Malaysian Journal of Analytical
Sciences, Vol 28
No 1 (2024): 127 - 140
RESPONSE SURFACE
METHODOLOGY FOR OPTIMISING CROSS-LINKING CONDITIONS OF UNRIPE BANANA (Musa balbisiana VAR. Abu) STARCH
(Kaedah Tindak Balas Permukaan
untuk Pengoptimuman Keadaan Penghubung Silang Kanji Pisang Belum Masak (Musa balbisiana Var. Abu))
Nurul Nor Izzuani Nor Sham1*, Anida Yusoff1,
Noorlaila Ahmad1, and Siti Roha Ab Mutalib1,2
1School of
Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
2Malaysia
Institute of Transport, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
*Corresponding
author: izzuaninorsham@gmail.com
Received: 5 September 2023; Accepted:
10 January 2024; Published: 28 February
2024
Abstract
Starch
is the most abundant organic compound found in nature after cellulose. However,
native starch has undesirable properties which could limit its application in
food industries. Therefore, starch modification is necessary to enhance its
positive attributes and to eliminate
the limitations of its specific
application in food manufacturing. This study aims to optimize the conditions of the cross-linking of unripe banana
(Musa balbisiana var. Abu) starch
using response surface methodology (RSM). The optimization was conducted using
the central composite design (CCD) approach. The extracted unripe banana (Musa balbisiana var. Abu) starch was
cross-linked with sodium trimetaphosphate (STMP) and
sodium tripolyphosphate (STPP) mixture as the cross-linking agent. The two
independent variables selected were temperature (40.0- 60.0 ℃) and pH
(9.00-11.00). The maximum degree of cross-linking was obtained at the following
optimum conditions: temperature 50.57 ℃ and pH 9.52. The degree of cross-linking obtained at
the optimum conditions of RSM was verified, and the value obtained was 81.73%. There was no significant difference (p-value >0.05) between the predicted and verified degree of cross-linking values. Thus, it
indicated that the predicted optimum condition by RSM can be accepted. These
outcomes of this study are very important as they would assist the food
industries in developing and designing the process of optimal cross-linking of
starch from unripe bananas, which can be used in the future.
Keywords: response surface methodology, unripe banana, banana
starch, starch modification, cross-linking
Abstrak
Kanji adalah sebatian organik yang
paling banyak ditemui dalam alam semula jadi selepas selulosa. Walau
bagaimanapun, kanji semula jadi yang belum diproses mempunyai sifat yang tidak
diingini yang boleh mengehadkan penggunaannya dalam industri makanan.
Oleh itu, pengubahsuaian kanji adalah perlu untuk meningkatkan kebaikan justeru dapat menghapuskan had penggunaan khususnya dalam pembuatan
makanan. Matlamat kajian
ini adalah untuk mengoptimumkan keadaan
ikatan silang kanji pisang
belum masak (Musa balbisiana var. Abu) menggunakan kaedah tindak balas permukaan (RSM).
Pengoptimuman telah dijalankan dengan pendekatan reka bentuk komposit
pusat (CCD). Kanji pisang belum masak (Musa
balbisiana var. Abu) yang diekstrak telah diikat silang dengan campuran
natrium trimetafosfat (STMP) dan natrium tripolifosfat (STPP) sebagai agen penghubung silang.
Dua pembolehubah bebas
yang dipilih ialah suhu (40.0-60.0 ℃) dan pH (9.00-11.00). Darjah maksimum penghubung silang diperoleh pada keadaan optimum
berikut: suhu 50.57 ℃ dan pH 9.52. Darjah silang yang diperoleh pada
keadaan optimum RSM telah disahkan dan nilai yang diperoleh ialah 81.73%. Tidak
terdapat perbezaan yang signifikan (nilai p >0.05) antara tahap
ramalan dan disahkan nilai silang silang, oleh itu ia menunjukkan bahawa
keadaan optimum yang diramalkan oleh RSM boleh diterima. Hasil kajian ini adalah sangat
penting kerana ia akan membantu
industri makanan untuk membangunkan dan mereka bentuk
proses pengikatan silang
kanji yang optimum
daripada pisang yang belum
masak, yang boleh digunakan pada masa hadapan.
