Malaysian Journal of Analytical
Sciences, Vol 28
No 1 (2024): 106 - 115
SIZE AND
ORGAN-SPECIFIC HEAVY METAL ACCUMULATION PATTERNS IN LONGTAIL TUNA (Thunnus tonggol) FROM TERENGGANU
(Saiz dan Organ-Khusus
Corak Pengumpulan Logam
Berat dalam Ikan Aya Hitam
(Thunnus tonggol) dari Terengganu)
Norhazirah Abd Aziz1,
Adiana Ghazali1,2, Sim Siong Fong3, Nurul Izzah Ahmad4,
and Ong Meng Chuan1,2,5*
1Faculty of Science and
Marine Environment, Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia
2Ocean Pollution and
Ecotoxicology (OPEC) Research Group, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
3Faculty of Resource
Science and Technology, Universiti Malaysia Sarawak,
94300 Kota Samarahan, Sarawak, Malaysia
4Environmental Health
Research Centre (EHRC), Institute for Medical Research, Setia Alam, Malaysia
5Institute of
Oceanography and Environment, Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: ong@umt.edu.my
Received: 15 September 2023;
Accepted: 10 December 2023; Published: 28
February 2024
Abstract
Longtail tuna, Thunnus tonggol, belongs to the Scrombidae family
and is commonly served in special Terengganu
delicacies, such as in Nasi Dagang gravy. Primarily, the predator fish is found in
shallow waters. The Terengganu state is located on the east coast of Peninsular
Malaysia, where the oil and gas industry is a primary
economic bolster. The rapid urbanisation, large-scale developments, and tourist
attraction in the area might contribute to the heavy metal pollution in
Terengganu waters. The present study was conducted to determine the
concentration of six heavy metals, such as copper (Cu), zinc (Zn),
cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)
in longtail tuna muscle, gills, liver, and stomach, by employing
inductively coupled plasma-mass spectrometry (ICP-MS).
The highest concentration of Cu, Cd, and Pb was recorded in the liver. The
muscle samples revealed the highest As and Hg concentrations, while the gills
documented the maximum Zn concentration. The results also revealed that the
heavy metals possessed a significant positive relationship with the tuna size (p <0.05). For instance, Hg
demonstrated a strong positive association with fish size, recording a 0.577 r-value.
Conversely, the longtail tuna samples indicated apparent growth dilution
effects for Cu and Pb, proved by the negative correlations between their
concentrations and the fish length. This study successfully outlined
comprehensive approaches to better understand the controlling factors,
including fish size and targeted organs in determining the concentration of
heavy metals in longtail tuna.
Keywords: heavy metal, inductively coupled plasma-mass
spectrometry, pollution, South China Sea, Thunnus tonggol
Abstrak
Ikan Aya hitam, Thunnus tonggol,
dikategorikan dalam keluarga Scrombidae dan lazimnya dihidangkan sebagai hidangan istimewa di Terengganu seperti dalam kuah
Nasi Dagang. Lazimnya, spesis pemangsa ini dijumpai di kawasan air cetek. Terengganu terletak di Pantai Timur Semenanjung
Malaysia yang mana industri minyak
dan gas merupakan penyumbang
ekonomi utama. Pembandaran yang pesat, pembangunan berskala besar, dan tarikan pelancongan di negeri tersebut mungkin menjadi antara punca pencemaran
logam berat dalam perairan Terengganu. Kajian
ini dijalankan untuk menentukan kepekatan enam logam berat; kuprum
(Cu), zink (Zn), kadmium
(Cd), plumbum (Pb), arsenik
(As) dan merkuri (Hg) di dalam
isi, insang, hati, dan perut ikan Aya hitam menggunakan ICP-MS.
Keputusan menujukkan bahawa
kepekatan Cu, Cd dan Pb paling tinggi
dicatatkan di dalam hati. Isi ikan merekodkan kepekatan As dan Hg paling tinggi, manakala insang mencatatkan kepekatan Zn yang paling tinggi.
