Malaysian
Journal of Analytical Sciences, Vol 27 No
6 (2023): 1257 – 1273
ELECTROCHEMICAL
ELIMINATION OF METHYLENE BLUE DYE USING CARBON CLOTH MATERIAL
(Penghapusan Elektokimia Pewarna Biru Metilena Menggunakan Bahan
Kain Karbon)
Fouad
Fadhil Al-Qaim1, Zainab Haider Mussa2, Shaymaa
Hadi Al-Rubaye3, Nur Sofiah Abu Kassim4,
and Nurul
Auni Zainal Abidin4*
1Department of Chemistry, Faculty of
Science for Women,
University of Babylon, PO Box 4,
Hilla, Iraq
2College of
Biotechnology,
Al-Qasim
Green University, Al-Qasim, Iraq
3Hammurabi College Medicine,
University of Babylon, PO Box 4,
Hilla, Iraq
4School
of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi
MARA (UiTM),
Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan,
Malaysia
*Corresponding author: nurulauni@uitm.edu.my
Received: 5 May 2023; Accepted: 24
October 2023; Published: 29 December
2023
Abstract
The effectiveness
of the electrochemical technique to remove methylene blue (MB) from its aqueous
solution was demonstrated in the current investigation. Various electrodes were
used to explore the electrochemical process namely: aluminium (Al), copper (Cu)
and carbon cloth (CC) as anode while the cathode was carbon cloth to select the
highest removal%. Carbon cloth was selected as the best electrode due to its
high efficiency for removal of MB dye compared to others. The effects of
applied voltage, electrolysis time, and sodium chloride were investigated to
identify the optimal conditions. Response surface approaches were used,
however, to fully conceptualize how the factors interacted and get the best
methylene blue dye elimination percentage using the electrochemical process. Rate
constants ranged between 0.163 and 0.345 min-1, demonstrating that
high-rate constant accompanied pseudo first order kinetics, which was the
dominating model throughout the investigation with high applied voltage and
NaCl amount. Consumption energy was considered and measured; it was 0.104 Wh/mg at the maximum value applying 5 V referring that high
consumption energy followed by high applied voltage. Utilizing
response surface methodology (RSM), the electrochemical operating factor was
optimized. The influence of NaCl addition rate, treatment time, and applied
voltage were analysed using the optimum model derived from Box-Behnken Design
(BBD), which was quadratic with MB removal (R2 = 0.9447).
Keywords: methylene
blue, electrochemical process, carbon cloth anode, energy consumption, pseudo
first order kinetics
Abstrak
Keberkesanan teknik elektrokimia untuk mengeluarkan
metilena biru (MB) daripada larutan akueusnya telah ditunjukkan di dalam kajian
semasa. Pelbagai elektrod digunakan untuk meneroka proses elektrokimia iaitu:
aluminium (Al), kuprum (Cu) dan kain karbon (CC) sebagai anod manakala katod
adalah kain karbon untuk memilih penyingkiran tertinggi%. Kain karbon dipilih
sebagai elektrod terbaik kerana kecekapannya yang tinggi untuk menanggalkan
pewarna MB berbanding yang lain. Pemalar kadar berjulat antara 0.163 dan 0.345
min-1, menunjukkan bahawa pemalar kadar tinggi mengiringi kinetik
tertib pertama pseudo, yang merupakan model yang mendominasi bagi penyiasatan
dengan penggunaan voltan tinggi dan jumlah NaCl. Penggunaan tenaga telah
dipertimbangkan dan diukur; ia adalah 0.104 Wh/mg pada nilai maksimum
menggunakan 5 V merujuk tenaga penggunaan tinggi diikuti dengan voltan gunaan
tinggi. Dengan
menggunakan kaedah permukaan tindak balas (RSM), faktor pengendalian
elektrokimia telah dioptimumkan. Pengaruh kadar penambahan NaCl, masa rawatan,
dan voltan gunaan dianalisis menggunakan model optimum yang diperolehi daripada
Reka Bentuk Box-Behnken (BBD), iaitu kuadratik dengan penyingkiran MB (R2 =
0.9447).
Kata kunci: metilena biru, proses elektrokimia, kain karbon anod, penggunaan
tenaga
References
1. Smith, Y.R.,
Bhattacharyya, D., Willhard, T. and Misra, M. (2016). Adsorption of aqueous
rare earth elements using carbon black derived from recycled tires. Chemical
Engineering Journal, 296: 102-111.
2. González, J.A.,
Villanueva, M.E., Piehl, L.L. and Copello, G.J. (2015). Development of a
chitin/graphene oxide hybrid composite for the removal of pollutant dyes:
adsorption and desorption study. Chemical Engineering Journal, 280: 41-48.
