Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1257 – 1273

 

ELECTROCHEMICAL ELIMINATION OF METHYLENE BLUE DYE USING CARBON CLOTH MATERIAL

 

(Penghapusan Elektokimia Pewarna Biru Metilena Menggunakan Bahan

Kain Karbon)

 

Fouad Fadhil Al-Qaim1, Zainab Haider Mussa2, Shaymaa Hadi Al-Rubaye3, Nur Sofiah Abu Kassim4,

and Nurul Auni Zainal Abidin4*

 

1Department of Chemistry, Faculty of Science for Women,

University of Babylon, PO Box 4, Hilla, Iraq

2College of Biotechnology,

Al-Qasim Green University, Al-Qasim, Iraq

3Hammurabi College Medicine,

University of Babylon, PO Box 4, Hilla, Iraq

4School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM),

Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: nurulauni@uitm.edu.my

 

 

Received: 5 May 2023; Accepted: 24 October 2023; Published:  29 December 2023

 

 

Abstract

The effectiveness of the electrochemical technique to remove methylene blue (MB) from its aqueous solution was demonstrated in the current investigation. Various electrodes were used to explore the electrochemical process namely: aluminium (Al), copper (Cu) and carbon cloth (CC) as anode while the cathode was carbon cloth to select the highest removal%. Carbon cloth was selected as the best electrode due to its high efficiency for removal of MB dye compared to others. The effects of applied voltage, electrolysis time, and sodium chloride were investigated to identify the optimal conditions. Response surface approaches were used, however, to fully conceptualize how the factors interacted and get the best methylene blue dye elimination percentage using the electrochemical process. Rate constants ranged between 0.163 and 0.345 min-1, demonstrating that high-rate constant accompanied pseudo first order kinetics, which was the dominating model throughout the investigation with high applied voltage and NaCl amount. Consumption energy was considered and measured; it was 0.104 Wh/mg at the maximum value applying 5 V referring that high consumption energy followed by high applied voltage. Utilizing response surface methodology (RSM), the electrochemical operating factor was optimized. The influence of NaCl addition rate, treatment time, and applied voltage were analysed using the optimum model derived from Box-Behnken Design (BBD), which was quadratic with MB removal (R2 = 0.9447).

 

Keywords: methylene blue, electrochemical process, carbon cloth anode, energy consumption, pseudo first order kinetics

 

 

Abstrak

Keberkesanan teknik elektrokimia untuk mengeluarkan metilena biru (MB) daripada larutan akueusnya telah ditunjukkan di dalam kajian semasa. Pelbagai elektrod digunakan untuk meneroka proses elektrokimia iaitu: aluminium (Al), kuprum (Cu) dan kain karbon (CC) sebagai anod manakala katod adalah kain karbon untuk memilih penyingkiran tertinggi%. Kain karbon dipilih sebagai elektrod terbaik kerana kecekapannya yang tinggi untuk menanggalkan pewarna MB berbanding yang lain. Pemalar kadar berjulat antara 0.163 dan 0.345 min-1, menunjukkan bahawa pemalar kadar tinggi mengiringi kinetik tertib pertama pseudo, yang merupakan model yang mendominasi bagi penyiasatan dengan penggunaan voltan tinggi dan jumlah NaCl. Penggunaan tenaga telah dipertimbangkan dan diukur; ia adalah 0.104 Wh/mg pada nilai maksimum menggunakan 5 V merujuk tenaga penggunaan tinggi diikuti dengan voltan gunaan tinggi. Dengan menggunakan kaedah permukaan tindak balas (RSM), faktor pengendalian elektrokimia telah dioptimumkan. Pengaruh kadar penambahan NaCl, masa rawatan, dan voltan gunaan dianalisis menggunakan model optimum yang diperolehi daripada Reka Bentuk Box-Behnken (BBD), iaitu kuadratik dengan penyingkiran MB (R2 = 0.9447).

 

Kata kunci: metilena biru, proses elektrokimia, kain karbon anod, penggunaan tenaga


 


References

1.     Smith, Y.R., Bhattacharyya, D., Willhard, T. and Misra, M. (2016). Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chemical Engineering Journal, 296: 102-111.