Kata kunci: kaedah tindak
balas permukaan, pisang belum masak, kanji pisang, pengubahsuaian kanji, penghubung
silang
References
1. Alcázar-alay,
S. C. and Meireles, M. A. A. (2015). Physicochemical properties, modifications
and applications of starches from different botanical sources. Food Science
and Technology, 35(2):
215-236.
2. Abbas, K. A.,
Khalil, S. K. and Hussin, A. S. M. (2010). Modified starches and their usage in
selected food products: A review study. Journal of Agricultural Science,
2(2): 90-100.
3. Gao, F., Li,
D., Bi, C. H., Mao, Z. H. and Adhikari, B. (2014). Preparation and
characterization of starch crosslinked with sodium trimetaphosphate and
hydrolyzed by enzymes. Carbohydrate Polymers, 103(1): 310-318.
4. Punia, S.,
Dhull, S. B., Kunner, P. and Rohilla, S. (2020). Effect of γ-radiation on
physico-chemical, morphological and thermal characteristics of lotus seed (Nelumbo nucifera) starch. International
Journal of Biological Macromolecules, 157: 584-590.
5. Sandhan, S.,
Thombre, N. and Sagar Aher. (2017). Isolation and evaluation of starch from Musa Paradisiaca Linn. as a binder in
tablet. International Journal of Pharmaceutical Sciences and Research, 8(8): 3484-3491.
6. Wang, J. S.,
Wang, A. B., Ma, W. H., Xu, B. Y., Zang, X. P., Tan, L., Jin, Z. Q. and Li, J.
Y. (2019). Comparison of physicochemical properties and in vitro digestibility
of starches from seven banana cultivars in China. International Journal of
Biological Macromolecules, 121:
279-284.
7. Fida, R.,
Pramafisi, G. and Cahyana, Y. (2020). Application of banana starch and banana
flour in various food product: A review. International Conference on Food
and Bio-Industry 2019: 443.
8. Pelissari, F.
M., Andrade-Mahecha, M. M., Sobral, P. J. D. A. and Menegalli, F. C. (2012).
Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch/Staerke,
64(5): 382-391.
9. Sultan, S. and Rangaraju, V. (2014).
Changes in colour value of banana var. Grand Naine during ripening. Bioscience
Trends, 7(9): 726-728.
10. Mattsson, L., Williams, H., and
Berghel, J. (2018). Waste of fresh fruit and vegetables at retailers in Sweden
Measuring and calculation of mass, economic cost and climate impact. Resources,
Conservation Recycling, 130: 118-126.
11. Karim, R. S.
M., Rahmatullah, N., Nordin, M. F. M. and Rajin, S. M. A. K. (2018). Effect of
stage of maturity and frying time on the quality of banana springs. Pertanika
Journal of Tropical Agricultural Science, 41(3): 1097-1110.
12. Zhang, P.,
Whistler, R. L., N. BeMiller, J. and Hamaker, B. R. (2005). Banana starch:
production, physicochemical properties, and digestibility- a review. Carbohydrate
Polymers, 59: 443-458.
13. Pacheco-Delahaye,
E., Maldonado, R., Pérez, E. and Schroeder, M. (2008). Production and
characterization of unripe plantain (Musa
paradisiaca L.) flours. Interciencia, 33(4): 290-296.
14. Santana, A.
L. and Meireles, M. A. A. (2014). New starches are the trend for industry
apllications: A review. Food and Public Health, 4(5): 229-241.
15. Zabala, C. C.
V. (2020). An overview on starch structure and chemical nature. In Starch-based
Nanomaterials (1st edition). Springer, Cham: pp. 3-9.
16. Singla, D.,
Singh, A., Dhull, S. B., Kumar, P., Malik, T. and Kumar, P. (2020). Isolation,
morphology, modification and novel applications concern - A review. International
Journal of Biological Macromolecules, 163: 1283-1290.
17.
Waliszewski, K. N., Aparicio, M. A., Bello, L. A. and
Monroy, J. A. (2003). Changes of banana starch by chemical and physical
modification. Carbohydrate Polymers, 52: 237-242.
18. Alimi, B. A.,
Workneh, T. S. and Sibomana, M. S. (2016). Effect of hydrothermal modifications
on functional, pasting and structural properties of false banana (Ensete ventricosum) starch. Food
Biophysics, 11(3): 248-256.
19. Punia, S.
(2020). Barley starch modifications: Physical, chemical and enzymatic - A
review. International Journal of Biological Macromolecules, 144: 578-585.
