Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1274 - 1287

 

BELOWGROUND DECOMPOSITION OF SHOULDER AND RUMP FATTY FLESH IN SANDY CLAY LOAM SOIL OF RUBBER PLANTATION OF BUKIT PAYONG, MARANG

 

(Pereputan Bawah Tanah Bagi Daging Bahu dan Pinggul dalam Tanah Loam Berpasir Ladang Getah Bukit Payong, Marang)

 

Siti Sofo Ismail*, Thivialosini Siva, Lee Xin Pei, and Loh Kit Yee

 

Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: sofo@umt.edu.my

 

 

Received: 17 August 2023; Accepted: 4 November 2023; Published:  29 December 2023

 

 

Abstract

Understanding the decomposition process of different body parts is crucial in estimating the postmortem interval (PMI) and/or locating a clandestine grave. Therefore, we conducted a laboratory controlled simulated burial experiment, mimicking a burial in a shallow grave under tropical climate, to comprehensively observe the changes of soil pH and the trend of decomposition rate. Fatty flesh of commercial pigs (Sus scrofa) from the shoulder and rump parts was buried in sandy loam soil. Firstly, a vial was firstly half-filled with the soil. The fatty flesh was placed and covered completely with the soil, then, allowed to decompose for 150 days of burial period. The associated soils were collected at 15 designated sampling points. Soil post-experimental pH was recorded, and the remaining fatty flesh was weighed. The lipids were extracted using modified Bligh-Dyer extraction method and analyzed with a gas chromatography-flame ionization detector (GC-FID). We noted differences in the trend of pH, decomposition rate, and total lipid extract concentration. The results demonstrated that generally the soil pH of both body parts changed from acidic at the early decomposition stage, to increasingly alkaline after several days of burial, and the alkalinity decreased back towards the completion of the experiment. Besides this, the soil pH of the rump increased, and the shoulder decreased at the early butyric fermentation stage. The decomposition rate of shoulder fatty flesh was higher than that of the rump at the early decomposition process with a maximum rate at the same burial interval. At the butyric fermentation stage, the total cadaveric derived lipid of the rump was higher than that of the shoulder.  The findings of this study shall provide important information on the fates of different body parts and their impact on the surrounding soil pH, which can be used in forensic investigations to locate the clandestine graves and/or to estimate the PMI of the body.

 

Keywords: cadaveric derived lipids, rump fatty flesh, clandestine grave, postmortem interval, sandy clay loam soil

 

Abstrak

Pemahaman tentang proses penguraian bahagian badan yang berbeza adalah penting dalam menganggarkan selang postmortem (PMI) dan/atau untuk mencari kubur rahsia. Oleh itu, kami menjalankan eksperimen pengebumian simulasi terkawal makmal, meniru pengebumian di dalam kubur cetek di bawah iklim tropika untuk memerhati secara menyeluruh tentang perubahan pH tanah dan trend kadar penguraian. Daging babi komersial (Sus scrofa) yang berlemak dari bahagian bahu dan pinggul ditanam di dalam tanah liat berpasir. Mula-mula, sebuah vial terlebih dahulu diisi separuh dengan tanah tersebut. Kemudian, daging berlemak itu diletakkan dan ditutup sepenuhnya dengan tanah, dibiarkan mereput selama 150 hari tempoh pengebumian. Tanah yang berkaitan telah dikumpulkan di 15 titik persampelan yang ditetapkan. pH tanah selepas eksperimen direkodkan dan baki daging berlemak ditimbang. Lipid telah diekstrak menggunakan Kaedah pengekstrakan Bligh-Dyer Terubahsuai dan dianalisis dengan gas kromatografi- pengesan nyalaan pengionan (GC-FID). Kami mencatatkan perbezaan dalam trend pH, kadar penguraian dan jumlah kepekatan ekstrak lipid. Keputusan menunjukkan bahawa secara amnya pH tanah kedua-dua bahagian badan berubah daripada berasid pada peringkat penguraian awal, meningkat kepada beralkali selepas beberapa hari pengebumian dan menurun kembali menghampiri selesai eksperimen. Selain itu, pH tanah bagi pinggul meningkat dan bahu menurun pada peringkat pembusukan hitam. Kadar penguraian daging lemak bahu adalah lebih tinggi daripada pinggul pada proses penguraian awal dengan kadar maksimum pada selang pengebumian yang sama. Pada peringkat penapaian butirik, jumlah lipid kadaver yang diperolehi adalah lebih tinggi daripada bahu. Penemuan ini memberikan maklumat penting tentang nasib bahagian badan yang berbeza dan kesannya terhadap pH tanah sekeliling yang boleh digunakan dalam penyiasatan forensik untuk mengesan kubur rahsia dan/atau untuk menganggarkan PMI mayat.

 

Kata kunci: Lipid terbitan kadaver, daging berlemak pinggul, kubur rahsia, selang masa postmortem, tanah liat berpasir 


 

References

1.       Clark, M.A, Worrell, M.B and Pless, J.E (1997). Postmortem changes in soft tissue, in: W.D. Haglund, M.H. Sorg (Eds), Forensic taphonomy: The postmortem fate of human remains, CRC Press, Boca Raton, Florida, pp 151-160.

