Malaysian Journal of Analytical
Sciences, Vol 28
No 1 (2024): 1 - 9
Synthesis and Characterization of
Liquid-Silicate Fertilizer from Treated and Untreated ash Rice Husk
(Sintesis dan Kajian Sifat-Sifat Baja Cecair-Silikat daripada Abu Sekam yang Dirawat dan Tidak Dirawat)
Safari Zainal*1,
Raihan Hanim Tajuddin1, and Nur Firdaus Mohamed Yusof2
1School of Chemical
Engineering, College of Engineering,
Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
2R&D Department, Dibuk Synergy Sdn. Bhd.,
KM 7, Jalan Simpang Empat, 02000, Kuala
Perlis, Perlis, Malaysia
*Corresponding author: drsafari@uitm.edu.my
Received: 13 September 2023;
Accepted: 21 January 2024; Published: 28
February 2024
Abstract
Rice
husk ash (RHA) is an agricultural waste material that is abundantly available
in all rice-producing Asian countries. The RHA is rich in silica (Si), which
can be extracted as silicate sources for many industries, such as fertilizer,
building material, insulation material, or fuel. In this research, organic
acid, which is a phosphoric acid (H3PO4), was used to
treat RHA. RHA was treated with H3PO4 at various
temperatures (60℃, 80℃, and 100℃) and molarity (1 M, 2 M, and
3 M), and followed by an extraction process of untreated and treated RHA using
potassium hydroxide (KOH) at 2 and 3 hours of extraction time and 1 M and 2 M
of KOH. The extracted liquid-silicate was determined by using Fourier Transfer
Infra-Red (FTIR), X-ray fluorescence (XRF), and Particle Size Analyzer (PSA).
The highest silica content (40.910%) in liquid-silicate fertilizer (LSF) was
recorded for the treatment condition of 2 M H3PO4 at 80
°C based on the XRF result. The highest wave number was 1008.78 cm-1 from
treated RHA at 2 M H3PO4 80 °C. According to PSA data,
the smallest particle size (1465.9µm) was recorded after leaching with H3PO4
at 2 M 80 °C as compared to untreated RHA at 1639.75µm.
Keywords:
rice husk ash, liquid-silicate fertilizer, acid leaching, phosphoric acid,
silica extraction
Abstrak
Abu sekam padi (RHA) adalah bahan buangan
pertanian yang banyak terdapat di semua pengeluar beras untuk negara Asia. RHA kaya dengan
silika (Si), yang boleh diekstrak sebagai sumber silikat untuk banyak industri
seperti baja, bahan binaan, bahan
penebat atau bahan api. Dalam penyelidikan ini, asid organik, iaitu
asid fosforik (H3PO4)
digunakan untuk merawat RHA. RHA dirawat dengan H3PO4 pada pelbagai
suhu (60 ℃, 80 ℃, dan 100 ℃) dan kemolaran (1 M, 2 M dan 3 M). diikuti
dengan proses pengekstrakan
RHA yang tidak dirawat dan dirawat menggunakan kalium hidroksida (KOH) pada 2 dan 3 jam masa pengekstrakan
dan 1 M dan 2 M KOH. Cecair-silikat yang diekstrak
ditentukan dengan menggunakan Inframerah transformasi Fourier (FTIR), pendaflour
sinar-X (XRF) dan penganalisa
saiz partikel (PSA). Kandungan silika tertinggi (40.910%) dalam baja silikat cecair
(LSF) direkodkan untuk keadaan rawatan 2 M H3PO4
pada 80 °C berdasarkan keputusan XRF. Nombor gelombang tertinggi ialah 1008.78 cm-1 daripada
RHA yang dirawat pada 2 M H3PO4
80 °C. Menurut data PSA, saiz
zarah terkecil (1465.9µm) direkodkan selepas larut lesap dengan
H3PO4 pada 2 M 80 °C berbanding RHA yang tidak dirawat pada 1639.75µm.
Kata kunci: abu
sekam padi, baja cecair-silikat, asid larut lesap,
asid fosforik, pengekstrakan silika
References
1. Knoema. (2019).
Knoema.
https://knoema.com/atlas/topics/Agriculture/Crops-Production-Quantity-tonnes/Rice-paddy-production.
[Access online August 2022]
2. Abdullah, S. A.,
Mohd Zarib, N. S. and Jamil, N. H. (2019). Extraction of silica from rice husk
via acid leaching treatment. European Proceedings of Social and Behavioural
Sciences EpSBS, 5: 175-183.
3. Ramezanianpour A.
A. (2013). Fly ash. In: Cement replacement materials. Springer
Geochemistry/Mineralogy, 257 - 298.
4. Sae-Oui,
P., Rakdee, C. and Thanmathorn, P.
(2002). Use of rice husk ash as filler in natural rubber vulcanizates: In
comparison with other commercial fillers. Journal of Applied Polymer
Science, 83(11): 2485-2493.
5. Mehta, P. K.
(1977). Properties of blended cement made from rice husk ash. American
Concrete Institute, 74(9): 440-442.