3. El
Messaoudi, N., El Khomri, M., Dbik, A., Bentahar,
S., Lacherai, A. and Bakiz,
B. (2016). Biosorption of Congo red in a fixed-bed
column from aqueous solution using jujube shell: Experimental and mathematical
modeling. Journal of Environmental Chemical Engineering, 4:3848-3855.
4. Thuong, N.T.,
Nhi, N.T.T., Nhung, V.T.C., Bich, H.N., Quynh, B.T.P.,
Bach, L.G., Trinh, N.D. (2019). A fixed-bed column study for
removal of organic dyes from aqueous solution by pre-treated durian peel waste.
Indonesian Journal of Chemistry, 19: 486-494.
5. Zhou.
Y., Lu, J., Zhou. Y. and Liu, Y. (2019). Recent advances for
dyes removal using novel adsorbents: A review. Environmental Pollution, 252: 352-365.
6. Afroze, S.,
Sen, T. K., Ang, M. and Nishioka, H. (2016). Adsorption of methylene blue dye
from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium,
kinetics, thermodynamics and mechanism. Desalination and Water Treatment,
57: 5858-5878.
7. Pandian, A.,
Karthikeyan, C. and Rajasimman, M. (2017). Isotherm and kinetic studies on
adsorption of malachite green using chemically synthesized silver
nanoparticles. Nanotechnology for Environmental Engineering, 2: 1-17.
8. Bentahar, S.,
Dbik, A., El Khomri, M., El Messaoudi, N. and Lacherai, A. (2018). Removal of a cationic dye
from aqueous solution by natural clay. Groundwater for Sustainable
Development, 6: 255-262.
9. El Messaoudi,
N., El Khomri, M., Goodarzvand Chegini, Z., Chlif, N., Dbik, A.,
Bentahar, S. and Lacherai, A. (2021).
Desorption study and reusability of raw and H2SO4
modified jujube shells (Zizyphus lotus) for the methylene blue adsorption. International
Journal of Environmental Analytical Chemistry, 2021: 1-17.
10. Sarasa, J.,
Roche, M.P., Ormad, M.P., Gimeno, E., Puig, A. and Ovelleiro, J.L. (1998). Treatment
of a wastewater resulting from dyes manufacturing with ozone and chemical
coagulation. Water Research, 32: 2721-2727.
11. Sarıcı
Özdemir, Ç. (2019). Equilibrium, kinetic, diffusion and thermodynamic
applications for dye adsorption with pine cone. Separation Science and
Technology, 54: 3046-3054.
12. Adeogun, A. I.
(2020). Removal of methylene blue dye from aqueous solution using activated
charcoal modified manganese ferrite (AC-MnFe2O4):
kinetics, isotherms, and thermodynamics studies. Particulate Science and
Technology, 38: 756-767.
13. Ijagbemi, C.O., Chun, J.I., Han, D.H.,
Cho, H.Y. and Kim, D.S. (2010). Methylene blue adsorption from aqueous solution
by activated carbon: Effect of acidic and alkaline solution treatments. Journal
of Environmental Science and Health, Part A, 45(8): 958-967.
14. Modi, S., Yadav, V.K., Gacem, A., Ali, I.H., Dave, D., Khan, S.H.
and Jeon, B.H. (2022). Recent and emerging trends inremediation
of methylene blue dye from wastewater by using zinc oxide nanoparticles. Water,
14(11): 1749.
15. Kurian, M. (2021). Advanced oxidation processes and nanomaterials-a
review. Cleaner Engineering and Technology, 2: 100090.
16. Mussa, Z.H., Al-Ameer, L.R., Al-Qaim, F.F., Deyab,
I.F., Kamyab, H., Chelliapan,
S. (2023). A comprehensive review on adsorption of methylene blue dye using
leaf waste as a bio-sorbent: isotherm adsorption, kinetics, and thermodynamics
studies. Environmental Monitoring and Assessment, 195(8): 940.
17. Kraft, A.
(2008). Electrochemical water disinfection: a short review. Platinum Metals
Review, 52: 177-185.
18. Oturan, M.A.
(2021). Outstanding performances of the BDD film anode in electro-Fenton
process: Applications and comparative performance. Current Opinion in Solid
State & Materials Science, 25: 10092.
19. Deng, Y. and Zhao,
R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current
Pollution Reports, 1: 167-176.
20. Ghasemian, S.
and Omanovic, S. (2017). Fabrication and characterization of
photoelectrochemically-active Sb-doped Snx-W (100-x)%-oxide anodes:
Towards the removal of organic pollutants from wastewater. Applied Surface
Science, 416: 318-328.
