Malaysian Journal
of Analytical Sciences, Vol 28 No 1 (2024): 141 - 156
MODIFIED CHRYSIN-BASED BIOSORBENT FOR THE
DISPERSIVE MICRO-SOLID PHASE EXTRACTION OF SELECTED PHENOLIC ACIDS FROM
STINGLESS BEE HONEY
(Biopenjerap
yang Diubahsuai berasaskan Krisin untuk Pengekstrakan Fasa Pepejal-mikro Asid
Fenolik Terpilih secara Serakan daripada Madu Lebah Tanpa Sengat)
NyukTing Ng1, Aemi Syazwani
Abdul Keyon1,2*, Wan Aini Wan Ibrahim1*, Mohd Marsin
Sanagi1
and Faridah Mohd Marsin3
1Department of Chemistry, Faculty of
Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research,
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
3Jabatan Kimia Malaysia Negeri
Pahang, Jalan Dato’ Bahaman, Alor Akar, 25662 Kuantan, Pahang, Malaysia
*Corresponding author: aemi@utm.my; waini@utm.my
Received: 13
September 2023; Accepted: 30 December 2023; Published: 28 February 2024
Abstract
This study focuses on the preparation, characterisation, and application of a chrysin-based
biosorbent (TA-CHY) for extracting protocatechuic acid (PCA) and vanillic acid
(VA) from stingless bee honey (SBH) using a dispersive micro-solid phase
extraction method. The extracted analytes were separated using high-performance
liquid chromatography and detected using an ultraviolet detector. TA-CHY was
prepared by depositing tannic acid onto the amino-functionalized chrysin. Its
point of zero charge was determined at pH 6.8. Fourier transform infrared
spectroscopy analysis had identified the presence of C=N, C=C, O-H, SiOR and C-O groups in TA-CHY, while aggregate formation
was observed on TA-CHY through scanning electron microscopy. Energy dispersive
X-ray study revealed the elemental composition of TA-CHY was 52.9% of C, 34.0%
of O, 6.80% of Si and 6.3% of N. Its specific surface area was found to be 5.913
m2/g via Brunauer-Emmett-Teller surface
area analysis. Optimised extraction parameters were 1
min extraction time, 300 µL methanol as desorption solvent, 15 min desorption
time, sample pH of 2, no NaCl salt addition, 0.20 g biosorbent mass and 2 mL
ethanol as dispersant solvent. The developed method was validated using
matrix-match calibration where real SBH
samples spiked with PCA and VA in the concentration range of 0.5-50 mg/L. The
method exhibited satisfactory analytical performance characteristics, with a
limit of detection ranging from 0.81 to 1.37 mg/kg, a limit of quantification
ranging from 2.69 to 4.56 mg/kg, relative recoveries ranging from 79.38% to
113.38%, and precision with relative standard deviation values ranging from
0.29% to 10.83%. Importantly, the proposed method obtained a score of 71 on the
analytical Eco-Scale, indicating its acceptability as a green method.
Keywords: chrysin, biosorbent, dispersive micro-solid phase
extraction, phenolic acids, stingless bee honey
Abstrak
Kajian ini memberi tumpuan pada
penyediaan, pencirian, dan penggunaan biopenjerap berasaskan krisin (TA-CHY)
untuk mengekstrak asid protokatekuik (PCA) dan asid vanillik (VA) daripada madu
lebah (SBH) tanpa sengat dengan menggunakan kaedah pengekstrakan fasa
pepejal-mikro secara serakan. Analit yang diekstrak telah diasingkan
menggunakan kromatografi cecair berprestasi tinggi dan dikesan menggunakan
pengesan ultraungu. Biopenjerap TA-CHY telah disediakan dengan mendepositkan
asid tannik pada krisin yang telah diberikan fungsi amino. Cas sifar titiknya
telah ditentukan pada pH 6.8. Analisis spektroskopi inframerah transformasi
Fourier telah mengenalpasti kehadiran kumpulan C=N, C=C, O-H, SiOR dan C-O
dalam TA-CHY manakala pembentukan agregat diperhatikan pada TA-CHY melalui
mikroskop pengimbas electron. Kajian tenaga penyerakan sinar-X mendedahkan
komposisi unsur bagi TA-CHY ialah 52.9% C, 34.0% O, 6.80% Si dan 6.3% N. Luas
permukaan spesifiknya didapati sebanyak 5.913 m²/g melalui analisis kawasan
permukaan Brunauer-Emmett-Teller. Parameter pengekstrakan yang dioptimumkan
ialah 1 minit masa pengekstrakan, 300 µL metanol sebagai pelarut desorpsi, 15
minit masa desorpsi, pH sampel 2, tiada penambahan garam NaCl, 0.20 g jisim
biopenjerap dan 2 mL etanol sebagai pelarut penyerakan. Kaedah yang dibangunkan
telah disahkan menggunakan kalibrasi padanan-matriks dengan sampel SBH tulen
dengan menambah PCA dan VA dalam lingkungan kepekatan 0.5-50 mg/L. Kaedah ini
menunjukkan ciri prestasi analisis yang memuaskan, dengan had pengesanan antara
0.81 dan 1.37 mg/kg, had kuantitatif antara 2.69 dan 4.56 mg/kg, pemulihan
relatif antara 79.38% dan 113.38%, dan ketepatan dengan sisihan piawai relatif,
antara 0.29% dan 10.83%. Kaedah yang dicadangkan telah memperoleh markah 71
pada skala-Eko analitik yang menunjukkan kebolehterimaannya sebagai kaedah
hijau adalah sangat penting.