20. Korkut, A.
and Kahraman, K. (2021). Production of cross-linked resistant starch from
tapioca starch and effect of reaction conditions on the functional properties,
morphology, X‑ray pattern, FT-IR spectra and digestibility. Journal of
Food Measurement and Characterization, 15(2): 1693-1702..
21. Babu, A. S.,
Naik, G. N. M., James, J., Aboobacker, A. B., Eldhose, A. and Mohan, R. J.
(2018). A comparative study on dual modification of banana (Musa paradisiaca) starch by microwave
irradiation and cross-linking. Journal of Food Measurement and
Characterization, 12(3):
2209-2217.
22. Compart, J., Singh, A., Fettke, J.
and Apriyanto, A. (2023). Customizing starch properties: A review of starch
modifications and their applications. Polymers, 15(16): 15163491.
23. Nawaz, H., Waheed, R., Nawaz, M. and
Shahwar, D. (2020). Physical and chemical modifications in starch structure and
reactivity. Chemical properties of starch. Intechopen Publisher.
24. Souto-Maior,
J. F. A., Reis, A. V., Pedreiro, L. N. and Cavalcanti, O. A. (2010). Phosphated
crosslinked pectin as a potential excipient for specific drug delivery:
Preparation and physicochemical characterization. Polymer International,
59(1): 127-135.
25. Majzoobi, M.,
Hedayati, S., Habibi, M., Ghiasi, F. and Farahnaky, A. (2014). Effects of corn
resistant starch on the physicochemical properties of cake. Journal of
Agricultural Science and Technology, 16(3):
569-576.
26. Xie, Y.,
Zhang, B., Li, M. and Chen, H. (2019). Effects of cross-linking with sodium
trimetaphosphate on structural and adsorptive properties of porous wheat
starches. Food Chemistry, 289(3): 187-194.
27. Guo, L., Liu,
R., Li, X., Sun, Y. and Du, X. (2015). The physical and adsorption properties
of different modified corn starches. Starch/Staerke, 67(34): 237-246.
28. Sharma, V.,
Kaur, M., Singh, K. and Kumar, S. (2020). Effect of cross-linking on
physicochemical, thermal, pasting, in vitro digestibility and film forming
properties of Faba bean (Vicia faba L.)
starch. International Journal of Biological Macromolecules, 159: 243-249.
29. Prompiputtanapon,
K., Sorndech, W. and Tongta, S. (2020). Surface modification of tapioca starch
by using the chemical and enzymatic method. Starch - Stärke, 72(3-4): 1900133.
30.
Ding, L., Huang, Q., Xiang, W., Fu, X., Zhang, B. and
Wu, J. Y. (2022). Chemical cross-linking reduces in vitro starch digestibility
of cooked potato parenchyma cells. Food Hydrocolloids, 124: 107297.
31. Roman, L.,
Reguilon, M. P., Martinez, M. M. and Gomez, M. (2020). The effects of starch
cross-linking, stabilization and pre-gelatinization at reducing gluten-free
bread staling. LWT - Food Science and Technology, 132(7): 109908.
32. Rao, J. S.
and Parimalavalli, R. (2019). Effect of cross-linking on structural, chemical
and functional properties of corn starch. International Journal of Food
Science and Nutrition, 4(3):
135-140.
33. Sukarminah,
E., Wulandari, E., Lanti, I. and Andrasyifa, D. (2019). Physicochemical
characteristics of cross-link modified sorghum flour in Bandung local
cultivars. Scientific Papers Series-Management, Economic Engineering in
Agriculture and Rural Development, 19(3):
569-575.
34. Liu, X., Lan,
C., Al, A., Yu, L. and Zhou, S. (2016). Preparation of cross-linked high
amylose corn-starch and its effects on self-reinforced starch films. International
Journal of Food Engineering, 12(7):
673-680.
35. Shen, Y.,
Zhang, N., Xu, Y., Huang, J., Wu, D. and Shu, X. (2019). Physicochemical
properties of hydroxypropylated and cross-linked rice starches differential in
amylose content. International Journal of Biological Macromolecules, 128: 775-781.
36. Yolmeh, M.
and Jafari, S. M. (2017). Applications of response surface methodology in the
food industry processes. Food and Bioprocess Technology, 10(3): 413-433.