2.     González, J.A., Villanueva, M.E., Piehl, L.L. and Copello, G.J. (2015). Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study. Chemical Engineering Journal, 280: 41-48.

3.     El Messaoudi, N., El Khomri, M., Dbik, A., Bentahar, S., Lacherai, A. and Bakiz, B. (2016). Biosorption of Congo red in a fixed-bed column from aqueous solution using jujube shell: Experimental and mathematical modeling. Journal of Environmental Chemical Engineering, 4:3848-3855.

4.     Thuong, N.T., Nhi, N.T.T., Nhung, V.T.C., Bich, H.N., Quynh, B.T.P., Bach, L.G., Trinh, N.D. (2019). A fixed-bed column study for removal of organic dyes from aqueous solution by pre-treated durian peel waste. Indonesian Journal of Chemistry, 19: 486-494.

5.     Zhou. Y., Lu, J., Zhou. Y. and Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution,  252: 352-365.

6.     Afroze, S., Sen, T. K., Ang, M. and Nishioka, H. (2016). Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism. Desalination and Water Treatment, 57: 5858-5878.

7.     Pandian, A., Karthikeyan, C. and Rajasimman, M. (2017). Isotherm and kinetic studies on adsorption of malachite green using chemically synthesized silver nanoparticles. Nanotechnology for Environmental Engineering, 2: 1-17.

8.     Bentahar, S., Dbik, A., El Khomri, M., El Messaoudi, N. and Lacherai, A.  (2018). Removal of a cationic dye from aqueous solution by natural clay. Groundwater for Sustainable Development, 6: 255-262.

9.     El Messaoudi, N., El Khomri, M., Goodarzvand Chegini, Z., Chlif, N., Dbik, A., Bentahar, S. and Lacherai, A.  (2021). Desorption study and reusability of raw and H2SO4 modified jujube shells (Zizyphus lotus) for the methylene blue adsorption. International Journal of Environmental Analytical Chemistry, 2021: 1-17.

10.  Sarasa, J., Roche, M.P., Ormad, M.P., Gimeno, E., Puig, A. and Ovelleiro, J.L.  (1998). Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Research, 32: 2721-2727.

11.  Sarıcı Özdemir, Ç. (2019). Equilibrium, kinetic, diffusion and thermodynamic applications for dye adsorption with pine cone. Separation Science and Technology, 54: 3046-3054.

12.  Adeogun, A. I. (2020). Removal of methylene blue dye from aqueous solution using activated charcoal modified manganese ferrite (AC-MnFe2O4): kinetics, isotherms, and thermodynamics studies. Particulate Science and Technology, 38: 756-767.

13.  Ijagbemi, C.O., Chun, J.I., Han, D.H., Cho, H.Y. and Kim, D.S. (2010). Methylene blue adsorption from aqueous solution by activated carbon: Effect of acidic and alkaline solution treatments. Journal of Environmental Science and Health, Part A, 45(8): 958-967.

14. Modi, S., Yadav, V.K., Gacem, A., Ali, I.H., Dave, D., Khan, S.H. and Jeon, B.H. (2022). Recent and emerging trends inremediation of methylene blue dye from wastewater by using zinc oxide nanoparticles. Water, 14(11): 1749.

15. Kurian, M. (2021). Advanced oxidation processes and nanomaterials-a review. Cleaner Engineering and Technology, 2: 100090.

16. Mussa, Z.H., Al-Ameer, L.R., Al-Qaim, F.F., Deyab, I.F., Kamyab, H., Chelliapan, S. (2023). A comprehensive review on adsorption of methylene blue dye using leaf waste as a bio-sorbent: isotherm adsorption, kinetics, and thermodynamics studies. Environmental Monitoring and Assessment, 195(8): 940.

17.  Kraft, A. (2008). Electrochemical water disinfection: a short review. Platinum Metals Review, 52: 177-185.

18.  Oturan, M.A. (2021). Outstanding performances of the BDD film anode in electro-Fenton process: Applications and comparative performance. Current Opinion in Solid State & Materials Science, 25: 10092.

19.  Deng, Y. and Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1: 167-176.

20.  Ghasemian, S. and Omanovic, S. (2017). Fabrication and characterization of photoelectrochemically-active Sb-doped Snx-W (100-x)%-oxide anodes: Towards the removal of organic pollutants from wastewater. Applied Surface Science, 416: 318-328.

