Malaysian Journal of Analytical
Sciences, Vol 27
No 6 (2023): 1274 - 1287
BELOWGROUND
DECOMPOSITION OF SHOULDER AND RUMP FATTY FLESH IN SANDY CLAY LOAM SOIL OF
RUBBER PLANTATION OF BUKIT PAYONG, MARANG
(Pereputan Bawah Tanah Bagi Daging Bahu dan Pinggul
dalam Tanah Loam Berpasir Ladang Getah Bukit Payong, Marang)
Siti Sofo Ismail*, Thivialosini Siva, Lee Xin Pei, and
Loh Kit Yee
Faculty of Science and Marine Environment, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: sofo@umt.edu.my
Received: 17 August 2023; Accepted: 4
November 2023; Published: 29 December
2023
Abstract
Understanding
the decomposition process of different body parts is crucial in estimating the
postmortem interval (PMI) and/or locating a clandestine grave. Therefore, we
conducted a laboratory controlled simulated burial experiment, mimicking a
burial in a shallow grave under tropical climate, to comprehensively observe
the changes of soil pH and the trend of decomposition rate. Fatty flesh of
commercial pigs (Sus scrofa) from the
shoulder and rump parts was buried in sandy loam soil. Firstly, a vial was
firstly half-filled with the soil. The fatty flesh was placed and covered
completely with the soil, then, allowed to decompose for 150 days of burial period.
The associated soils were collected at 15 designated sampling points. Soil
post-experimental pH was recorded, and the remaining fatty flesh was weighed.
The lipids were extracted using modified Bligh-Dyer
extraction method and analyzed with a gas chromatography-flame ionization
detector (GC-FID). We noted differences in the trend of pH, decomposition rate,
and total lipid extract concentration. The results demonstrated that generally
the soil pH of both body parts changed from acidic at the early decomposition
stage, to increasingly alkaline after several days of burial, and the
alkalinity decreased back towards the completion of the experiment. Besides
this, the soil pH of the rump increased, and the shoulder decreased at the
early butyric fermentation stage. The decomposition rate of shoulder fatty
flesh was higher than that of the rump at the early decomposition process with
a maximum rate at the same burial interval. At the butyric fermentation stage,
the total cadaveric derived lipid of the rump was higher than that of the
shoulder. The findings of this study
shall provide important information on the fates of different body parts and
their impact on the surrounding soil pH, which can be used in forensic investigations
to locate the clandestine graves and/or to estimate the PMI of the body.
Keywords:
cadaveric derived lipids, rump fatty flesh, clandestine grave, postmortem
interval, sandy clay loam soil
Abstrak
Pemahaman tentang proses penguraian bahagian badan yang
berbeza adalah penting dalam menganggarkan selang postmortem (PMI) dan/atau
untuk mencari kubur rahsia. Oleh itu, kami menjalankan eksperimen pengebumian
simulasi terkawal makmal, meniru pengebumian di dalam kubur cetek di bawah
iklim tropika untuk memerhati secara menyeluruh tentang perubahan pH tanah dan
trend kadar penguraian. Daging babi komersial (Sus scrofa) yang berlemak dari bahagian bahu dan pinggul ditanam di
dalam tanah liat berpasir. Mula-mula, sebuah vial terlebih dahulu diisi separuh
dengan tanah tersebut. Kemudian, daging berlemak itu diletakkan dan ditutup
sepenuhnya dengan tanah, dibiarkan mereput selama 150 hari tempoh pengebumian.
Tanah yang berkaitan telah dikumpulkan di 15 titik persampelan yang ditetapkan.
pH tanah selepas eksperimen direkodkan dan baki daging berlemak ditimbang.
