülçin. (2019). Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. South African Journal of Botany, 120: 141-145.

36.   Fujimori, H., Ohba, T., Mikami, M., Nakamura, S., Ito, K., Kojima, H., Takahashi, T., Iddamalgoda, A., Shimazawa, M. and Hara, H. (2022). The protective effect of Centella asiatica and its constituent, araliadiol on neuronal cell damage and cognitive impairment. Journal of Pharmacological Sciences, 148(1): 162-171.

37.   Yu, Z., Jin, W., Cui, Y., Ao, M., Liu, H., Xu, H. and Yu, L. (2019). Protective effects of macamides from: Lepidium meyenii Walp. against corticosterone-induced neurotoxicity in PC12 cells. RSC Advances, 9(40): 23096-23108.

38.   Kumaran, A., Ho, C. C. and Hwang, L. S. (2018). Protective effect of Nelumbo nucifera extracts on beta amyloid protein induced apoptosis in PC12 cells, in vitro model of Alzheimer’s disease. Journal of Food and Drug Analysis, 26(1): 172-181.

39.   El-Hawary, S. S., Sobeh, M., Badr, W. K., Abdelfattah, M. A. O., Ali, Z. Y., El-Tantawy, M. E., Rabeh, M. A. and Wink, M. (2020). HPLC-PDA-MS/MS profiling of secondary metabolites from Opuntia ficus-indica cladode, peel and fruit pulp extracts and their antioxidant, neuroprotective effect in rats with aluminum chloride induced neurotoxicity. Saudi Journal of Biological Sciences, 27(10): 2829-2838.

40.   Rajalakshmi, S., Vijayakumar, S. and Praseetha, P. K. (2019). Neuroprotective behaviour of Phyllanthus emblica (L) on human neural cell lineage (PC12) against glutamate-induced cytotoxicity. Gene Reports, 17(9): 100545.

41.   Adib, M., Islam, R., Ahsan, M., Rahman, A., Hossain, M., Rahman, M. M., Alshehri, S. M., Kazi, M. and Mazid, M. A. (2021). Cholinesterase inhibitory activity of tinosporide and 8-hydroxytinosporide isolated from Tinospora cordifolia: In vitro and in silico studies targeting management of Alzheimer’s disease. Saudi Journal of Biological Sciences, 28(7): 3893-3900.

42.   Sajjad Haider, M., Ashraf, W., Javaid, S., Fawad Rasool, M., Muhammad Abdur Rahman, H., Saleem, H., Muhammad Muneeb Anjum, S., Siddique, F., Morales-Bayuelo, A., Kaya, S., Alqahtani, F., Alasmari, F., and Imran, I. (2021). Chemical characterization and evaluation of the neuroprotective potential of Indigofera sessiliflora through in-silico studies and behavioral tests in scopolamine-induced memory compromised rats. Saudi Journal of Biological Sciences, 28(8): 4384-4398.

43.   Gürbüz, P., Dokumacı, A. H., Gündüz, M. G., Perez, C., Göger, F., Paksoy, M. Y., Yerer, M. B. and Ömür Demirezer, L. (2021). In vitro biological activity of Salvia fruticosa Mill. infusion against amyloid β-peptide-induced toxicity and inhibition of GSK-3β, CK-1δ, and BACE-1 enzymes relevant to Alzheimer’s disease. Saudi Pharmaceutical Journal, 29(3): 236-243.

44.   Rho, T., Jeong, H. W., Hong, Y. D., Yoon, K., Cho, J. Y. and Yoon, K. D. (2020). Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT8, and its antiinflammatory activity. Journal of Ginseng Research, 44(1): 145-153.

45.   Gargouri, B., Carstensen, J., Bhatia, H. S., Huell, M., Dietz, G. P. H. and Fiebich, B. L. (2018). Anti-neuroinflammatory effects of Ginkgo biloba extract EGb761 in LPS-activated primary microglial cells. Phytomedicine, 44(4): 45-55.

46.   Ionita, R., Postu, P. A., Mihasan, M., Gorgan, D. L., Hancianu, M., Cioanca, O. and Hritcu, L. (2018). Ameliorative effects of Matricaria chamomilla L. hydroalcoholic extract on scopolamine-induced memory impairment in rats: A behavioral and molecular study. Phytomedicine, 47(11): 113-120.

47.   Naseri, M., Arabi Mianroodi, R., Pakzad, Z., Falahati, P., Borbor, M., Azizi, H. and Nasri, S. (2021). The effect of Melissa officinalis L. extract on learning and memory: Involvement of hippocampal expression of nitric oxide synthase and brain-derived neurotrophic factor in diabetic rats. Journal of Ethnopharmacology, 276: 114210.

48.   Callizot, N., Campanari, M. L., Rouvière, L., Jacquemot, G., Henriques, A., Garayev, E. and Poindron, P. (2021). Huperzia serrata extract ‘NSP01’ with neuroprotective effects-potential synergies of huperzine a and polyphenols. Frontiers in Pharmacology, 12(8): 1-13.

49.   Ooh, K.-F., Ong, H.-C., Wong, F.-C., Sit, N.-W. and Chai, T.-T. (2014). High performance liquid chromatography profiling of health-promoting  phytochemicals and evaluation of antioxidant, anti-lipoxygenase, iron chelating and anti-glucosidase activities of wetland macrophytes. Pharmacognosy Magazine, 10: S443-55.

50.   Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M. and Yoga Latha, L. (2011). Extraction, isolation and characterization of bioactive compounds from plants’  extracts. African Journal of Traditional, Complementary, and Alternative Medicines, 8(1): 1-10.

51.   Nemetchek, M. D., Stierle, A. A., Stierle, D. B. and Lurie, D. I. (2017). The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. Journal of Ethnopharmacology, 197: 92-100.

52.   Karim, N., Khan, I., Abdelhalim, A., Abdel-Halim, H. and Hanrahan, J. R. (2017). Molecular docking and antiamnesic effects of nepitrin isolated from Rosmarinus officinalis on scopolamine-induced memory impairment in mice. Biomedicine and Pharmacotherapy, 96(9): 700-709.

53.   Vajic, U. J., Grujic-Milanovic, J., Miloradovic, Z., Jovovic, D., Ivanov, M., Karanovic, D., Savikin, K., Bugarski, B. and Mihailovic-Stanojevic, N. (2018). Urtica dioica L. leaf extract modulates blood pressure and oxidative stress in spontaneously hypertensive rats. Phytomedicine, 46(5): 39-45.

54.   Pandey, A., Bani, S., Dutt, P., Kumar Satti, N., Avtar Suri, K. and Nabi Qazi, G. (2018). Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine, 102(10): 211-221.

55.   Gabbas, Z. El, Bezza, K., Laadraoui, J., Makbal, R., Aboufatima, R. and Chait, A. (2018). Salvia officinalis induces antidepressant-like effect, anxiolytic activity and learning improvement in hippocampal lesioned and intact adult rats. Bangladesh Journal of Pharmacology, 13(4): 367-378.