6. Earle, S.
(2019), Physical geology - Silicate minerals.
https://opentextbc.ca/geology/chapter/2-4-silicate-minerals/. [Access online 3
October 2023].
7. Hwang, C. L. and
Chandra, S. (1996). The use of rice husk ash in concrete. Waste Materials
Used in Concrete Manufacturing, pp. 184-234.
8. Hunt, L. P.,
Dismukes, J. P. Amick, J. A. Schei, A. and Lavsen, K. (1983). Rice hulls as a
raw material for producing silicon. Proceedings - The Electrochemical
Society, 83(11): 106-118.
9. Amick, J. A.
(1982). Purification of rice hulls as a source of solar grade silicon for solar
cells. Journal of Electrochem Society, 129(4): 864-866.
10. Patel, M., Karera, A. and Prasanna, P. (1987). Effect of
thermal and chemical treatments on carbon and silica contents in rice husk. Journal
of Material Science, 22(7): 2457-2464.
11. Umeda, J., Kondoh,
K. and Michiura, Y. (2007). Process
parameters optimization in preparing high-purity amorphous silica originated
from rice husks. Materials Transactions, 48(12): 3095-3100.
12. Umeda, J. and
Kondoh, K. (2008). High-purity amorphous silica originated from rice husks via
carboxylic acid leaching process. Journal of Material Science, 43(22):
7084-7090.
13. Umeda, J. and
Kondoh, K. (2010). High-purity amorphous silica originated from rice husks by
the combination of polysaccharide hydrolysis and metallic impurities removal. Industrial
Crops and Products, 32(3): 539-544.
14. Organic Materials Review Institute (2021), OMRI materials review
newsletter the winter 2020 issue. https://www.omri.org/phosphoric-acid. [Access
online 24 February 2022].
15. Faizul, C. P.,
Abdullah, C. and Fazlul, B. (2013). Extraction of silica from palm ash using
citric acid leaching treatment: Preliminary result. Advanced Materials
Research, 795: 701–706.
16. Kalapathy, U.,
Proctor, A. and Shultz, J. (2000). A Simple method for production of pure
silica from rice hull ash. Bioresource Technology, 73(3): 257-262.
17. Mastersizer (2000).
Melvin Instrument. Pigment Resin
Technology, 27(6): 1-10.
18. Badri, K., Hassan,
N. S. and Shen Lim, L. (2015). Silica extraction from rice husk by warm water
pretreatment. Advanced Materials Research, 1087: 309-315.
19. Puziy, A. M., Poddubnaya, O. I.,
Martínez-Alonso, A., Castro-Muniz, A., Suárez-García, F. and Tascón, J. M. D.
(2007), Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon
45(10): 1941-1950.
20. Puziy, A. M., Poddubnaya, O. I.,
Martínez-Alonso, A., Castro-Muniz, A., Suárez-García, F. and Tascón, J. M. D.
(2007), Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon,
45(10): 1941-1950.
21. Dani Nandiyanto, A.
B., Oktiani, R. and Ragadhita, R. (2019). How to read and interpret FTIR
spectroscopy of organic material. Indonesian Journal of Science &
Technology, 4(1): 97-118.
22. Dhaneswara, D., Fatriansyah, J. K.,
Situmorang, F. W. and Haqoh, A. N. (2020) Synthesis of amorphous silica from
rice husk ash: Comparing HCl and CH3COOH acidification methods and
various alkaline concentrations. International Journal of Technology,
11(1): 200-208
23. Claoston, N.,
Samsuri, A. W., Ahmad Husni, M. H. and Mohd Amran, M. S. (2014). Effects of
pyrolysis temperature on the physicochemical properties of empty fruit bunch
and rice husk biochars. Waste Management and Research, 32(4): 331-339.
24. Abdul Khalil, H. P.
S., IreanaYusra, A. F., Bhat, A. H. and Jawaid, M. (2010). Cell wall
ultrastructure, anatomy, lignin distribution, and chemical composition of
malaysian cultivated kenaf fiber. Industrial Crops and Products, 31(1):
113-121.
25. Ireana Yusra, A. F,
Abdul Khalil, H. P. S., Hossain, M. S., Aziz, A. A., Davoudpour, Y., Dungani, R. and Bhat, A.
(2014). Exploration of a chemo-mechanical technique for the isolation of
nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a
reinforcing agent in composites materials. Polymers, 6(10): 2611-2624.
26. Yingjie, L.,
Changsui, Z., Qiangqiang, R., Lunbo D., Huichao, C. and Xiaoping, C. (2009).
Effect of rice husk ash addition on CO2 capture behavior of
calcium-based sorbent during calcium looping cycle. Fuel Processing Technology, 90(6): 825-834.
27. Sheard, P. R.,
Jolley, P. D. and Rush, P. A. J. (1991). Effect of temperature on the particle
size distribution of flake-cut meat. International Journal of Food Science
& Technology, 26(2): 199-205.