Lipid telah diekstrak menggunakan Kaedah pengekstrakan Bligh-Dyer Terubahsuai
dan dianalisis dengan gas kromatografi- pengesan nyalaan pengionan (GC-FID). Kami
mencatatkan perbezaan dalam trend pH, kadar penguraian dan jumlah kepekatan
ekstrak lipid. Keputusan menunjukkan bahawa secara amnya pH tanah kedua-dua
bahagian badan berubah daripada berasid pada peringkat penguraian awal,
meningkat kepada beralkali selepas beberapa hari pengebumian dan menurun
kembali menghampiri selesai eksperimen. Selain itu, pH tanah bagi pinggul
meningkat dan bahu menurun pada peringkat pembusukan hitam. Kadar penguraian
daging lemak bahu adalah lebih tinggi daripada pinggul pada proses penguraian
awal dengan kadar maksimum pada selang pengebumian yang sama. Pada peringkat
penapaian butirik, jumlah lipid kadaver yang diperolehi adalah lebih tinggi
daripada bahu. Penemuan ini memberikan maklumat penting tentang nasib bahagian
badan yang berbeza dan kesannya terhadap pH tanah sekeliling yang boleh
digunakan dalam penyiasatan forensik untuk mengesan kubur rahsia dan/atau untuk
menganggarkan PMI mayat.
Kata kunci: Lipid terbitan kadaver, daging berlemak pinggul, kubur
rahsia, selang masa postmortem, tanah liat berpasir
References
1. Clark, M.A, Worrell, M.B and Pless, J.E (1997). Postmortem changes in
soft tissue, in: W.D. Haglund, M.H. Sorg (Eds), Forensic taphonomy: The
postmortem fate of human remains, CRC Press, Boca Raton, Florida, pp 151-160.
2. Goff, M.L. (2009). Early
post-mortem changes and stages of decomposition in exposed cadavers. Experimental and Applied Acarology, 49: 2-36.
3. Zhou, C. and Byard, R.W. (2011). Factors and processes causing
accelerated decomposition in human cadavers-An overview. Journal of Forensic and Legal Medicine 18(1): 6-9.
4. Vass, A.A. (2001). Beyond the grave: understanding human decomposition. Microbial Today, 28: 190-192.
5. Forbes, S.L, Dent, B.B. and Stuart, B.H. (2005). The effect of soil type
on adipocere formation. Forensic Science
International, 154:35-43
6. Carter, D.O., Yellowless, D. and Tibbett, M.
(2008). Temperature affects microbial decomposition of cadavers (Rattus rattus)
in contrasting soils. Applied Soil
Ecology, 40: 129-137.
7. VanLaerhoven, S.L. and Anderson, G.S. (1999). Insect succession on buried carrion in
two biogeoclimatic zones of British Columbia. Journal of Forensic Science,
44(1):32-43.
8. Dent, B.B., Forbes, S.L., and Stuart, B.H. (2004). Review of human
decomposition in soils. Environmental
Geology, 45:576-585.
9. Payne, J. A. (1965). A summer
carrion study of the baby pig Sus scrofa
Linnaeus. Ecology, 46(5):592-602.
10. Eline M.J. Schotsmans, Van de Voorde, W., De Winne, J. and Andrew S.W. (2011). The impact
of shallow burial on differential decomposition to the body: A temperate case
study. Forensic Science International,
206(1-3): 43-48.
11. Ismail, S.S. and Chong, Z.Y. (2019). Decomposition of abdomen fatty
flesh of cadaver buried in Nami series soil of Bukit Kor Terengganu. Materials Today: Proceedings, 19:
1426-1433.
12. Mann, R.W., Bass, W.M. and Meadows, L. (1990). Time since death and
decomposition of the human body: variables and observation in case and
experimental field studies. Journal of Forensic Science, 35(1): 103-111.
13. Catts, E.P. (1992). Problems in estimating the postmortem interval in
death investigations. Journal of
Agricultural Entomology, 9(4): 245-255.
14. Megyesi, M.S., Nawrocki, S.P. and Haskell, N.H. (2005). Using
accumulated degree-days to estimate the postmortem interval from decomposed
human remains. Journal Forensic Science,
50(3): 618-626.
15. Swann, L., Forbes, S. and Lewis, S. (2010). Analytical separations of
mammalian decomposition products for forensic science: A review. Analytica Chimica
Acta, 682(1-2): 9-22.
16. Teo, C.H., Hamzah, N.H., Hing, H.L. and Hamzah, S.P. (2014).
Decomposition process and post mortem changes: Review.
Sains Malaysiana,
43(12):1873-1882.