Keputusan kajian ini juga menunjukkan bahawa semua logam berat
mempunyai hubungan positif yang ketara dengan saiz ikan Aya hitam (p
<0.05). Contohnya, Hg mempunyai
hubungan positif yang kukuh dengan saiz
ikan dengan nilai r ialah 0.577.
Sebaliknya, ikan Aya hitam menunjukkan kesan pencairan pertumbuhan untuk Cu dan Pb dengan hubungan negatif antara kepekatan logam berat dengan
saiz ikan. Kajian ini telah Berjaya menunjukkan pendekatan menyeluruh dan kefahaman yang lebih mendalam terhadap faktor-faktor yang mempengaruhi kepekatan logam berat di dalam ikan Aya hitam, termasukalah saiz ikan dan organ sasaran.
Kata kunci: logam berat, spektroskopi jisim- plasma gadingan aruhan, pencemaran, laut China Selatan, Thunnus
tonggol
References
1. Briffa,
J., Sinagra, E. and Blundell, R. (2020). Heavy metal pollution in the
environment and their toxicological effects on human. Heliyon, 6: e04691
2. Ofukany,
A. F., Wassenaar, L. I., Bond, A. L. and Hobson, K. A. (2014). Defining fish
community structure in Lake Winnipeg using stable isotopes (ծ13C, ծ15N,
ծ34S): Implications for monitoring ecological responses and
trophodynamics of mercury and other trace elements. Science of the Total Environment, 497: 239-249.
3. Ali,
H. and Khan, E. (2019). Environmental chemistry and ecotoxicology of hazardous
heavy metals: Environmental persistence, toxicity and
bioaccumulation. Journal of Chemistry,
2019: 6730305.
4. Annabi,
A., Said, K. and Messoudi, I. (2013). Cadmium:
bioaccumulation, histopathology and detoxifying
mechanism in fish. American Journal of
Research Communication.,1: 60-79.
5. Norhazirah,
A. A., Adiana, G., Yunus, K. B., Annual, Z. F., Ahmad, A. and Ong, M. C.
(2020). Longtail tuna (Thunnus tonggol) consumption frequency in Terengganu, Malaysia.
Open Journal of Marine Science, 10:141-148.
6.
Irwandi, J and
Farida, O. (2009). Mineral and heavy metal contents of marine fin fish in
Langkawi Island, Malaysia. International Food Research Journal 16:
105-112.
7. Griffiths,
S. P. and Fry, G.C. (2010). Age and growth of longtail
tuna (Thunnus tonggol) in tropical and
temperate waters of the central Indo-Pacific. ICES Journal of Marine Science: Journal du Conseil 67(1): 125-134.
8. Bonanno,
G. and Bonaco, M.O. (2018). Perspectives on using
marine species as bio indicators of plastic pollution. Marine Pollution Bulletin, 137(2): 209-221.
9. Khristoforova,
N. K., Emelyanoz, A. A. and Efimov, A.V. (2018).
Bioindication of heavy metal pollution in the coastal marine water of Russky
Island (Peter the Great Bay, Sea of Japan). Russian
Journal of Marine Biology 44(7): 572-579.
10. Ong,
M. C., Kamaruzaman, M. I., Norhidayah, S. A. and
Joseph, B. (2016). Trace metal in highly commercial fishes caught along coastal
water of Setiu, Terengganu Malaysia. International
Journal of Applied Chemistry, 12(4): 773-784.
11. Ong,
M. C., Yong, J. C., Khoo, X. Y., Tan, Y. F. and Joseph, B. (2014). Selected
heavy metals and polycyclic aromatic hydrocarbon in commercial fishes caught
from UMT enclosed lagoon, Terengganu, Malaysia. Advances in Environmental
Biology 8(14): 91-98.
12. Ong,
M. C., Shazili, N. A. M., Menier, D. and Effendy,
A.W.M. (2013). Levels of trace elements in tissue of Ostrea edulis and Crassostrea
gigas from Quiberon Bay, Brittany, France. Journal of Fisheries and
Aquatic Science 8(2): 378-387.
13. Tengku
Nur Alia, T. K. A., Hing, L. S., Sim, S. F., Ahmad, A. and Ong, M.C. (2020).
