Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 127 - 140

 

RESPONSE SURFACE METHODOLOGY FOR OPTIMISING CROSS-LINKING CONDITIONS OF UNRIPE BANANA (Musa balbisiana VAR. Abu) STARCH

 

(Kaedah Tindak Balas Permukaan untuk Pengoptimuman Keadaan Penghubung Silang Kanji Pisang Belum Masak (Musa balbisiana Var. Abu))

 

Nurul Nor Izzuani Nor Sham1*, Anida Yusoff1, Noorlaila Ahmad1, and Siti Roha Ab Mutalib1,2

 

1School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Malaysia Institute of Transport, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: izzuaninorsham@gmail.com

 

 

Received: 5 September 2023; Accepted: 10 January 2024; Published:  28 February 2024

 

Abstract

Starch is the most abundant organic compound found in nature after cellulose. However, native starch has undesirable properties which could limit its application in food industries. Therefore, starch modification is necessary to enhance its positive attributes and to eliminate the limitations of its specific application in food manufacturing. This study aims to optimize the conditions of the cross-linking of unripe banana (Musa balbisiana var. Abu) starch using response surface methodology (RSM). The optimization was conducted using the central composite design (CCD) approach. The extracted unripe banana (Musa balbisiana var. Abu) starch was cross-linked with sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP) mixture as the cross-linking agent. The two independent variables selected were temperature (40.0- 60.0 ) and pH (9.00-11.00). The maximum degree of cross-linking was obtained at the following optimum conditions: temperature 50.57 and pH 9.52. The degree of cross-linking obtained at the optimum conditions of RSM was verified, and the value obtained was 81.73%. There was no significant difference (p-value >0.05) between the predicted and verified degree of cross-linking values. Thus, it indicated that the predicted optimum condition by RSM can be accepted. These outcomes of this study are very important as they would assist the food industries in developing and designing the process of optimal cross-linking of starch from unripe bananas, which can be used in the future.

 

Keywords: response surface methodology, unripe banana, banana starch, starch modification, cross-linking

 

Abstrak

Kanji adalah sebatian organik yang paling banyak ditemui dalam alam semula jadi selepas selulosa. Walau bagaimanapun, kanji semula jadi yang belum diproses mempunyai sifat yang tidak diingini yang boleh mengehadkan penggunaannya dalam industri makanan. Oleh itu, pengubahsuaian kanji adalah perlu untuk meningkatkan kebaikan justeru dapat menghapuskan had penggunaan khususnya dalam pembuatan makanan. Matlamat kajian ini adalah untuk mengoptimumkan keadaan ikatan silang kanji pisang belum masak (Musa balbisiana var. Abu) menggunakan kaedah tindak balas permukaan (RSM). Pengoptimuman telah dijalankan dengan pendekatan reka bentuk komposit pusat (CCD). Kanji pisang belum masak (Musa balbisiana var. Abu) yang diekstrak telah diikat silang dengan campuran natrium trimetafosfat (STMP) dan natrium tripolifosfat (STPP) sebagai agen penghubung silang. Dua pembolehubah bebas yang dipilih ialah suhu (40.0-60.0 ℃) dan pH (9.00-11.00). Darjah maksimum penghubung silang diperoleh pada keadaan optimum berikut: suhu 50.57 ℃ dan pH 9.52. Darjah silang yang diperoleh pada keadaan optimum RSM telah disahkan dan nilai yang diperoleh ialah 81.73%. Tidak terdapat perbezaan yang signifikan (nilai p >0.05) antara tahap ramalan dan disahkan nilai silang silang, oleh itu ia menunjukkan bahawa keadaan optimum yang diramalkan oleh RSM boleh diterima. Hasil kajian ini adalah sangat penting kerana ia akan membantu industri makanan untuk membangunkan dan mereka bentuk proses pengikatan silang kanji yang optimum daripada pisang yang belum masak, yang boleh digunakan pada masa hadapan.

