Malaysian Journal of Analytical Sciences, Vol 28 No 1 (2024): 1 - 9

 

Synthesis and Characterization of Liquid-Silicate Fertilizer from Treated and Untreated ash Rice Husk

 

(Sintesis dan Kajian Sifat-Sifat Baja Cecair-Silikat daripada Abu Sekam yang Dirawat dan Tidak Dirawat)

 

Safari Zainal*1, Raihan Hanim Tajuddin1, and Nur Firdaus Mohamed Yusof2

 

1School of Chemical Engineering, College of Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2R&D Department, Dibuk Synergy Sdn. Bhd.,

KM 7, Jalan Simpang Empat, 02000, Kuala Perlis, Perlis, Malaysia

 

*Corresponding author: drsafari@uitm.edu.my

 

 

Received: 13 September 2023; Accepted: 21 January 2024; Published:  28 February 2024

 

 

Abstract

Rice husk ash (RHA) is an agricultural waste material that is abundantly available in all rice-producing Asian countries. The RHA is rich in silica (Si), which can be extracted as silicate sources for many industries, such as fertilizer, building material, insulation material, or fuel. In this research, organic acid, which is a phosphoric acid (H3PO4), was used to treat RHA. RHA was treated with H3PO4 at various temperatures (60℃, 80℃, and 100℃) and molarity (1 M, 2 M, and 3 M), and followed by an extraction process of untreated and treated RHA using potassium hydroxide (KOH) at 2 and 3 hours of extraction time and 1 M and 2 M of KOH. The extracted liquid-silicate was determined by using Fourier Transfer Infra-Red (FTIR), X-ray fluorescence (XRF), and Particle Size Analyzer (PSA). The highest silica content (40.910%) in liquid-silicate fertilizer (LSF) was recorded for the treatment condition of 2 M H3PO4 at 80 °C based on the XRF result. The highest wave number was 1008.78 cm-1 from treated RHA at 2 M H3PO4 80 °C. According to PSA data, the smallest particle size (1465.9µm) was recorded after leaching with H3PO4 at 2 M 80 °C as compared to untreated RHA at 1639.75µm.

 

Keywords: rice husk ash, liquid-silicate fertilizer, acid leaching, phosphoric acid, silica extraction

 

Abstrak

Abu sekam padi (RHA) adalah bahan buangan pertanian yang banyak terdapat di semua pengeluar beras untuk negara Asia. RHA kaya dengan silika (Si), yang boleh diekstrak sebagai sumber silikat untuk banyak industri seperti baja, bahan binaan, bahan penebat atau bahan api. Dalam penyelidikan ini, asid organik, iaitu asid fosforik (H3PO4) digunakan untuk merawat RHA. RHA dirawat dengan H3PO4 pada pelbagai suhu (60 ℃, 80 ℃, dan 100 ℃) dan kemolaran (1 M, 2 M dan 3 M). diikuti dengan proses pengekstrakan RHA yang tidak dirawat dan dirawat menggunakan kalium hidroksida (KOH) pada 2 dan 3 jam masa pengekstrakan dan 1 M dan 2 M KOH. Cecair-silikat yang diekstrak ditentukan dengan menggunakan Inframerah transformasi Fourier (FTIR), pendaflour sinar-X (XRF) dan penganalisa saiz partikel (PSA). Kandungan silika tertinggi (40.910%) dalam baja silikat cecair (LSF) direkodkan untuk keadaan rawatan 2 M H3PO4 pada 80 °C berdasarkan keputusan XRF. Nombor gelombang tertinggi ialah 1008.78 cm-1 daripada RHA yang dirawat pada 2 M H3PO4 80 °C. Menurut data PSA, saiz zarah terkecil (1465.9µm) direkodkan selepas larut lesap dengan H3PO4 pada 2 M 80 °C berbanding RHA yang tidak dirawat pada 1639.75µm.

 

Kata kunci: abu sekam padi, baja cecair-silikat, asid larut lesap, asid fosforik, pengekstrakan silika

 

References

1.    Knoema. (2019). Knoema. https://knoema.com/atlas/topics/Agriculture/Crops-Production-Quantity-tonnes/Rice-paddy-production. [Access online August 2022]

2.    Abdullah, S. A., Mohd Zarib, N. S. and Jamil, N. H. (2019). Extraction of silica from rice husk via acid leaching treatment. European Proceedings of Social and Behavioural Sciences EpSBS, 5: 175-183.

3.    Ramezanianpour A. A. (2013). Fly ash. In: Cement replacement materials. Springer Geochemistry/Mineralogy, 257 - 298.

4.    Sae-Oui, P., Rakdee, C. and Thanmathorn, P. (2002). Use of rice husk ash as filler in natural rubber vulcanizates: In comparison with other commercial fillers. Journal of Applied Polymer Science, 83(11): 2485-2493.