17. Janaway, R., Percival, S. and Wilson, A. (2009). Decomposition of human
remains. Microbiology and Aging.
Totowa, NJ: Humana Press, pp. 313-334.
18. Notter, S.J., Stuart, B.H., Rowe, R. and Langlois, N. (2009). The
initial changes of fat deposits during the decomposition of human and pig
remains. Journal of Forensic Sciences,
54(1): 195-201.
19. Štembírek, J., Kyllar, M., Putnová,
I., Stehlík, L., and Buchtová, M. (2012). The pig as an experimental model for
clinical craniofacial research. Laboratory
Animals, 46(4): 269-279.
20. Janaway, R.C. (1987). The decay of buried remains and their associated
material; in Studies in Crime: An introduction to forensic Archaeology (J.
Hunter, C. Roberts, and A. Martin, Eds.). London: Routledge, 58-85.
21. Bull, I.D., Berstan, R., Vass, A. and
Evershed, R.P. (2009). Identification of a disinterred grave by molecular and
stable isotope analysis. Science &
Justice, 49(2): 142-149.
22. Ioan, B.G., Manea, C., Hanganu, B., Statescu, L., Solovastru, L.G.
and Manoilescu, I.R.I.N.A. (2017). The chemistry decomposition in human corpses. Revista de Chimie, 68(6): 1450-1454.
23. Derrien, M., Cabrera, F.A., Tavera, N.L., Manzano,
C.A. and Vizcaino, S.C. (2015). Sources and distribution
of organic matter along the Ring of Cenotes, Yucatan, Mexico: Sterol markers
and statistical approaches. Science of
the Total Environment, 511: 223-229.
24. Collins, S., Stuart, B. and Ueland, M. (2020). Monitoring human
decomposition products collected in clothing: an infrared spectroscopy study. Australian
Journal of Forensic Sciences, 52(4): 428-438.
25. Ambles, A., Magnoux, P., Jacquesy,
R. and Fustec, E., (1989). Effects of addition of bentonite on hydrocarbon fraction of a podzol
soil (A1 Horizon). Journal of Soil
Science, 40: 485-694.
26. Jambu, P, Ambles A., Dinel H, and Seqouet B.
(1991). Incorporation of natural hydrocarbons from plant residues into a
hydromorphic humic podzol following afforestation and fertilization. Journal of Soil Science, 42: 629-636.
27. Jambu, P., Ambles, A., Jacquesy,
J.C., Secouet, B., and Parlanti,
E. (1993). Incorporation of natural alcohols
from plant residues into a hydromorphic forest-podzol. Journal of Soil Science, 44: 135-146.
28. Ritchey, E.L., McGrath, J.M. and Gehring, D. (2015). Determining Soil
Texture by Feel. Agriculture and Natural
Resources Publications. pp.139.
29. Ismail, S. S. and Daud, N. A. (2016). Lipid analysis on potential grave
soil products. Transactions on Science
and Technology, 3(3): 489-494.
30. Hopkins, D.W., Wilthire, P.E.J. and Turner
B.D. (2000). Microbial characteristic of soils from
graves: an investigation at the interface of soil microbiology and forensic
science. Applied Soil Ecology, 14(3):
283-288.
31. Laura, A.B., David, O.C. and Shari, L.F. (2008). The biochemical
alteration of soil beneath a decomposing carcass. Forensic Science International, 180(2-3): 70-75.
32. Szelecz, I., Koenig, I., Seppey, C.V., Le
Bayon, R.C. and Mitchell, E. A. (2018). Soil chemistry changes beneath
decomposing cadavers over a one-year period. Forensic Science International,
286: 155-165.
33. Comstock, J.L., Leblanc, H.N. and Forbes, S.L. (2016). Analysis of
decomposition fluid collected from carcasses decomposing in the presence and
absence of insects. Soil in Criminal and
Environmental Forensics Soil Forensics, pp. 275-296.
34. David, O.C., David, Y. and Mark, T. (2007). Cadaver decomposition in
terrestrial ecosystems. Naturwissenschaften,
94: 12-24.