2.       Goff, M.L. (2009). Early post-mortem changes and stages of decomposition in exposed cadavers. Experimental and Applied Acarology, 49: 2-36.

3.       Zhou, C. and Byard, R.W. (2011). Factors and processes causing accelerated decomposition in human cadavers-An overview. Journal of Forensic and Legal Medicine 18(1): 6-9.

4.       Vass, A.A. (2001). Beyond the grave: understanding human decomposition. Microbial Today, 28: 190-192.

5.       Forbes, S.L, Dent, B.B. and Stuart, B.H. (2005). The effect of soil type on adipocere formation. Forensic Science International, 154:35-43

6.       Carter, D.O., Yellowless, D. and Tibbett, M. (2008). Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Applied Soil Ecology, 40: 129-137.

7.       VanLaerhoven, S.L. and Anderson, G.S. (1999). Insect succession on buried carrion in two biogeoclimatic zones of British Columbia. Journal of Forensic Science, 44(1):32-43.

8.       Dent, B.B., Forbes, S.L., and Stuart, B.H. (2004). Review of human decomposition in soils. Environmental Geology, 45:576-585.

9.       Payne, J. A. (1965). A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology, 46(5):592-602.

10.    Eline M.J. Schotsmans, Van de Voorde, W., De Winne, J. and Andrew S.W. (2011). The impact of shallow burial on differential decomposition to the body: A temperate case study. Forensic Science International, 206(1-3): 43-48.

11.    Ismail, S.S. and Chong, Z.Y. (2019). Decomposition of abdomen fatty flesh of cadaver buried in Nami series soil of Bukit Kor Terengganu. Materials Today: Proceedings, 19: 1426-1433.

12.    Mann, R.W., Bass, W.M. and Meadows, L. (1990). Time since death and decomposition of the human body: variables and observation in case and experimental field studies. Journal of Forensic Science, 35(1): 103-111.

13.    Catts, E.P. (1992). Problems in estimating the postmortem interval in death investigations. Journal of Agricultural Entomology, 9(4): 245-255.

14.    Megyesi, M.S., Nawrocki, S.P. and Haskell, N.H. (2005). Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. Journal Forensic Science, 50(3): 618-626.

15.    Swann, L., Forbes, S. and Lewis, S. (2010). Analytical separations of mammalian decomposition products for forensic science: A review. Analytica Chimica Acta, 682(1-2): 9-22.

16.    Teo, C.H., Hamzah, N.H., Hing, H.L. and Hamzah, S.P. (2014). Decomposition process and post mortem changes: Review. Sains Malaysiana, 43(12):1873-1882.

17.    Janaway, R., Percival, S. and Wilson, A. (2009). Decomposition of human remains. Microbiology and Aging. Totowa, NJ: Humana Press, pp. 313-334.

18.    Notter, S.J., Stuart, B.H., Rowe, R. and Langlois, N. (2009). The initial changes of fat deposits during the decomposition of human and pig remains. Journal of Forensic Sciences, 54(1): 195-201.

19.    Štembírek, J., Kyllar, M., Putnová, I., Stehlík, L., and Buchtová, M. (2012). The pig as an experimental model for clinical craniofacial research. Laboratory Animals, 46(4): 269-279.

20.    Janaway, R.C. (1987). The decay of buried remains and their associated material; in Studies in Crime: An introduction to forensic Archaeology (J. Hunter, C. Roberts, and A. Martin, Eds.). London: Routledge, 58-85.

21.    Bull, I.D., Berstan, R., Vass, A. and Evershed, R.P. (2009). Identification of a disinterred grave by molecular and stable isotope analysis. Science & Justice, 49(2): 142-149.

22.    Ioan, B.G., Manea, C., Hanganu, B., Statescu, L., Solovastru, L.G. and Manoilescu, I.R.I.N.A. (2017). The chemistry decomposition in human corpses. Revista de Chimie, 68(6): 1450-1454.

23.    Derrien, M., Cabrera, F.A., Tavera, N.L., Manzano, C.A. and Vizcaino, S.C. (2015). Sources and distribution of organic matter along the Ring of Cenotes, Yucatan, Mexico: Sterol markers and statistical approaches. Science of the Total Environment, 511: 223-229.

24.    Collins, S., Stuart, B. and Ueland, M. (2020). Monitoring human decomposition products collected in clothing: an infrared spectroscopy study. Australian Journal of Forensic Sciences, 52(4): 428-438.

25.    Ambles, A., Magnoux, P., Jacquesy, R. and Fustec, E., (1989). Effects of addition of bentonite on hydrocarbon fraction of a podzol soil (A1 Horizon). Journal of Soil Science, 40: 485-694.

26.    Jambu, P, Ambles A., Dinel H, and Seqouet B. (1991). Incorporation of natural hydrocarbons from plant residues into a hydromorphic humic podzol following afforestation and fertilization. Journal of Soil Science, 42: 629-636.

27.    Jambu, P., Ambles, A., Jacquesy, J.C., Secouet, B., and Parlanti, E. (1993). Incorporation of natural alcohols from plant residues into a hydromorphic forest-podzol. Journal of Soil Science, 44: 135-146.