5.    Mehta, P. K. (1977). Properties of blended cement made from rice husk ash. American Concrete Institute, 74(9): 440-442.

6.    Earle, S. (2019), Physical geology - Silicate minerals. https://opentextbc.ca/geology/chapter/2-4-silicate-minerals/. [Access online 3 October 2023].

7.    Hwang, C. L. and Chandra, S. (1996). The use of rice husk ash in concrete. Waste Materials Used in Concrete Manufacturing, pp. 184-234.

8.    Hunt, L. P., Dismukes, J. P. Amick, J. A. Schei, A. and Lavsen, K. (1983). Rice hulls as a raw material for producing silicon. Proceedings - The Electrochemical Society, 83(11): 106-118.

9.    Amick, J. A. (1982). Purification of rice hulls as a source of solar grade silicon for solar cells. Journal of Electrochem Society, 129(4): 864-866.

10.  Patel, M.,  Karera, A. and Prasanna, P. (1987). Effect of thermal and chemical treatments on carbon and silica contents in rice husk. Journal of Material Science, 22(7): 2457-2464.

11.  Umeda, J., Kondoh, K. and Michiura, Y. (2007).  Process parameters optimization in preparing high-purity amorphous silica originated from rice husks. Materials Transactions, 48(12): 3095-3100.

12.  Umeda, J. and Kondoh, K. (2008). High-purity amorphous silica originated from rice husks via carboxylic acid leaching process. Journal of Material Science, 43(22): 7084-7090.

13.  Umeda, J. and Kondoh, K. (2010). High-purity amorphous silica originated from rice husks by the combination of polysaccharide hydrolysis and metallic impurities removal. Industrial Crops and Products, 32(3): 539-544.

14.  Organic Materials Review Institute (2021), OMRI materials review newsletter the winter 2020 issue. https://www.omri.org/phosphoric-acid. [Access online 24 February 2022].

15.  Faizul, C. P., Abdullah, C. and Fazlul, B. (2013). Extraction of silica from palm ash using citric acid leaching treatment: Preliminary result. Advanced Materials Research, 795: 701–706.

16.  Kalapathy, U., Proctor, A. and Shultz, J. (2000). A Simple method for production of pure silica from rice hull ash. Bioresource Technology, 73(3): 257-262.

17.  Mastersizer (2000). Melvin Instrument.  Pigment Resin Technology, 27(6): 1-10.

18.  Badri, K., Hassan, N. S. and Shen Lim, L. (2015). Silica extraction from rice husk by warm water pretreatment. Advanced Materials Research, 1087: 309-315.

19.  Puziy, A. M., Poddubnaya, O. I., Martínez-Alonso, A., Castro-Muniz, A., Suárez-García, F. and Tascón, J. M. D. (2007), Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon 45(10): 1941-1950.

20.  Puziy, A. M., Poddubnaya, O. I., Martínez-Alonso, A., Castro-Muniz, A., Suárez-García, F. and Tascón, J. M. D. (2007), Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon, 45(10): 1941-1950.

21.  Dani Nandiyanto, A. B., Oktiani, R. and Ragadhita, R. (2019). How to read and interpret FTIR spectroscopy of organic material. Indonesian Journal of Science & Technology,  4(1): 97-118.

22.  Dhaneswara, D., Fatriansyah, J. K., Situmorang, F. W. and Haqoh, A. N. (2020) Synthesis of amorphous silica from rice husk ash: Comparing HCl and CH3COOH acidification methods and various alkaline concentrations. International Journal of Technology, 11(1): 200-208

23.  Claoston, N., Samsuri, A. W., Ahmad Husni, M. H. and Mohd Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research, 32(4): 331-339.

24.  Abdul Khalil, H. P. S., IreanaYusra, A. F., Bhat, A. H. and Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of malaysian cultivated kenaf fiber. Industrial Crops and Products, 31(1): 113-121.

25.  Ireana Yusra, A. F, Abdul Khalil, H. P. S., Hossain, M. S., Aziz, A. A.,  Davoudpour, Y., Dungani, R. and Bhat, A. (2014). Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials. Polymers, 6(10): 2611-2624.

26.  Yingjie, L., Changsui, Z., Qiangqiang, R., Lunbo D., Huichao, C. and Xiaoping, C. (2009). Effect of rice husk ash addition on CO2 capture behavior of calcium-based sorbent during calcium looping cycle. Fuel Processing Technology, 90(6): 825-834.

27.  Sheard, P. R., Jolley, P. D. and Rush, P. A. J. (1991). Effect of temperature on the particle size distribution of flake-cut meat. International Journal of Food Science & Technology, 26(2): 199-205.