Comparative study of raw and cooked farmed sea bass (Lates calcarifer)
in relation to metal content and its estimated human health risk. Marine
Pollution
Bulletin
153: 111009.
14. Ong,
M. C. and Gan, S. L. (2017). Assessment of metallic trace elements in the
muscles and fins of four landed elasmobranchs from Kuala Terengganu waters,
Malaysia. Marine Pollution Bulletin, 124(2):1001-1005.
15. Azmat,
R., Akhter, Y., Talat, R. and Uddin, F. (2006). Persistent of nematode parasite
in presence of heavy metals found in edible herbivores fishes of Arabian sea. Journal of. Biological Science, 6: 282-285.
16. Tchounwou,
P. B., Clement, G. Y., Anita, K. P. and Sutton, D. J. (2012). Heavy metal
toxicity and the environment. Molecular,
Clinical and Environmental Toxicology: 133-164.
17. Renieri,
E. A., Sfakianakis, D. G., Alegakis, A. A., Safenkova, I. V., Buha, A., Matovic, V., Tzardi, M., Dzantiev, B. B., Divanach, P., Kentouri, M. and Tsatsakis, A. M. (2017). Nonlinear responses to waterborne
cadmium exposure in zebrafish: an in vivo study. Environmental Research, 157: 173-181.
18. Rajkowska,
M. and Protasowicki, M. (2013). Distribution of
metals (Fe, Mn, Zn, Cu) in fish tissues in two lakes of different trophy in
Northwestern Poland. Environmental
Monitoring and Assessment, 185(4): 3493-3502.
19. Squadrone,
S., Prearo, M., Brizio, P., Gavinelli,
S., Pellegrino, M., Scanzio, T., Guarise,
S., Benedetto, A. and Abete, M. C. (2013). THMs distribution in muscle, liver, kidney and gill of European catfish (Silurus glarias) from Italian Rivers. Chemosphere, 90(2): 358-365.
20. Leaner,
J. J. and Mason, R.P. (2004). Methylmercury uptake and distribution kinetics in
sheepshead minnows, Cryprinodon variegatus, after exposure to CH3Hg-
spike food. Environmental Pollution, 266(1):115226.
21. Lucyna,
P. J. (2018). Distribution of organic and inorganic Hg in the tissues and
organs of fish from the southern Baltic Sea. Enviromental Science and Pollution Research 25: 451-460.
22. Al-Busaidi, M., Yesudhason, P., Al-Mughari, S., Al-Rahbi, W. A. K., Al-Harthy, K. S. and Al-Mazrooei, N. A. (2011). Toxic metals in commercial marine
fish in Oman with reference to national and international standards. Chemosphere, 85(1): 67-73.
23. Chirby,
M. A. (2016). Bioaccumulation of mercury (Hg) in the brain, muscle
and liver tissues of inshore pompano and offshore ambereck
from the Gulf of Mexico. Dessertation University of
Michigan.
24. El-Moselhy, K. H. M., Othman, A. I., Abd El-Azem, H. and
El-Metwally, M. E. A. (2014). Bioaccumulation of heavy metals in some tissues
of fish in the Red Sea, Egypt. Egyptian
Journal of Basic and Applied Sciences, 1: 97-105.
25. Villanueva,
R. and Bustamante, P. (2006). Composition in essential and non-essential
elements or early stages of cephalopods and dietary effects on the elemental
profile of Octopus vulgaris paralarvae.
Aquaculture, 261: 225-243.
26. Shesterin,
I. V. (2010). Water pollution and its impact on fish and aquatic invertebrates.
International Food, Agricultural and
Environment, 1: 1-6.
27. Joanna,
L., Paszczyk, B. and Marek, J. L. (2018). Fish as a
bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland and risk assessment for consumer’s
health. Ecotoxicology and Environmental
Safety, 153: 60-67.
28.
Ali, M. and Shakoori,
A. R. (2008). Heavy metal accumulation in the gills of an
endangered South Asian freshwater fish as an indicator of aquatic pollution. Pakistan Journal of Zoology, 40(6): 423-430.