28.    Ritchey, E.L., McGrath, J.M. and Gehring, D. (2015). Determining Soil Texture by Feel. Agriculture and Natural Resources Publications. pp.139.

29.    Ismail, S. S. and Daud, N. A. (2016). Lipid analysis on potential grave soil products. Transactions on Science and Technology, 3(3): 489-494.

30.    Hopkins, D.W., Wilthire, P.E.J. and Turner B.D. (2000). Microbial characteristic of soils from graves: an investigation at the interface of soil microbiology and forensic science. Applied Soil Ecology, 14(3): 283-288.

31.    Laura, A.B., David, O.C. and Shari, L.F. (2008). The biochemical alteration of soil beneath a decomposing carcass. Forensic Science International, 180(2-3): 70-75.

32.    Szelecz, I., Koenig, I., Seppey, C.V., Le Bayon, R.C. and Mitchell, E. A. (2018). Soil chemistry changes beneath decomposing cadavers over a one-year period. Forensic Science International, 286: 155-165.

33.    Comstock, J.L., Leblanc, H.N. and Forbes, S.L. (2016). Analysis of decomposition fluid collected from carcasses decomposing in the presence and absence of insects. Soil in Criminal and Environmental Forensics Soil Forensics, pp. 275-296.

34.    David, O.C., David, Y. and Mark, T. (2007). Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften, 94: 12-24.

35.    Haslam, T.C. and Tibbett, M. (2009). Soils of contrasting pH affect the decomposition of buried mammalian (Ovis aries) skeletal muscle tissue. Journal of Forensic Sciences, 54(4): 900-904.

36.    Vass, A.A., Barshick, S.A., Sega, G., Caton, J., Skeen, J.T., Love, J.C. and Synstelien, J.A. (2002). Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. Journal of Forensic Science, 47(3): 542-553.

37.    Szelecz, I., Sorge, F., Seppey, C.V., Mulot, M., Steel, H., Neilson, R., ... and Mitchell, E.A. (2016). Effects of decomposing cadavers on soil nematode communities over a one-year period. Soil Biology and Biochemistry, 103: 405-416.

38.    Larizza, M. (2010). Physical and chemical analysis of pig carcass decomposition in fine sand (Master’s thesis). Retrieved from https://ir.library.dc- uoit.ca/bitstream/10155/115/1/Larizza_Melina.pdf

39.    Swann, L, Chidlow, G.E., Forbes, S.L. and Lewis, S.W. (2010). Preliminary studies into the characterization of chemical markers of decomposition for geoforensics. Journal of Forensic Sciences, 55(2): 308-314.

40.    Swann, L., Forbes, S.L. and Lewis, S. W. (2010b). Observations of the temporal variation in chemical content of decomposition fluid: A preliminary study using pigs as a model system. Australian Journal of Forensic Sciences, 42(3):199-210.

41.    Mann, R.W., Bass, W.M. and Meadows, L. (1990). Time since death and decomposition of the human body: variables and observations in case and experimental field studies. Journal of Forensic Science, 35(1): 103-111.

42.    Fiedler, S. and Graw, M. (2003). Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften, 90: 291-300.

43.    Bachmann, J. and Simmons, T. (2010). The influence of preburial insect access on the decomposition rate. Journal of Forensic Science, 55(4): 893-900.

44.    Stokes, K.L., Forbes, S.L., Benninger, L.A., Carter, D.O. and Tibbett, M. (2009). Decomposition studies using animal models in contrasting environments: evidence from temporal changes in soil chemistry and microbial activity. Ritz, K., A. Criminal and Environmental Soil Forensic, pp.1-519. Porirua, New Zealand: Springer.

45.    Rachel, A.P., Kerith-Rae, D., Jacqui, H., Paul, G., Natasha, B., Mark, T. and Arpad, A. V. (2009). Microbial community analysis of human decomposition on soil. In book of Criminal and Environmental Soil Forensic, pp 379-394.

46.    DeBruyn, J.M., Hoeland, K.M., Taylor, L.S., Stevens, J.D., Moats, M.A., Bandopadhyay, S., ... and  Steadman, D.W. (2021). Comparative decomposition of humans and pigs: soil biogeochemistry, microbial activity and metabolomic profiles. Frontiers in Microbiology, 11: 608856.

47.    Sukchit, M., Deowanish, S. and Butcher, B. A. (2015). Decomposition stages and carrion insect succession on dressed hanging pig carcasses in Nan Province, Northern Thailand. Tropical Natural History, 15(2): 137-153.

48.    Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S. and Trumbore, S.E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478: 49-56.

49.    Jansen, B. and Wiesenberg, G.L.B. (2017). Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science. Soil, 3: 211-234.

50.    Janaway, R.C. (1996). The decay of buried human remains and their associated materials. In: Studies in crime: An introduction to forensic archaeology (Eds. J Hunter, C Roberts and A Martin), pp. 58-85. Batesford, London.

51.    Carter, D.O. and Tibbett, M. (2006). Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biology and Biochemistry, 38(5): 1139-1145.