21.  Zhao, Q., Ge, Y., Zuo, P., Shi, D. and Jia, S. (2016). Degradation of thiamethoxam in aqueous solution by ozonation: influencing factors, intermediates, degradation mechanism and toxicity assessment. Chemosphere, 146: 105-112.

22.  Mohamed, F.F., Allah, P.M.A., Mehdi, A. and Baseem, M. (2011). Photoremoval of malachite green (MG) using advanced oxidation process. Research Journal of Chemistry and Environment, 15(3): 65-70.

23.  Haryadi, H., Purnama, M.R.W. and Wibowo, A. (2018). C dots derived from waste of biomass and their photocatalytic activities. Indonesian Journal of Chemistry, 18: 594-599.

24.  Michael, I., Achilleos, A., Lambropoulou, D., Torrens, V.O., Pérez, S., Petrović, M. and Fatta-Kassinos, D. (2014). Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono) photocatalysis. Applied Catalysis B: Environmental, 147: 1015-1027.

25.  Mussa, Z.H., Othman, M.R. and Abdullah, M.P. (2013). Electrocoagulation and decolorization of landfill leachate. In: AIP Conference Proceedings. American Institute of Physics, 2013: 829-834.

26.  Zhao, W., Xing, J., Chen, D., Jin, D. and Shen, J. (2016). Electrochemical degradation of Musk ketone in aqueous solutions using a novel porous Ti/SnO2-Sb2O3/PbO2 electrodes. Journal of Electroanalytical Chemistry, 775: 179-188.

27.  Ghasemian, S., Asadishad, B., Omanovic, S. and Tufenkji, N. (2017). Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes. Water Research, 126: 299-307.

28.  Singh, S., Lo, S. L., Srivastava, V.C. and Hiwarkar, A.D. (2016). Comparative study of electrochemical oxidation for dye degradation: parametric optimization and mechanism identification. Journal Environmental Chemical Engineering, 4: 2911-2921.

29.  Moreira, F.C., Boaventura, R.A.R., Brillas, E. and Vilar, V.J.P. (2017). Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202: 217-261.

30.  Feldman-Maggor, Y., Rom, A. and Tuvi-Arad, I. (2016). Integration of open educational resources in undergraduate chemistry teaching–a mapping tool and lecturers’ considerations. Chemistry Education Research and Practice, 17: 283-295.

31.  Solano, A.M.S., de Araújo, C.K.C., de Melo, J.V., Peralta-Hernandez, J.M., da Silva, D.R. and Martínez-Huitle, C.A. (2013). Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: viability and disadvantages of this electrochemical technology. Applied Catalysis B: Environmental, 130: 112-120.

32.  da Silva, A.J.C., dos Santos, E.V., de Oliveira Morais, C.C., Martínez-Huitle, C.A. and Castro, S.S.L. (2013). Electrochemical treatment of fresh, brine and saline produced water generated by petrochemical industry using Ti/IrO2–Ta2O5 and BDD in flow reactor. Chemical Engineering Journal, 233: 47-55.

33.  Yahiaoui, I., Aissani-Benissad, F., Fourcade, F. and Amrane, A. (2013). Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2 electrode) coupled to activated sludge culture. Chemical Engineering Journal, 221: 418-425.

34.  Haider Mussa, Z., Fadhil Al-Qaim, F., Yuzir, A. and Shameli, K. (2020). Electrochemical degradation of metoprolol using graphite-PVC composite as anode: elucidation and characterization of new by-products using LC-TOF/MS. Journal of the Mexican Chemical Society, 64: 165-180.

35.  Anglada, A., Urtiaga, A. and Ortiz, I. (2009). Contributions of electrochemical oxidation to waste‐water treatment: fundamentals and review of applications. Journal of Chemical Technology and Biotechnology, 84: 1747-1755.

36.  Brillas, E. (2020). A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere, 250: 126198.

37.  Ay, F., Catalkaya, E.C. and Kargi, F. (2009). A statistical experiment design approach for advanced oxidation of direct Red azo-dye by photo-Fenton treatment. Journal of Hazardous Materials, 162: 230-236.