Kata kunci: krisin, biopenjerap, pengekstrakan fasa pepejal-mikro
secara serakan, asid fenolik, madu lebah tanpa sengat
References
1. Raja Nurfatin, R. M. Y., Norhayati, M. K., Mohd Fairulnizal, M. N.,
Hadi, N., Abdul Manam, M., Mohd. Zin, Z. and Yusof, H. M. (2021). The physicochemical, sensory evaluation and
glycemic load of stingless bee honey and honeybee honey. Food Research, 5(1): 99-107.
2. Najeeb, I. M. A., Norhayati M. K., Zaharah, H., Mohd Isa, N. S.,
Nur Nadrah, M. R. and Yusof H. M. (2022). Physicochemical properties, sensory acceptance and glycaemic index of
processed stingless bee honey and processed honeybee honey. Food
Research, 6(6): 103-110.
3. Luo, D., Mu, T. H. and Sun, H. N. (2021). Profiling of phenolic acids and flavonoids in sweet potato (Ipomoea batatas L.) leaves and evaluation of their anti-oxidant and hypoglycemic
activities. Food Bioscience,
39: 100801.
4. Saleem, A., Akhtar M. F., Sharif, A., Akhtar, B., Siddique, R.,
Ashraf, G. M., Alghamdi, B. S. and Alharthy, S. A. (2022). Anticancer, cardio-protective and
anti-inflammatory potential of natural-sources-derived phenolic acids. Molecules, 27(21): 7286.
5. Valverde, S., Ares, A. M., Stephen Elmore, J. and Bernal, J.
(2022). Recent trends in the analysis
of honey constituents. Food
Chemistry, 387: 132920.
6. Gałuszka, A., Migaszewski, Z. and Namieśnik, J. (2013).
The 12 principles of green analytical
chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends in Analytical Chemistry,
50: 78-84.
7. Pascual-Maté, A., Osés, S. M., Fernández-Muiño, M. A. and Sancho,
M. T. (2018). Analysis of polyphenols in honey: extraction, separation and
quantification procedures. Separation
& Purification Reviews, 47(2):
142-158.
8. Anastassiades, M., Lehotay, S. J., Štajnbaher, D. and Schenck, F.
J. (2003). Fast and easy multiresidue
method employing acetonitrile extraction/partitioning and “dispersive
solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC international, 86(2): 412-431.
9. Ghorbani, M., Aghamohammadhassan, M., Ghorbani, H. and Zabihi, A.
(2020). Trends in sorbent development
for dispersive micro-solid phase extraction. Microchemical Journal, 158: 105250.
10. Ng, N. T., Abdul Keyon, A. S., Wan Ibrahim, W.
A., Sanagi, M. M., Sutirman, A. A. and Mohd Marsin, F. (2023). Amino-functionalised chrysin as adsorbent in
dispersive micro-solid phase extraction of selected heavy metal ions from
stingless bee honey. Journal
of Food Composition and Analysis, 123:
105561.
11. Ścigalski, P. and Kosobucki P. (2020). Recent materials developed for dispersive
solid phase extraction. Molecules,
25(21): 4869.
12. Hang, N., Yang, Y., Zhang, Y. Y., Zhao, W. N.,
Tao, J. and Li, S. Q. (2023). Magnetic
cork composites as biosorbents in dispersive solid-phase extraction of
pesticides in water samples. Analytical
Methods, 15(29): 3510-3521.
13. Kachangoon, R., Vichapong, J.,
Santaladchaiyakit, Y. and Srijaranai S. (2022). Green fabrication of Moringa
oleifera seed as efficient
biosorbent for selective enrichment of triazole fungicides in environmental
water, honey and fruit juice samples.
Microchemical Journal, 175:
107194.
14. Adlnasab, L., Ezoddin, M., Shabanian, M. and
Mahjoob, B. (2019). Development of
ferrofluid mediated CLDH@Fe3O4@Tanic acid- based
supramolecular solvent: Application in air-assisted dispersive micro solid
phase extraction for preconcentration of diazinon and metalaxyl from various
fruit juice samples. Microchemical Journal, 146: 1-11.
15. Abd Ali, L. I., Wan Ibrahim, W. A., Sulaiman,
Azli, Kamboh, M. A. and Sanagi, M. M. (2016). New chrysin-functionalized silica-core shell magnetic nanoparticles for
the magnetic solid phase extraction of copper ions from water samples. Talanta, 148: 191-199.
