Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 106 - 115

 

SIZE AND ORGAN-SPECIFIC HEAVY METAL ACCUMULATION PATTERNS IN LONGTAIL TUNA (Thunnus tonggol) FROM TERENGGANU

 

(Saiz dan Organ-Khusus Corak Pengumpulan Logam Berat dalam Ikan Aya Hitam

(Thunnus tonggol) dari Terengganu)

 

Norhazirah Abd Aziz1, Adiana Ghazali1,2, Sim Siong Fong3, Nurul Izzah Ahmad4, and Ong Meng Chuan1,2,5*

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

4Environmental Health Research Centre (EHRC), Institute for Medical Research, Setia Alam, Malaysia

5Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: ong@umt.edu.my

 

 

Received: 15 September 2023; Accepted: 10 December 2023; Published:  28 February 2024

 

Abstract

Longtail tuna, Thunnus tonggol, belongs to the Scrombidae family and is commonly served in special Terengganu delicacies, such as in Nasi Dagang gravy. Primarily, the predator fish is found in shallow waters. The Terengganu state is located on the east coast of Peninsular Malaysia, where the oil and gas industry is a primary economic bolster. The rapid urbanisation, large-scale developments, and tourist attraction in the area might contribute to the heavy metal pollution in Terengganu waters. The present study was conducted to determine the concentration of six heavy metals, such as copper (Cu), zinc (Zn), cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) in longtail tuna muscle, gills, liver, and stomach, by employing inductively coupled plasma-mass spectrometry (ICP-MS). The highest concentration of Cu, Cd, and Pb was recorded in the liver. The muscle samples revealed the highest As and Hg concentrations, while the gills documented the maximum Zn concentration. The results also revealed that the heavy metals possessed a significant positive relationship with the tuna size (p <0.05). For instance, Hg demonstrated a strong positive association with fish size, recording a 0.577 r-value. Conversely, the longtail tuna samples indicated apparent growth dilution effects for Cu and Pb, proved by the negative correlations between their concentrations and the fish length. This study successfully outlined comprehensive approaches to better understand the controlling factors, including fish size and targeted organs in determining the concentration of heavy metals in longtail tuna.

 

Keywords: heavy metal, inductively coupled plasma-mass spectrometry, pollution, South China Sea, Thunnus tonggol

 

Abstrak

Ikan Aya hitam, Thunnus tonggol, dikategorikan dalam keluarga Scrombidae dan lazimnya dihidangkan sebagai hidangan istimewa di Terengganu seperti dalam kuah Nasi Dagang. Lazimnya, spesis pemangsa ini dijumpai di kawasan air cetek. Terengganu terletak di Pantai Timur Semenanjung Malaysia yang mana industri minyak dan gas merupakan penyumbang ekonomi utama. Pembandaran yang pesat, pembangunan berskala besar, dan tarikan pelancongan di negeri tersebut mungkin menjadi antara punca pencemaran logam berat dalam perairan Terengganu. Kajian ini dijalankan untuk menentukan kepekatan enam logam berat; kuprum (Cu), zink (Zn), kadmium (Cd), plumbum (Pb), arsenik (As) dan merkuri (Hg) di dalam isi, insang, hati, dan perut ikan Aya hitam menggunakan ICP-MS. Keputusan menujukkan bahawa kepekatan Cu, Cd dan Pb paling tinggi dicatatkan di dalam hati. Isi ikan merekodkan kepekatan As dan Hg paling tinggi, manakala insang mencatatkan kepekatan Zn yang paling tinggi. Keputusan kajian ini juga menunjukkan bahawa semua logam berat mempunyai hubungan positif yang ketara dengan saiz ikan Aya hitam (p <0.05). Contohnya, Hg mempunyai hubungan positif yang kukuh dengan saiz ikan dengan nilai r ialah 0.577. Sebaliknya, ikan Aya hitam menunjukkan kesan pencairan pertumbuhan untuk Cu dan Pb dengan hubungan negatif antara kepekatan logam berat dengan saiz ikan. Kajian ini telah Berjaya menunjukkan pendekatan menyeluruh dan kefahaman yang lebih mendalam terhadap faktor-faktor yang mempengaruhi kepekatan logam berat di dalam ikan Aya hitam, termasukalah saiz ikan dan organ sasaran.  

 

Kata kunci: logam berat, spektroskopi jisim- plasma gadingan aruhan, pencemaran, laut China Selatan, Thunnus tonggol

 

References

1.      Briffa, J., Sinagra, E. and Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on human. Heliyon, 6: e04691

2.      Ofukany, A. F., Wassenaar, L. I., Bond, A. L. and Hobson, K. A. (2014). Defining fish community structure in Lake Winnipeg using stable isotopes (ծ13C, ծ15N, ծ34S): Implications for monitoring ecological responses and trophodynamics of mercury and other trace elements. Science of the Total Environment, 497: 239-249.