38.  Roudi, A.M., Kamyab, H., Chelliapan, S., Ashokkumar, V., Kumar, A., Yadav, K.K. and Gupta, N.  (2020). Application of response surface method for total organic carbon reduction in leachate treatment using Fenton process. Environmental Technology & Innovation, 19: 101009.

39.  Ravikumar, K., Krishnan, S., Ramalingam, S. and Balu, K. (2007). Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent. Dye Pigment, 72: 66-74.

40.  Thirugnanasambandham, K., Sivakumar, V. and Maran, J.P. (2013). Application of chitosan as an adsorbent to treat rice mill wastewater-mechanism, modelling and optimization. Carbohydrate Polymers, 97: 451-457.

41.  Kamyab, H., Yuzir, M.A., Al-Qaim, F.F., Purba, L.D.A. and Riyadi, F.A.  (2021). Application of Box-Behnken design to mineralization and color removal of palm oil mill effluent by electrocoagulation process. Environmental Science and Pollution Research, 30(28): 71741-71753.

42.  Barrera-Díaz, C.E., Frontana-Uribe, B.A., Roa-Morales, G. and Bilyeu, B.W. (2015). Reduction of pollutants and disinfection of industrial wastewater by an integrated system of copper electrocoagulation and electrochemically generated hydrogen peroxide. Journal of Environmental Science and Health, Part A, 50: 406-413.

43.  Prajapati, A.K., Chaudhari, P.K., Pal, D., Chandrakar, A. and Choudhary, R. (2016). Electrocoagulation treatment of rice grain based distillery effluent using copper electrode. Journal of Water Process Engineering, 11: 1-7.

44.  Safwat, S.M., Hamed, A. and Rozaik, E. (2019). Electrocoagulation/electroflotation of real printing wastewater using copper electrodes: a comparative study with aluminum electrodes. Separation Science and Technology, 54: 183-194.

45.  Niazmand, R., Jahani, M. and Kalantarian, S. (2019). Treatment of olive processing wastewater by electrocoagulation: An effectiveness and economic assessment. Journal of Environmental Management, 248: 109262.

46.  El-Ashtoukhy, E.S.Z., Amin, N.K., Abd El-Latif, M.M., Bassyouni, D.G. and Hamad, H.A. (2017). New insights into the anodic oxidation and electrocoagulation using a self-gas stirred reactor: A comparative study for synthetic CI Reactive Violet 2 wastewater. Journal of Cleaner Production, 167: 432-446.

47.  Nasution, A., Ng, B.L., Ali, E., Yaakob, Z. and Kamarudin, S.K. (2014). Electrocoagulation of palm oil mill effluent for treatment and hydrogen production using response surface methodology. Polish Journal of Environmental Studies, 23(5):1669-1677.

48.  Liu, H., Cheng, S. and Logan, B.E. (2005).. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39: 5488-5493.

49.  Paulista, L.O., Presumido, P.H., Theodoro, J.D.P. and Pinheiro, A.L.N. (2018). Efficiency analysis of the electrocoagulation and electroflotation treatment of poultry slaughterhouse wastewater using aluminum and graphite anodes. Environmental Science and Pollution Research, 25: 19790-19800.

50.  Garcia-Segura, S., Eiband, M.M.S.G., de Melo, J.V. and Martínez-Huitle, C.A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801: 267-299

51. Alaoui, A., El Kacemi, K., El Ass, K., Kitane, S. and El Bouzidi, S. (2015). Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution. Separation and Purification Technology, 154: 281-289.

52.  Ashrafi, S.D., Safari, G.H., Sharafi, K., Kamani, H. and Jaafari, J. (2021). Adsorption of 4-nitrophenol on calcium alginate-multiwall carbon nanotube beads: Modeling, kinetics, equilibriums and reusability studies. International Journal of Biological Macromolecules, 185: 66-76.

53. Shokoohi, R., Nematollahi, D., Samarghandi, M.R., Azarian, G. and Latifi, Z. (2020). Optimization of three-dimensional electrochemical process for degradation of methylene blue from aqueous environments using central composite design. Environmental Technology & Innovation, 18: 100711.