Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 141 - 156

 

MODIFIED CHRYSIN-BASED BIOSORBENT FOR THE DISPERSIVE MICRO-SOLID PHASE EXTRACTION OF SELECTED PHENOLIC ACIDS FROM STINGLESS BEE HONEY

 

(Biopenjerap yang Diubahsuai berasaskan Krisin untuk Pengekstrakan Fasa Pepejal-mikro Asid Fenolik Terpilih secara Serakan daripada Madu Lebah Tanpa Sengat)

 

NyukTing Ng1, Aemi Syazwani Abdul Keyon1,2*, Wan Aini Wan Ibrahim1*, Mohd Marsin Sanagi1

and Faridah Mohd Marsin3

 

1Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

3Jabatan Kimia Malaysia Negeri Pahang, Jalan Dato’ Bahaman, Alor Akar, 25662 Kuantan, Pahang, Malaysia

 

*Corresponding author: aemi@utm.my; waini@utm.my

 

 

Received: 13 September 2023; Accepted: 30 December 2023; Published:  28 February 2024

 

 

Abstract

This study focuses on the preparation, characterisation, and application of a chrysin-based biosorbent (TA-CHY) for extracting protocatechuic acid (PCA) and vanillic acid (VA) from stingless bee honey (SBH) using a dispersive micro-solid phase extraction method. The extracted analytes were separated using high-performance liquid chromatography and detected using an ultraviolet detector. TA-CHY was prepared by depositing tannic acid onto the amino-functionalized chrysin. Its point of zero charge was determined at pH 6.8. Fourier transform infrared spectroscopy analysis had identified the presence of C=N, C=C, O-H, SiOR and C-O groups in TA-CHY, while aggregate formation was observed on TA-CHY through scanning electron microscopy. Energy dispersive X-ray study revealed the elemental composition of TA-CHY was 52.9% of C, 34.0% of O, 6.80% of Si and 6.3% of N. Its specific surface area was found to be 5.913 m2/g via Brunauer-Emmett-Teller surface area analysis. Optimised extraction parameters were 1 min extraction time, 300 µL methanol as desorption solvent, 15 min desorption time, sample pH of 2, no NaCl salt addition, 0.20 g biosorbent mass and 2 mL ethanol as dispersant solvent. The developed method was validated using matrix-match calibration where  real SBH samples spiked with PCA and VA in the concentration range of 0.5-50 mg/L. The method exhibited satisfactory analytical performance characteristics, with a limit of detection ranging from 0.81 to 1.37 mg/kg, a limit of quantification ranging from 2.69 to 4.56 mg/kg, relative recoveries ranging from 79.38% to 113.38%, and precision with relative standard deviation values ranging from 0.29% to 10.83%. Importantly, the proposed method obtained a score of 71 on the analytical Eco-Scale, indicating its acceptability as a green method.

 

Keywords: chrysin, biosorbent, dispersive micro-solid phase extraction, phenolic acids, stingless bee honey

 

Abstrak

Kajian ini memberi tumpuan pada penyediaan, pencirian, dan penggunaan biopenjerap berasaskan krisin (TA-CHY) untuk mengekstrak asid protokatekuik (PCA) dan asid vanillik (VA) daripada madu lebah (SBH) tanpa sengat dengan menggunakan kaedah pengekstrakan fasa pepejal-mikro secara serakan. Analit yang diekstrak telah diasingkan menggunakan kromatografi cecair berprestasi tinggi dan dikesan menggunakan pengesan ultraungu. Biopenjerap TA-CHY telah disediakan dengan mendepositkan asid tannik pada krisin yang telah diberikan fungsi amino. Cas sifar titiknya telah ditentukan pada pH 6.8. Analisis spektroskopi inframerah transformasi Fourier telah mengenalpasti kehadiran kumpulan C=N, C=C, O-H, SiOR dan C-O dalam TA-CHY manakala pembentukan agregat diperhatikan pada TA-CHY melalui mikroskop pengimbas electron. Kajian tenaga penyerakan sinar-X mendedahkan komposisi unsur bagi TA-CHY ialah 52.9% C, 34.0% O, 6.80% Si dan 6.3% N. Luas permukaan spesifiknya didapati sebanyak 5.913 m²/g melalui analisis kawasan permukaan Brunauer-Emmett-Teller. Parameter pengekstrakan yang dioptimumkan ialah 1 minit masa pengekstrakan, 300 µL metanol sebagai pelarut desorpsi, 15 minit masa desorpsi, pH sampel 2, tiada penambahan garam NaCl, 0.20 g jisim biopenjerap dan 2 mL etanol sebagai pelarut penyerakan. Kaedah yang dibangunkan telah disahkan menggunakan kalibrasi padanan-matriks dengan sampel SBH tulen dengan menambah PCA dan VA dalam lingkungan kepekatan 0.5-50 mg/L. Kaedah ini menunjukkan ciri prestasi analisis yang memuaskan, dengan had pengesanan antara 0.81 dan 1.37 mg/kg, had kuantitatif antara 2.69 dan 4.56 mg/kg, pemulihan relatif antara 79.38% dan 113.38%, dan ketepatan dengan sisihan piawai relatif, antara 0.29% dan 10.83%. Kaedah yang dicadangkan telah memperoleh markah 71 pada skala-Eko analitik yang menunjukkan kebolehterimaannya sebagai kaedah hijau adalah sangat penting.