37. Bambang Widjanarko, S., Ulandari, D.
and Fibrianto, K. (2023). Response surface methodology in the optimization of
walur (Amorphophallus paeoniifolius
var. Sylvestris) starch pregelatinization process. Advances in Food Science,
Sustainable Agriculture and Agroindustrial
Engineering, 6(1): 62-71.
38. Ulfa, G. M., Putri, W. D. R.,
Fibrianto, K. and Widjanarko, S. B. (2021). Optimization studies on
pre-gelatinized sweet potato starch influenced by temperature and time. Food
Research, 5: 25-30.
39. Zainal Abiddin, N. F., Yusoff, A. and
Ahmad, N. (2015). Optimisation of reaction conditions of octenyl succinic
anhydride (OSA) modified sago starch using response surface methodology (RSM). International
Food Research Journal, 22(3): 930-935.
40. Kahraman, K., Koksel, H. and Ng, P.
K. W. (2015). Optimisation of the reaction conditions for the production of
cross-linked starch with high resistant starch content. Food Chemistry, 174:
173-179.
41. Ayo-Omogie,
H. N., Adeyemi, I. A. and Otunola, E. T. (2010). Effect of ripening on some
physicochemical properties of cooking banana (Musa ABB Cardaba) pulp and flour. International Journal of Food
Science and Technology, 45(12):
2605-2611.
42. Agama-Acevedo,
E., Nunez-Santiago, M. C., Alvarez-Ramirez, J. and Bello-Pérez, L. A. (2015).
Physicochemical, digestibility and structural characteristics of starch
isolated from banana cultivars. Carbohydrate Polymers, 124: 17-24.
43. Park, E. Y.,
Ma, J. G., Kim, J., Lee, D. H., Kim, S. Y., Kwon, D. J. and Kim, J. Y. (2018).
Effect of dual modification of HMT and crosslinking on physicochemical
properties and digestibility of waxy maize starch. Food Hydrocolloids, 75: 33-40.
44. Kaur, L.,
Singh, N. and Singh, J. (2004). Factors influencing the properties of
hydroxypropylated potato starches. Carbohydrate Polymers, 55(2): 211-223.
45. Mirmoghtadaie,
L., Kadivar, M. and Shahedi, M. (2009). Effects of cross-linking and
acetylation on oat starch properties. Food Chemistry, 116(3): 709-713.
46. Kittipongpatana,
O. S. and Kittipongpatana, N. (2011). Preparation and physicochemical
properties of modified jackfruit starches. LWT - Food Science and Technology,
44(8): 1766-1773.
47. Almonaityte,
K., Cizauskaite, G., Bendoraitiene, J. and Peciulyte, L. (2021). Peculiarities
of cross-linking degree determination for the starches of different botanical
origin. Starch - Stärke, 2100041:
1-10.
48.
Mulualem, Y., Belete, A. and Gebre-Mariam, T. (2019).
Preparation and evaluation of dual modified Ethiopian yam (Dioscorea
abyssinica) starch for sustained release tablet formulations. Ethiopian
Pharmaceutical Journal, 34(1):
37-50.
49.
Sudheesh, C., Sunooj, K. V., Alom, M., Kumar, S.,
Sajeevkumar, V. A. and George, J. (2020). Effect of dual modification with
annealing, heat moisture treatment and cross-linking on the physico-chemical,
rheological and in vitro digestibility of underutilised kithul (Caryota urens) starch. Journal of
Food Measurement and Characterization, 14(3): 1557-1567.
50.
Malik, M. K., Kumar, V., Sharma, P.
P., Singh, J., Fuloria, S., Subrimanyam, V., Fuloria, N. K. and Kumar, P.
(2022). Improvement in digestion resistibility of mandua starch (Eleusine coracana) after cross-linking
with epichlorohydrin. ACS Omega, 7(31): 27334-27346.
51.
Jarpa-Parra, M., Bamdad, F., Wang,
Y., Tian, Z., Temelli, F., Han, J. and Chen, L. (2014). Optimization of lentil
protein extraction and the influence of process pH on protein structure and
functionality, LWT - Food Science and Technology, 57(2): 461-469.
52. Aziz, N. and
Arof, A. K. (2016). A model to investigate extraction parameters for
anthocyanin from melastoma malabathricum. Optical and Quantum Electronics,
48(3): 7.