3.      Ali, H. and Khan, E. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity and bioaccumulation. Journal of Chemistry, 2019: 6730305.

4.      Annabi, A., Said, K. and Messoudi, I. (2013). Cadmium: bioaccumulation, histopathology and detoxifying mechanism in fish. American Journal of Research Communication.,1: 60-79.

5.      Norhazirah, A. A., Adiana, G., Yunus, K. B., Annual, Z. F., Ahmad, A. and Ong, M. C. (2020). Longtail tuna (Thunnus tonggol) consumption frequency in Terengganu, Malaysia. Open Journal of Marine Science, 10:141-148.

6.      Irwandi, J and Farida, O. (2009). Mineral and heavy metal contents of marine fin fish in Langkawi Island, Malaysia. International Food Research Journal 16: 105-112.

7.      Griffiths, S. P. and Fry, G.C. (2010). Age and growth of longtail tuna (Thunnus tonggol) in tropical and temperate waters of the central Indo-Pacific. ICES Journal of Marine Science: Journal du Conseil 67(1): 125-134.

8.      Bonanno, G. and Bonaco, M.O. (2018). Perspectives on using marine species as bio indicators of plastic pollution. Marine Pollution Bulletin, 137(2): 209-221.

9.      Khristoforova, N. K., Emelyanoz, A. A. and Efimov, A.V. (2018). Bioindication of heavy metal pollution in the coastal marine water of Russky Island (Peter the Great Bay, Sea of Japan). Russian Journal of Marine Biology 44(7): 572-579.

10.   Ong, M. C., Kamaruzaman, M. I., Norhidayah, S. A. and Joseph, B. (2016). Trace metal in highly commercial fishes caught along coastal water of Setiu, Terengganu Malaysia.  International Journal of Applied Chemistry, 12(4): 773-784.

11.   Ong, M. C., Yong, J. C., Khoo, X. Y., Tan, Y. F. and Joseph, B. (2014). Selected heavy metals and polycyclic aromatic hydrocarbon in commercial fishes caught from UMT enclosed lagoon, Terengganu, Malaysia. Advances in Environmental Biology 8(14): 91-98.

12.   Ong, M. C., Shazili, N. A. M., Menier, D. and Effendy, A.W.M. (2013). Levels of trace elements in tissue of Ostrea edulis and Crassostrea gigas from Quiberon Bay, Brittany, France. Journal of Fisheries and Aquatic Science 8(2): 378-387.

13.   Tengku Nur Alia, T. K. A., Hing, L. S., Sim, S. F., Ahmad, A. and Ong, M.C. (2020). Comparative study of raw and cooked farmed sea bass (Lates calcarifer) in relation to metal content and its estimated human health risk. Marine Pollution


Bulletin 153: 111009.

14.   Ong, M. C. and Gan, S. L. (2017). Assessment of metallic trace elements in the muscles and fins of four landed elasmobranchs from Kuala Terengganu waters, Malaysia. Marine Pollution Bulletin, 124(2):1001-1005.

15.   Azmat, R., Akhter, Y., Talat, R. and Uddin, F. (2006). Persistent of nematode parasite in presence of heavy metals found in edible herbivores fishes of Arabian sea. Journal of. Biological  Science, 6: 282-285.

16.   Tchounwou, P. B., Clement, G. Y., Anita, K. P. and Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology: 133-164.

17.   Renieri, E. A., Sfakianakis, D. G., Alegakis, A. A., Safenkova, I. V., Buha, A., Matovic, V., Tzardi, M., Dzantiev, B. B., Divanach, P., Kentouri, M. and Tsatsakis, A. M. (2017). Nonlinear responses to waterborne cadmium exposure in zebrafish: an in vivo study. Environmental Research, 157: 173-181.

18.   Rajkowska, M. and Protasowicki, M. (2013). Distribution of metals (Fe, Mn, Zn, Cu) in fish tissues in two lakes of different trophy in Northwestern Poland. Environmental Monitoring and Assessment, 185(4): 3493-3502.

19.   Squadrone, S., Prearo, M., Brizio, P., Gavinelli, S., Pellegrino, M., Scanzio, T., Guarise, S., Benedetto, A. and Abete, M. C. (2013). THMs distribution in muscle, liver, kidney and gill of European catfish (Silurus glarias) from Italian Rivers. Chemosphere, 90(2): 358-365.

20.   Leaner, J. J. and Mason, R.P. (2004). Methylmercury uptake and distribution kinetics in sheepshead minnows, Cryprinodon variegatus, after exposure to CH3Hg- spike food. Environmental Pollution, 266(1):115226.

21.   Lucyna, P. J. (2018). Distribution of organic and inorganic Hg in the tissues and organs of fish from the southern Baltic Sea. Enviromental Science and Pollution Research 25: 451-460.