 

Kata kunci: krisin, biopenjerap, pengekstrakan fasa pepejal-mikro secara serakan, asid fenolik, madu lebah tanpa sengat


References

1.    Raja Nurfatin, R. M. Y., Norhayati, M. K., Mohd Fairulnizal, M. N., Hadi, N., Abdul Manam, M., Mohd. Zin, Z. and Yusof, H. M. (2021). The physicochemical, sensory evaluation and glycemic load of stingless bee honey and honeybee honey. Food Research, 5(1): 99-107.

2.    Najeeb, I. M. A., Norhayati M. K., Zaharah, H., Mohd Isa, N. S., Nur Nadrah, M. R. and Yusof H. M. (2022). Physicochemical properties, sensory acceptance and glycaemic index of processed stingless bee honey and processed honeybee honey. Food Research, 6(6): 103-110.

3.    Luo, D., Mu, T. H. and Sun, H. N. (2021). Profiling of phenolic acids and flavonoids in sweet potato (Ipomoea batatas L.) leaves and evaluation of their anti-oxidant and hypoglycemic activities. Food Bioscience, 39: 100801.

4.    Saleem, A., Akhtar M. F., Sharif, A., Akhtar, B., Siddique, R., Ashraf, G. M., Alghamdi, B. S. and Alharthy, S. A. (2022). Anticancer, cardio-protective and anti-inflammatory potential of natural-sources-derived phenolic acids. Molecules, 27(21): 7286.

5.    Valverde, S., Ares, A. M., Stephen Elmore, J. and Bernal, J. (2022). Recent trends in the analysis of honey constituents. Food Chemistry, 387: 132920.

6.    Gałuszka, A., Migaszewski, Z. and Namieśnik, J. (2013). The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends in Analytical Chemistry, 50: 78-84.

7.    Pascual-Maté, A., Osés, S. M., Fernández-Muiño, M. A. and Sancho, M. T. (2018). Analysis of polyphenols in honey: extraction, separation and quantification procedures. Separation & Purification Reviews, 47(2): 142-158.

8.    Anastassiades, M., Lehotay, S. J., Štajnbaher, D. and Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC international, 86(2): 412-431.

9.    Ghorbani, M., Aghamohammadhassan, M., Ghorbani, H. and Zabihi, A. (2020). Trends in sorbent development for dispersive micro-solid phase extraction. Microchemical Journal, 158: 105250.

10.  Ng, N. T., Abdul Keyon, A. S., Wan Ibrahim, W. A., Sanagi, M. M., Sutirman, A. A. and Mohd Marsin, F. (2023). Amino-functionalised chrysin as adsorbent in dispersive micro-solid phase extraction of selected heavy metal ions from stingless bee honey. Journal of Food Composition and Analysis, 123: 105561.

11.  Ścigalski, P. and Kosobucki P. (2020). Recent materials developed for dispersive solid phase extraction. Molecules, 25(21): 4869.

12.  Hang, N., Yang, Y., Zhang, Y. Y., Zhao, W. N., Tao, J. and Li, S. Q. (2023). Magnetic cork composites as biosorbents in dispersive solid-phase extraction of pesticides in water samples. Analytical Methods, 15(29): 3510-3521.

13.  Kachangoon, R., Vichapong, J., Santaladchaiyakit, Y. and Srijaranai S. (2022). Green fabrication of Moringa oleifera seed as efficient biosorbent for selective enrichment of triazole fungicides in environmental water, honey and fruit juice samples. Microchemical Journal, 175: 107194.

14.  Adlnasab, L., Ezoddin, M., Shabanian, M. and Mahjoob, B. (2019). Development of ferrofluid mediated CLDH@Fe3O4@Tanic acid- based supramolecular solvent: Application in air-assisted dispersive micro solid phase extraction for preconcentration of diazinon and metalaxyl from various fruit juice samples. Microchemical Journal, 146: 1-11.