29. Dural,
M., Goksu, M. Z. L., Ozak,
A. A. and Derici, B. (2006). Bioaccumulation of some
heavy metals in different tissues of Dicentrarchus labrax L. 1758, Sparus
aurata L. 1758 and Mugil cephalus L. 1758 from the Comlik lagoon of the eastern coast of Mediterranean
(Turkey). Environmental Monitoring and
Assessment, 118 (1-3): 65-74.
30. Yi,
Y. J. and Zhang, S. H. (2012). The relationship between fish heavy metal
concentration and fish size in the upper and middle reach of Yangtze River. Procedia Environmental Sciences, 13:
1699-1707.
31. Yi,
Y. J., Yang, Z. F. and Zhang, S. H. (2011). Ecological
risk assessment of heavy metals in sediment and human health risk assessment of
heavy metals in fishes in the middle and lower reaches of the Yangtze River
Basin. Environmental Pollution, 159:
2575-2585.
32. Farkas,
A., Salanki, J. and Specziar,
A. (2003). Age- and size-specific patterns of heavy metal in the organs of
freshwater fish Abramis brama L. populating a
low-contaminated site. Water Research, 37(5): 959-964.
33. Kumari,
S., Rahul, A., Neha, J., Mishra, D. and Singh, K. (2020). Recent developments
in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring and
Management, 13: 100283
34. Amiard,
J. C., Triquet, C. A., Barka, S., Pellerin, J. and
Rainbow, P. S. (2006). Metallothionenins
in aquatic invertebrates: Their role in metal detoxification and their use as
biomarkers. Aquatic Toxicology, 76:
160-202.
35. Rajeshkumar,
S. and Li., X. (2018). Bioaccumulation of heavy metals in fish species from the
Meiling Bay, Taihu Lake, China. Toxicology Reports, 5: 288-295.
36. FWC
(2021). How to measure fish. Florida Fish and Wildlife Conservation
Commission. Retrieved from
myfwc.com/fishing/freshwater/fishing-tips/measures. Accessed on 10th
January 2021.
37. Guo,
J.D. (2005). Assessment of heavy metal concentrations in several ocean
endangered fauna. Shadong University (in
Chinese)
38. Canli,
M. and Atli, G. (2003). The relationship between heavy metal (Cd, Cr, Cu, Fe,
Pb, Zn) levels and the size of six Mediterranean fish species. Environmental
Pollution, 121(1): 129-136.
39. De
Mora, S., Fowler, S.W., Wyge, E. and Azemard, S. (2004). Distribution
of heavy metal in marine bivalves, fish and coastal sediments in the Gulf and
Gulf of Oman. Marine Pollution Bulletin, 49: 410-424.
40. Douben
P. E. (1989). Lead and cadmium in stone loaeh (Noemacheilus barbatulus
L.) from three rivers in Derbyshire. Ecotoxicology
and Environmental
Safety, 1989; 18: 35-58.
41. Soedarini,
B., Klaver, L., Roessink, I. and Gestel,
C. A. M. V. (2012). Copper kinetics and internal distribution in the marbled
crayfish (Procambarus sp.) Chemosphere, 87(4): 333-33.
42. Kouba,
A, Kanta, J., Buric, M., Policar, T. and Kozak, P. (2010). The effect of water
temperature on the number of moults and growth of juvenile noble crayfish, Astacus astacus
(Linnaeus). Freshwater crayfish,
17:37-41.
43.
Has-Schon, E., Bogut, I., Vukovic, R., Galovic, D., Bogut, A. and Horvatic,.
(2015). Distribution and age-related bioaccumulation of lead (Pb), mercury
(Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus
glanis) from the Busko Blato
reservoir (Bosnia and Herzegovina). Chemosphere, 135: 289-296.
44. Balzani,
P., haubrock, P.J., Russo, F., Kaouba,
Masoni, A., Tricarico, E. and Haase, P. (2021). Combining metal and isotope
analyses to disentangle contaminant transfer in a freshwater community
dominated by alien species. Environmental
Pollution, 268: 115781.