 

Kata kunci: kaedah tindak balas permukaan, pisang belum masak, kanji pisang, pengubahsuaian kanji, penghubung silang

 


References

1.      Alcázar-alay, S. C. and Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35(2): 215-236.

2.      Abbas, K. A., Khalil, S. K. and Hussin, A. S. M. (2010). Modified starches and their usage in selected food products: A review study. Journal of Agricultural Science, 2(2): 90-100.

3.      Gao, F., Li, D., Bi, C. H., Mao, Z. H. and Adhikari, B. (2014). Preparation and characterization of starch crosslinked with sodium trimetaphosphate and hydrolyzed by enzymes. Carbohydrate Polymers, 103(1): 310-318.

4.      Punia, S., Dhull, S. B., Kunner, P. and Rohilla, S. (2020). Effect of γ-radiation on physico-chemical, morphological and thermal characteristics of lotus seed (Nelumbo nucifera) starch. International Journal of Biological Macromolecules, 157: 584-590.

5.      Sandhan, S., Thombre, N. and Sagar Aher. (2017). Isolation and evaluation of starch from Musa Paradisiaca Linn. as a binder in tablet. International Journal of Pharmaceutical Sciences and Research, 8(8): 3484-3491.

6.      Wang, J. S., Wang, A. B., Ma, W. H., Xu, B. Y., Zang, X. P., Tan, L., Jin, Z. Q. and Li, J. Y. (2019). Comparison of physicochemical properties and in vitro digestibility of starches from seven banana cultivars in China. International Journal of Biological Macromolecules, 121: 279-284.

7.      Fida, R., Pramafisi, G. and Cahyana, Y. (2020). Application of banana starch and banana flour in various food product: A review. International Conference on Food and Bio-Industry 2019: 443.

8.      Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. D. A. and Menegalli, F. C. (2012). Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch/Staerke, 64(5): 382-391.

9.      Sultan, S. and Rangaraju, V. (2014). Changes in colour value of banana var. Grand Naine during ripening. Bioscience Trends, 7(9): 726-728.

10.   Mattsson, L., Williams, H., and Berghel, J. (2018). Waste of fresh fruit and vegetables at retailers in Sweden – Measuring and calculation of mass, economic cost and climate impact. Resources, Conservation Recycling, 130: 118-126.

11.   Karim, R. S. M., Rahmatullah, N., Nordin, M. F. M. and Rajin, S. M. A. K. (2018). Effect of stage of maturity and frying time on the quality of banana springs. Pertanika Journal of Tropical Agricultural Science, 41(3): 1097-1110.

12.   Zhang, P., Whistler, R. L., N. BeMiller, J. and Hamaker, B. R. (2005). Banana starch: production, physicochemical properties, and digestibility- a review. Carbohydrate Polymers, 59: 443-458.

13.   Pacheco-Delahaye, E., Maldonado, R., Pérez, E. and Schroeder, M. (2008). Production and characterization of unripe plantain (Musa paradisiaca L.) flours. Interciencia, 33(4): 290-296.

14.   Santana, A. L. and Meireles, M. A. A. (2014). New starches are the trend for industry apllications: A review. Food and Public Health, 4(5): 229-241.

15.   Zabala, C. C. V. (2020). An overview on starch structure and chemical nature. In Starch-based Nanomaterials (1st edition). Springer, Cham: pp. 3-9.

16.   Singla, D., Singh, A., Dhull, S. B., Kumar, P., Malik, T. and Kumar, P. (2020). Isolation, morphology, modification and novel applications concern - A review. International Journal of Biological Macromolecules, 163: 1283-1290.

17.   Waliszewski, K. N., Aparicio, M. A., Bello, L. A. and Monroy, J. A. (2003). Changes of banana starch by chemical and physical modification. Carbohydrate Polymers, 52: 237-242.

18.   Alimi, B. A., Workneh, T. S. and Sibomana, M. S. (2016). Effect of hydrothermal modifications on functional, pasting and structural properties of false banana (Ensete ventricosum) starch. Food Biophysics, 11(3): 248-256.