15.  Abd Ali, L. I., Wan Ibrahim, W. A., Sulaiman, Azli, Kamboh, M. A. and Sanagi, M. M. (2016). New chrysin-functionalized silica-core shell magnetic nanoparticles for the magnetic solid phase extraction of copper ions from water samples. Talanta, 148: 191-199.

16.  Shen, N., Wang, T. F., Gan, Q., Liu, S., Wang, L. and Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry, 383: 132531.

17.  Pyrzynska, K. and Pękal, A. (2011). Flavonoids as analytical reagents. Critical Reviews in Analytical Chemistry, 41(4): 335-345.

18.  Gałuszka, A., Migaszewski, Z. M, Konieczka, P. and Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 37: 61-72.

19.  Liu, L. L., Ge, C., Zhang, Y., Ma, W. R., Su, X., Chen, L., Li, S. B., Wang, L., Mu, X. J. and Xu, Y. (2020). Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation. Biomaterials Science, 8(17): 4852-4860.

20.  Abebe, M.W. and Kim, H. (2022). Methylcellulose/tannic acid complex particles coated on alginate hydrogel scaffold via pickering for removal of methylene blue from aqueous and quinoline from non-aqueous media. Chemosphere, 286: 131597.

21.  Park, S. H., Choi, S. J., Lee, Y. K., Jho, Y. S., Kang, S. T. and Hwang, D. S. (2023). Cation− π interactions contribute to hydrophobic humic acid removal for the control of hydraulically irreversible membrane fouling. Environmental Science & Technology, 57(9): 3853-3863.

22.  Musa, M., Wan Ibrahim, W. A., Mohd Marsin, F., Abdul Keyon, A. S. and Rashidi Nodeh, H. (2018). Graphene-magnetite as adsorbent for magnetic solid phase extraction of 4-hydroxybenzoic acid and 3,4-dihydroxybenzoic acid in stingless bee honey. Food Chemistry, 265: 165-172.

23.  Galanakis, C. M., Goulas, V., Tsakona, S. Manganaris, G. A. and Gekas, V. (2013). A knowledge base for the recovery of natural phenols with different solvents. International Journal of Food Properties, 16(2): 382-396.

24.  Yamada, S. (2020). Cation–π interactions in organic crystals. Coordination Chemistry Reviews, 415: 213301.

25.  Kim, S. H., Gupta, N. K., Bae, J. Y. and Kim, K. S. (2020). Structural variations and generation of binding sites in Fe-loaded ZSM-5 and silica under the effect of uv-irradiation and their role in enhanced BTEX abatement from gas streams. Journal of Hazardous Materials, 384: 121274.

26.  Shamsudin, S., Selamat, J., Abdul Shomad, M., Ab Aziz, M. F. and Haque Akanda, M. J. (2022).  Antioxidant properties and characterization of Heterotrigona itama honey from various botanical origins according to their polyphenol compounds. Journal of Food Quality, 2022: 2893401.

27.  Zulkifli, N.A., Hassan, Z., Mustafa, M. Z., Wan Azman, W. N., Hadie Hanim, S. N., Ghani, N. and Mat Zin, A. A. (2023) The potential neuroprotective effects of stingless bee honey. Frontiers in Aging Neuroscience, 14: 1048028.

28.  Rashmi, H. B. and Negi, P. S. (2020). Phenolic acids from vegetables: A review on processing stability and health benefits. Food Research International, 136: 109298.

29.  Biluca, F. C., da Silva, B., Caon, T., Mohr, E. T., Bramorski, V., Guilherme, N., Gonzaga, L., Valdemiro, V., Luciano, M., Gustavo, F., Roseane, D. and Eduardo, M. (2020). Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Research International, 129: 108756.

30.  Moreira, F. I. N., de Medeiros, L. L., de Carvalho, L. M., Olegario, L. S., de Sousa Galvão, M., da  Franca, S. A. M., Bezerra, T. K. A., dos Santos Lima, M. and Madruga, M. S. (2023). Quality of brazilian stingless bee honeys: Cephalotrigona Capitata/Mombucão and Melipona Scutellaris Latrelle/Uruçu. Food Chemistry, 404: 134306.

31.  Spilioti, E., Jaakkola, M., Tolonen, T., Lipponen, M., Virtanen, V., Chinou, L., Kassi, E., Karabournioti, S. and Moutsatsou, P. (20140. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PloS One, 9(4):  e94860.

32.  Wang, Y., Xing, L. J., Zhang, J. L., Ma, X. N. and Weng, R. (2023). Determination of endogenous phenolic compounds in honey by HPLC-MS/MS. LWT, 114951.

33.  Puścion-Jakubik, A., Karpińska, E., Moskwa, J. and Socha, K. (2022). Content of phenolic acids as a marker of polish honey varieties and relationship with selected honey-quality-influencing variables. Antioxidants, 11(7): 1312.