53. Manmai, N.,
Balakrishnan, D., Obey, G., Ito, N., Ramaraj, R., Unpaprom, Y. and Velu, G.
(2022). Alkali pretreatment method of dairy wastewater based grown Arthrospira
platensis for enzymatic degradation and bioethanol production. Fuel, 330: 125534.
54. Lv, C., Jia,
X., Li, M., Yang, J. and Zhao, G. (2011). Optimization of extraction process of
crude protein from grape seeds by RSM. Food Science and Technology Research,
17(5): 437-445.
55. Firatligil-Durmus,
E. and Evranuz, O. (2010). Response surface methodology for protein extraction
optimization of red pepper seed (Capsicum
frutescens). LWT, 43(2):
226-231.
56. Chen, M.,
Zhao, Y. and Yu, S. (2015). Optimisation of ultrasonic-assisted extraction of
phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food
Chemistry, 172: 543-550.
57. Shrivastava,
A., Tripathi, A. D., Paul, V. and Rai, D. C. (2021). Optimization of spray
drying parameters for custard apple (Annona
squamosa L.) pulp powder development using response surface methodology
(RSM) with improved physicochemical attributes and phytonutrients. LWT -
Food Science and Technology, 151:
112091.
58.
Parmar, I., Sharma, S. and Rupasinghe, H. P. V. (2015).
Optimization of β-cyclodextrin-based flavonol extraction from apple pomace
using response surface methodology. Journal of Food Science and Technology,
52(4): 2202-2210.
59. Roselló-Soto,
E., Galanakis, C. M., Brnčić, M., Orlien, V., Trujillo, F. J.,
Mawson, R., Knoerzer, K., Tiwari, B. K. and Barba, F. J. (2015). Clean recovery
of antioxidant compounds from plant foods, by-products and algae assisted by
ultrasounds processing. Modeling approaches to optimize processing conditions. Trends
in Food Science and Technology, 42(2):
134-149.
60. Suseno, S.
H., Jacoeb, A. M., Nugraha, R. and Salia. (2021). Bleaching optimization of
tuna (Thunnus sp.) oil using response
surface methodology. Food Research, 5(6): 92-103.
61. Zheng, B.,
Yuan, Y., Xiang, J., Jin, W., Johnson, J. B., Li, Z., Wang, C. and Luo, D.
(2022). Green extraction of phenolic compounds from foxtail millet bran by
ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison
and bioactivities. LWT - Food Science and Technology, 154: 112740.
62. Das, M.,
Rajan, N., Biswas, P. and Banerjee, R. (2022). A novel approach for resistant
starch production from green banana flour using amylopullulanase. LWT - Food
Science and Technology, 153(8):
112391.
63. Zhang, Y.,
You, X., Hong, Y., Pu, A., Li, Z. and Li, M. (2014). Investigation of
characterization and digestion of banana flour and banana starch. Food and
Machinery, 30: 50-53.
64. Surendra Babu,
A. and Parimalavalli, R. (2014). Effect of starch isolation method on
properties of sweet potato starch. Food Technology, 38(1): 48-63.
65. Kou, T. and
Gao, Q. (2018). New insight in crosslinking degree determination for
crosslinked starch. Carbohydrate Research, 458-459: 13-18.
66. Reddy, C. K.,
Suriya, M., Vidya, P. V. and Haripriya, S. (2017). Synthesis and
physicochemical characterization of modified starches from banana (Musa AAB) and its biological activities
in diabetic rats. International Journal of Biological Macromolecules, 94: 500-507.
67. Oh, S. M.,
Kim, H. yun, Bae, J. E., Ye, S. J., Kim, B. Y., Choi, H. D., Choi, H. W. and
Baik, M. Y. (2019). Physicochemical and retrogradation properties of modified
chestnut starches. Food Science and Biotechnology, 28(6): 1723-1731.
68. Carmona-Garcia,
R., Sanchez-Rivera, M. M., Méndez-Montealvo, G., Garza-Montoya, B. and
Bello-Pérez, L. A. (2009). Effect of the cross-linked reagent type on some
morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydrate
Polymers, 76(1): 117-122.
69. Siroha, A. K.
and Sandhu, K. S. (2018). Physicochemical, rheological, morphological, and in
vitro digestibility properties of cross-linked starch from pearl millet
cultivars. International Journal of Food Properties, 21(1): 1371-1385.