19.   Punia, S. (2020). Barley starch modifications: Physical, chemical and enzymatic - A review. International Journal of Biological Macromolecules, 144: 578-585.

20.   Korkut, A. and Kahraman, K. (2021). Production of cross-linked resistant starch from tapioca starch and effect of reaction conditions on the functional properties, morphology, X‑ray pattern, FT-IR spectra and digestibility. Journal of Food Measurement and Characterization, 15(2): 1693-1702..

21.   Babu, A. S., Naik, G. N. M., James, J., Aboobacker, A. B., Eldhose, A. and Mohan, R. J. (2018). A comparative study on dual modification of banana (Musa paradisiaca) starch by microwave irradiation and cross-linking. Journal of Food Measurement and Characterization, 12(3): 2209-2217.

22.   Compart, J., Singh, A., Fettke, J. and Apriyanto, A. (2023). Customizing starch properties: A review of starch modifications and their applications. Polymers, 15(16): 15163491.

23.   Nawaz, H., Waheed, R., Nawaz, M. and Shahwar, D. (2020). Physical and chemical modifications in starch structure and reactivity. Chemical properties of starch. Intechopen Publisher.

24.   Souto-Maior, J. F. A., Reis, A. V., Pedreiro, L. N. and Cavalcanti, O. A. (2010). Phosphated crosslinked pectin as a potential excipient for specific drug delivery: Preparation and physicochemical characterization. Polymer International, 59(1): 127-135.

25.   Majzoobi, M., Hedayati, S., Habibi, M., Ghiasi, F. and Farahnaky, A. (2014). Effects of corn resistant starch on the physicochemical properties of cake. Journal of Agricultural Science and Technology, 16(3): 569-576.

26.   Xie, Y., Zhang, B., Li, M. and Chen, H. (2019). Effects of cross-linking with sodium trimetaphosphate on structural and adsorptive properties of porous wheat starches. Food Chemistry, 289(3): 187-194.

27.   Guo, L., Liu, R., Li, X., Sun, Y. and Du, X. (2015). The physical and adsorption properties of different modified corn starches. Starch/Staerke, 67(34): 237-246.

28.   Sharma, V., Kaur, M., Singh, K. and Kumar, S. (2020). Effect of cross-linking on physicochemical, thermal, pasting, in vitro digestibility and film forming properties of Faba bean (Vicia faba L.) starch. International Journal of Biological Macromolecules, 159: 243-249.

29.   Prompiputtanapon, K., Sorndech, W. and Tongta, S. (2020). Surface modification of tapioca starch by using the chemical and enzymatic method. Starch - Stärke, 72(3-4): 1900133.

30.   Ding, L., Huang, Q., Xiang, W., Fu, X., Zhang, B. and Wu, J. Y. (2022). Chemical cross-linking reduces in vitro starch digestibility of cooked potato parenchyma cells. Food Hydrocolloids, 124: 107297.

31.   Roman, L., Reguilon, M. P., Martinez, M. M. and Gomez, M. (2020). The effects of starch cross-linking, stabilization and pre-gelatinization at reducing gluten-free bread staling. LWT - Food Science and Technology, 132(7): 109908.

32.   Rao, J. S. and Parimalavalli, R. (2019). Effect of cross-linking on structural, chemical and functional properties of corn starch. International Journal of Food Science and Nutrition, 4(3): 135-140.

33.   Sukarminah, E., Wulandari, E., Lanti, I. and Andrasyifa, D. (2019). Physicochemical characteristics of cross-link modified sorghum flour in Bandung local cultivars. Scientific Papers Series-Management, Economic Engineering in Agriculture and Rural Development, 19(3): 569-575.

34.   Liu, X., Lan, C., Al, A., Yu, L. and Zhou, S. (2016). Preparation of cross-linked high amylose corn-starch and its effects on self-reinforced starch films. International Journal of Food Engineering, 12(7): 673-680.