22.   Al-Busaidi, M., Yesudhason, P., Al-Mughari, S., Al-Rahbi, W. A. K., Al-Harthy, K. S. and Al-Mazrooei, N. A. (2011). Toxic metals in commercial marine fish in Oman with reference to national and international standards. Chemosphere, 85(1): 67-73.

23.   Chirby, M. A. (2016). Bioaccumulation of mercury (Hg) in the brain, muscle and liver tissues of inshore pompano and offshore ambereck from the Gulf of Mexico. Dessertation University of Michigan.

24.   El-Moselhy, K. H. M., Othman, A. I., Abd El-Azem, H. and El-Metwally, M. E. A. (2014). Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egyptian Journal of Basic and Applied Sciences, 1: 97-105.

25.   Villanueva, R. and Bustamante, P. (2006). Composition in essential and non-essential elements or early stages of cephalopods and dietary effects on the elemental profile of Octopus vulgaris paralarvae. Aquaculture, 261: 225-243.

26.   Shesterin, I. V. (2010). Water pollution and its impact on fish and aquatic invertebrates. International Food, Agricultural and Environment, 1: 1-6.

27.   Joanna, L., Paszczyk, B. and Marek, J. L. (2018). Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland and risk assessment for consumer’s health. Ecotoxicology and Environmental Safety, 153: 60-67.

28.   Ali, M. and Shakoori, A. R. (2008). Heavy metal accumulation in the gills of an endangered South Asian freshwater fish as an indicator of aquatic pollution. Pakistan Journal of Zoology, 40(6): 423-430.

29.   Dural, M., Goksu, M. Z. L., Ozak, A. A. and Derici, B. (2006). Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L. 1758, Sparus aurata L. 1758 and Mugil cephalus L. 1758 from the Comlik lagoon of the eastern coast of Mediterranean (Turkey). Environmental Monitoring and Assessment, 118 (1-3): 65-74.

30.   Yi, Y. J. and Zhang, S. H. (2012). The relationship between fish heavy metal concentration and fish size in the upper and middle reach of Yangtze River. Procedia Environmental Sciences, 13: 1699-1707.

31.   Yi, Y. J., Yang, Z. F. and Zhang, S. H. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River Basin. Environmental Pollution, 159: 2575-2585.

32.   Farkas, A., Salanki, J. and Specziar, A. (2003). Age- and size-specific patterns of heavy metal in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Research, 37(5): 959-964.

33.   Kumari, S., Rahul, A., Neha, J., Mishra, D. and Singh, K. (2020). Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring and Management, 13: 100283

34.   Amiard, J. C., Triquet, C. A., Barka, S., Pellerin, J. and Rainbow, P. S. (2006). Metallothionenins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76: 160-202.

35.   Rajeshkumar, S. and Li., X. (2018). Bioaccumulation of heavy metals in fish species from the Meiling Bay, Taihu Lake, China. Toxicology Reports, 5: 288-295.

36.   FWC (2021). How to measure fish. Florida Fish and Wildlife Conservation Commission.  Retrieved from myfwc.com/fishing/freshwater/fishing-tips/measures. Accessed on 10th January 2021.

37.   Guo, J.D. (2005). Assessment of heavy metal concentrations in several ocean endangered fauna. Shadong University (in Chinese)

38.   Canli, M. and Atli, G. (2003). The relationship between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1): 129-136.

39.   De Mora, S., Fowler, S.W., Wyge, E. and Azemard, S. (2004). Distribution of heavy metal in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Marine Pollution Bulletin, 49: 410-424.

40.   Douben P. E. (1989). Lead and cadmium in stone loaeh (Noemacheilus barbatulus L.) from three rivers in Derbyshire. Ecotoxicology and  Environmental Safety, 1989; 18: 35-58.

41.   Soedarini, B., Klaver, L., Roessink, I. and Gestel, C. A. M. V. (2012). Copper kinetics and internal distribution in the marbled crayfish (Procambarus sp.) Chemosphere, 87(4): 333-33.

42.   Kouba, A, Kanta, J., Buric, M., Policar, T. and Kozak, P. (2010). The effect of water temperature on the number of moults and growth of juvenile noble crayfish, Astacus astacus (Linnaeus). Freshwater crayfish, 17:37-41.

43.   Has-Schon, E., Bogut, I., Vukovic, R., Galovic, D., Bogut, A. and Horvatic,. (2015). Distribution and age-related bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Busko Blato reservoir (Bosnia and Herzegovina). Chemosphere, 135: 289-296.

44.   Balzani, P., haubrock, P.J., Russo, F., Kaouba, Masoni, A., Tricarico, E. and Haase, P. (2021). Combining metal and isotope analyses to disentangle contaminant transfer in a freshwater community dominated by alien species. Environmental Pollution, 268: 115781.