16. Shen, N., Wang, T. F., Gan, Q., Liu, S., Wang,
L. and Jin, B. (2022). Plant
flavonoids: Classification, distribution, biosynthesis, and antioxidant
activity. Food chemistry,
383: 132531.
17. Pyrzynska, K. and Pękal, A. (2011). Flavonoids as analytical reagents. Critical
Reviews in Analytical Chemistry, 41(4):
335-345.
18. Gałuszka, A., Migaszewski, Z. M,
Konieczka, P. and Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical
procedures. TrAC Trends in
Analytical Chemistry, 37:
61-72.
19. Liu, L. L., Ge, C., Zhang, Y., Ma, W. R., Su,
X., Chen, L., Li, S. B., Wang, L., Mu, X. J. and Xu, Y. (2020). Tannic acid-modified silver nanoparticles
for enhancing anti-biofilm activities and modulating biofilm formation. Biomaterials Science, 8(17): 4852-4860.
20. Abebe, M.W. and Kim, H. (2022). Methylcellulose/tannic acid complex
particles coated on alginate hydrogel scaffold via pickering for removal of
methylene blue from aqueous and quinoline from non-aqueous media. Chemosphere,
286: 131597.
21. Park, S. H., Choi, S. J., Lee, Y. K., Jho, Y.
S., Kang, S. T. and Hwang, D. S. (2023). Cation−
π interactions contribute to hydrophobic humic acid removal for the
control of hydraulically irreversible membrane fouling. Environmental Science &
Technology, 57(9):
3853-3863.
22. Musa, M., Wan Ibrahim, W. A., Mohd Marsin, F.,
Abdul Keyon, A. S. and Rashidi Nodeh, H. (2018). Graphene-magnetite as adsorbent for magnetic solid phase extraction of
4-hydroxybenzoic acid and 3,4-dihydroxybenzoic acid in stingless bee honey. Food Chemistry, 265: 165-172.
23. Galanakis, C. M., Goulas, V., Tsakona, S.
Manganaris, G. A. and Gekas, V. (2013). A
knowledge base for the recovery of natural phenols with different solvents. International
Journal of Food Properties, 16(2):
382-396.
24. Yamada, S. (2020). Cation–π interactions in organic crystals. Coordination
Chemistry Reviews, 415:
213301.
25. Kim, S. H., Gupta, N. K., Bae, J. Y. and Kim,
K. S. (2020). Structural variations
and generation of binding sites in Fe-loaded ZSM-5 and silica under the effect
of uv-irradiation and their role in enhanced BTEX abatement from gas streams.
Journal of Hazardous Materials, 384:
121274.
26. Shamsudin, S., Selamat, J., Abdul Shomad, M.,
Ab Aziz, M. F. and Haque Akanda, M. J. (2022). Antioxidant
properties and characterization of Heterotrigona
itama honey from various botanical
origins according to their polyphenol compounds. Journal of Food Quality,
2022: 2893401.
27. Zulkifli, N.A., Hassan, Z., Mustafa, M. Z.,
Wan Azman, W. N., Hadie Hanim, S. N., Ghani, N. and Mat Zin, A. A. (2023) The potential neuroprotective effects of
stingless bee honey. Frontiers
in Aging Neuroscience, 14:
1048028.
28. Rashmi, H. B. and Negi, P. S. (2020). Phenolic acids from vegetables: A review on
processing stability and health benefits. Food
Research International, 136: 109298.
29. Biluca, F. C., da Silva, B., Caon, T., Mohr,
E. T., Bramorski, V., Guilherme, N., Gonzaga, L., Valdemiro, V., Luciano, M.,
Gustavo, F., Roseane, D. and Eduardo, M. (2020). Investigation of phenolic compounds, antioxidant
and anti-inflammatory activities in stingless bee honey (Meliponinae).
Food Research
International,
129: 108756.
30. Moreira, F. I. N., de Medeiros, L. L., de
Carvalho, L. M., Olegario, L. S., de Sousa Galvão,
M., da Franca, S. A. M., Bezerra, T. K.
A., dos Santos Lima, M. and Madruga, M. S. (2023). Quality of brazilian stingless bee honeys: Cephalotrigona Capitata/Mombucão and Melipona
Scutellaris Latrelle/Uruçu. Food Chemistry,
404: 134306.
31. Spilioti, E., Jaakkola, M., Tolonen, T.,
Lipponen, M., Virtanen, V., Chinou, L., Kassi, E., Karabournioti, S. and
Moutsatsou, P. (20140. Phenolic acid
composition, antiatherogenic and anticancer potential of honeys derived from
various regions in Greece. PloS
One, 9(4): e94860.
32. Wang, Y., Xing, L. J., Zhang, J. L., Ma, X. N.
and Weng, R. (2023). Determination of endogenous phenolic compounds in honey by
HPLC-MS/MS. LWT, 114951.
33. Puścion-Jakubik, A., Karpińska, E.,
Moskwa, J. and Socha, K. (2022). Content
of phenolic acids as a marker of polish honey varieties and relationship with
selected honey-quality-influencing variables. Antioxidants, 11(7):
1312.