35.   Shen, Y., Zhang, N., Xu, Y., Huang, J., Wu, D. and Shu, X. (2019). Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. International Journal of Biological Macromolecules, 128: 775-781.

36.   Yolmeh, M. and Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10(3): 413-433.

37.   Bambang Widjanarko, S., Ulandari, D. and Fibrianto, K. (2023). Response surface methodology in the optimization of walur (Amorphophallus paeoniifolius var. Sylvestris) starch pregelatinization process. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering, 6(1): 62-71.

38.   Ulfa, G. M., Putri, W. D. R., Fibrianto, K. and Widjanarko, S. B. (2021). Optimization studies on pre-gelatinized sweet potato starch influenced by temperature and time. Food Research, 5: 25-30.

39.   Zainal Abiddin, N. F., Yusoff, A. and Ahmad, N. (2015). Optimisation of reaction conditions of octenyl succinic anhydride (OSA) modified sago starch using response surface methodology (RSM). International Food Research Journal, 22(3): 930-935.

40.   Kahraman, K., Koksel, H. and Ng, P. K. W. (2015). Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content. Food Chemistry, 174: 173-179.

41.     Ayo-Omogie, H. N., Adeyemi, I. A. and Otunola, E. T. (2010). Effect of ripening on some physicochemical properties of cooking banana (Musa ABB Cardaba) pulp and flour. International Journal of Food Science and Technology, 45(12): 2605-2611.

42.   Agama-Acevedo, E., Nunez-Santiago, M. C., Alvarez-Ramirez, J. and Bello-Pérez, L. A. (2015). Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars. Carbohydrate Polymers, 124: 17-24.

43.   Park, E. Y., Ma, J. G., Kim, J., Lee, D. H., Kim, S. Y., Kwon, D. J. and Kim, J. Y. (2018). Effect of dual modification of HMT and crosslinking on physicochemical properties and digestibility of waxy maize starch. Food Hydrocolloids, 75: 33-40.

44.   Kaur, L., Singh, N. and Singh, J. (2004). Factors influencing the properties of hydroxypropylated potato starches. Carbohydrate Polymers, 55(2): 211-223.

45.   Mirmoghtadaie, L., Kadivar, M. and Shahedi, M. (2009). Effects of cross-linking and acetylation on oat starch properties. Food Chemistry, 116(3): 709-713.

46.   Kittipongpatana, O. S. and Kittipongpatana, N. (2011). Preparation and physicochemical properties of modified jackfruit starches. LWT - Food Science and Technology, 44(8): 1766-1773.

47.   Almonaityte, K., Cizauskaite, G., Bendoraitiene, J. and Peciulyte, L. (2021). Peculiarities of cross-linking degree determination for the starches of different botanical origin. Starch - Stärke, 2100041: 1-10.

48.   Mulualem, Y., Belete, A. and Gebre-Mariam, T. (2019). Preparation and evaluation of dual modified Ethiopian yam (Dioscorea abyssinica) starch for sustained release tablet formulations. Ethiopian Pharmaceutical Journal, 34(1): 37-50.

49.   Sudheesh, C., Sunooj, K. V., Alom, M., Kumar, S., Sajeevkumar, V. A. and George, J. (2020). Effect of dual modification with annealing, heat moisture treatment and cross-linking on the physico-chemical, rheological and in vitro digestibility of underutilised kithul (Caryota urens) starch. Journal of Food Measurement and Characterization, 14(3): 1557-1567.

50.   Malik, M. K., Kumar, V., Sharma, P. P., Singh, J., Fuloria, S., Subrimanyam, V., Fuloria, N. K. and Kumar, P. (2022). Improvement in digestion resistibility of mandua starch (Eleusine coracana) after cross-linking with epichlorohydrin. ACS Omega, 7(31): 27334-27346.