35. Haslam, T.C. and Tibbett, M. (2009). Soils of contrasting pH affect the
decomposition of buried mammalian (Ovis aries) skeletal muscle tissue. Journal of Forensic Sciences, 54(4): 900-904.
36. Vass, A.A., Barshick, S.A., Sega, G., Caton,
J., Skeen, J.T., Love, J.C. and Synstelien, J.A. (2002). Decomposition
chemistry of human remains: a new methodology for determining the postmortem
interval. Journal of Forensic Science,
47(3): 542-553.
37. Szelecz, I., Sorge, F., Seppey, C.V., Mulot, M., Steel, H., Neilson, R., ... and Mitchell, E.A.
(2016). Effects of decomposing cadavers on soil nematode communities over a
one-year period. Soil Biology and Biochemistry, 103: 405-416.
38. Larizza, M. (2010). Physical and chemical analysis of pig carcass
decomposition in fine sand (Master’s thesis).
Retrieved from https://ir.library.dc-
uoit.ca/bitstream/10155/115/1/Larizza_Melina.pdf
39. Swann, L, Chidlow, G.E., Forbes, S.L. and Lewis, S.W. (2010).
Preliminary studies into the characterization of chemical markers of
decomposition for geoforensics. Journal of Forensic Sciences, 55(2): 308-314.
40. Swann, L., Forbes, S.L. and Lewis, S. W. (2010b). Observations of the
temporal variation in chemical content of decomposition fluid: A preliminary
study using pigs as a model system. Australian
Journal of Forensic Sciences, 42(3):199-210.
41. Mann, R.W., Bass, W.M. and
Meadows, L. (1990). Time since
death and decomposition of the human body: variables and observations in case
and experimental field studies. Journal
of Forensic Science, 35(1): 103-111.
42. Fiedler, S. and Graw, M. (2003). Decomposition of buried corpses, with
special reference to the formation of adipocere. Naturwissenschaften, 90: 291-300.
43. Bachmann, J. and Simmons, T. (2010). The influence of preburial insect access on the decomposition rate. Journal of Forensic Science, 55(4):
893-900.
44. Stokes, K.L., Forbes, S.L., Benninger, L.A., Carter, D.O. and Tibbett,
M. (2009). Decomposition studies using animal models in contrasting
environments: evidence from temporal changes in soil chemistry and microbial
activity. Ritz, K., A. Criminal and
Environmental Soil Forensic, pp.1-519. Porirua, New Zealand: Springer.
45. Rachel, A.P., Kerith-Rae, D., Jacqui, H., Paul, G., Natasha, B., Mark,
T. and Arpad, A. V. (2009). Microbial community analysis of human decomposition
on soil. In book of Criminal and
Environmental Soil Forensic, pp 379-394.
46. DeBruyn, J.M., Hoeland, K.M., Taylor, L.S.,
Stevens, J.D., Moats, M.A., Bandopadhyay, S., ... and Steadman, D.W. (2021). Comparative
decomposition of humans and pigs: soil biogeochemistry, microbial activity and
metabolomic profiles. Frontiers in Microbiology, 11: 608856.
47. Sukchit, M., Deowanish,
S. and Butcher, B. A. (2015). Decomposition stages and carrion insect
succession on dressed hanging pig carcasses in Nan Province, Northern Thailand.
Tropical Natural History, 15(2): 137-153.
48. Schmidt, M.W.I., Torn, M.S., Abiven, S.,
Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P.,
Weiner, S. and Trumbore, S.E. (2011). Persistence of soil organic matter as an
ecosystem property. Nature, 478:
49-56.
49. Jansen, B. and Wiesenberg, G.L.B. (2017). Opportunities and limitations
related to the application of plant-derived lipid molecular proxies in soil
science. Soil, 3: 211-234.
50. Janaway, R.C. (1996). The decay of buried human remains and their associated
materials. In: Studies in crime: An introduction to forensic archaeology (Eds.
J Hunter, C Roberts and A Martin), pp. 58-85. Batesford,
London.
51. Carter, D.O. and Tibbett, M. (2006). Microbial decomposition of skeletal
muscle tissue (Ovis aries)
in a sandy loam soil at different temperatures. Soil Biology and Biochemistry, 38(5): 1139-1145.