51.   Jarpa-Parra, M., Bamdad, F., Wang, Y., Tian, Z., Temelli, F., Han, J. and Chen, L. (2014). Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality, LWT - Food Science and Technology, 57(2): 461-469.

52.   Aziz, N. and Arof, A. K. (2016). A model to investigate extraction parameters for anthocyanin from melastoma malabathricum. Optical and Quantum Electronics, 48(3): 7.

53.   Manmai, N., Balakrishnan, D., Obey, G., Ito, N., Ramaraj, R., Unpaprom, Y. and Velu, G. (2022). Alkali pretreatment method of dairy wastewater based grown Arthrospira platensis for enzymatic degradation and bioethanol production. Fuel, 330: 125534.

54.   Lv, C., Jia, X., Li, M., Yang, J. and Zhao, G. (2011). Optimization of extraction process of crude protein from grape seeds by RSM. Food Science and Technology Research, 17(5): 437-445.

55.   Firatligil-Durmus, E. and Evranuz, O. (2010). Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT, 43(2): 226-231.

56.   Chen, M., Zhao, Y. and Yu, S. (2015). Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chemistry, 172: 543-550.

57.   Shrivastava, A., Tripathi, A. D., Paul, V. and Rai, D. C. (2021). Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. LWT - Food Science and Technology, 151: 112091.

58.   Parmar, I., Sharma, S. and Rupasinghe, H. P. V. (2015). Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology. Journal of Food Science and Technology, 52(4): 2202-2210.

59.   Roselló-Soto, E., Galanakis, C. M., Brnčić, M., Orlien, V., Trujillo, F. J., Mawson, R., Knoerzer, K., Tiwari, B. K. and Barba, F. J. (2015). Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends in Food Science and Technology, 42(2): 134-149.

60.   Suseno, S. H., Jacoeb, A. M., Nugraha, R. and Salia. (2021). Bleaching optimization of tuna (Thunnus sp.) oil using response surface methodology. Food Research, 5(6): 92-103.

61.   Zheng, B., Yuan, Y., Xiang, J., Jin, W., Johnson, J. B., Li, Z., Wang, C. and Luo, D. (2022). Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison and bioactivities. LWT - Food Science and Technology, 154: 112740.

62.   Das, M., Rajan, N., Biswas, P. and Banerjee, R. (2022). A novel approach for resistant starch production from green banana flour using amylopullulanase. LWT - Food Science and Technology, 153(8): 112391.

63.   Zhang, Y., You, X., Hong, Y., Pu, A., Li, Z. and Li, M. (2014). Investigation of characterization and digestion of banana flour and banana starch. Food and Machinery, 30: 50-53.

64.   Surendra Babu, A. and Parimalavalli, R. (2014). Effect of starch isolation method on properties of sweet potato starch. Food Technology, 38(1): 48-63.

65.   Kou, T. and Gao, Q. (2018). New insight in crosslinking degree determination for crosslinked starch. Carbohydrate Research, 458-459: 13-18.

66.   Reddy, C. K., Suriya, M., Vidya, P. V. and Haripriya, S. (2017). Synthesis and physicochemical characterization of modified starches from banana (Musa AAB) and its biological activities in diabetic rats. International Journal of Biological Macromolecules, 94: 500-507.

67.   Oh, S. M., Kim, H. yun, Bae, J. E., Ye, S. J., Kim, B. Y., Choi, H. D., Choi, H. W. and Baik, M. Y. (2019). Physicochemical and retrogradation properties of modified chestnut starches. Food Science and Biotechnology, 28(6): 1723-1731.

68.   Carmona-Garcia, R., Sanchez-Rivera, M. M., Méndez-Montealvo, G., Garza-Montoya, B. and Bello-Pérez, L. A. (2009). Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydrate Polymers, 76(1): 117-122.

69.   Siroha, A. K. and Sandhu, K. S. (2018). Physicochemical, rheological, morphological, and in vitro digestibility properties of cross-linked starch from pearl millet cultivars. International Journal of Food Properties, 21(1): 1371-1385.