21. Zhao, Q., Ge,
Y., Zuo, P., Shi, D. and Jia, S. (2016). Degradation
of thiamethoxam in aqueous solution by ozonation: influencing factors,
intermediates, degradation mechanism and toxicity assessment. Chemosphere,
146: 105-112.
22. Mohamed, F.F.,
Allah, P.M.A., Mehdi, A. and Baseem, M. (2011). Photoremoval of malachite green
(MG) using advanced oxidation process. Research Journal of Chemistry and
Environment, 15(3): 65-70.
23. Haryadi, H.,
Purnama, M.R.W. and Wibowo, A. (2018). C dots derived from waste of biomass and
their photocatalytic activities. Indonesian Journal of Chemistry, 18: 594-599.
24. Michael,
I., Achilleos, A., Lambropoulou, D., Torrens,
V.O., Pérez, S., Petrović, M. and Fatta-Kassinos,
D. (2014). Proposed transformation pathway and
evolution profile of diclofenac and ibuprofen transformation products during
(sono) photocatalysis. Applied Catalysis B: Environmental, 147: 1015-1027.
25. Mussa, Z.H.,
Othman, M.R. and Abdullah, M.P. (2013). Electrocoagulation and decolorization
of landfill leachate. In: AIP Conference Proceedings. American Institute of
Physics, 2013: 829-834.
26. Zhao, W., Xing,
J., Chen, D., Jin, D. and Shen, J. (2016). Electrochemical
degradation of Musk ketone in aqueous solutions using a novel porous Ti/SnO2-Sb2O3/PbO2
electrodes. Journal of Electroanalytical Chemistry, 775: 179-188.
27. Ghasemian, S.,
Asadishad, B., Omanovic, S. and Tufenkji, N. (2017). Electrochemical
disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide
electrodes. Water Research, 126: 299-307.
28. Singh, S., Lo,
S. L., Srivastava, V.C. and Hiwarkar, A.D. (2016). Comparative study of
electrochemical oxidation for dye degradation: parametric optimization and
mechanism identification. Journal Environmental Chemical Engineering, 4:
2911-2921.
29. Moreira, F.C.,
Boaventura, R.A.R., Brillas, E. and Vilar, V.J.P. (2017). Electrochemical
advanced oxidation processes: a review on their application to synthetic and
real wastewaters. Applied Catalysis B: Environmental, 202: 217-261.
30. Feldman-Maggor,
Y., Rom, A. and Tuvi-Arad, I. (2016). Integration of open educational resources
in undergraduate chemistry teaching–a mapping tool and lecturers’
considerations. Chemistry Education Research and Practice, 17: 283-295.
31. Solano, A.M.S.,
de Araújo, C.K.C., de Melo, J.V., Peralta-Hernandez,
J.M., da Silva, D.R. and Martínez-Huitle, C.A. (2013).
Decontamination of real textile industrial effluent by strong oxidant species
electrogenerated on diamond electrode: viability and disadvantages of this
electrochemical technology. Applied Catalysis B:
Environmental, 130: 112-120.
32. da Silva, A.J.C., dos Santos, E.V., de Oliveira Morais, C.C., Martínez-Huitle, C.A. and Castro, S.S.L. (2013). Electrochemical treatment of fresh, brine
and saline produced water generated by petrochemical industry using Ti/IrO2–Ta2O5
and BDD in flow reactor. Chemical Engineering Journal, 233: 47-55.
33. Yahiaoui, I.,
Aissani-Benissad, F., Fourcade, F. and Amrane, A. (2013). Removal of
tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2
electrode) coupled to activated sludge culture. Chemical Engineering
Journal, 221: 418-425.
34. Haider Mussa,
Z., Fadhil Al-Qaim, F., Yuzir, A. and Shameli, K. (2020). Electrochemical degradation
of metoprolol using graphite-PVC composite as anode: elucidation and
characterization of new by-products using LC-TOF/MS. Journal of the Mexican
Chemical Society, 64: 165-180.
35. Anglada,
A., Urtiaga, A. and Ortiz, I. (2009). Contributions of electrochemical
oxidation to waste‐water treatment: fundamentals and review of
applications. Journal of Chemical Technology and Biotechnology, 84: 1747-1755.
36. Brillas, E.
(2020). A review on the photoelectro-Fenton process as efficient
electrochemical advanced oxidation for wastewater remediation. Treatment with
UV light, sunlight, and coupling with conventional and other photo-assisted
advanced technologies. Chemosphere, 250: 126198.
37. Ay, F.,
Catalkaya, E.C. and Kargi, F. (2009). A statistical experiment design approach
for advanced oxidation of direct Red azo-dye by photo-Fenton treatment. Journal
of Hazardous Materials, 162: 230-236.
38. Roudi, A.M.,
Kamyab, H., Chelliapan, S., Ashokkumar, V., Kumar, A.,
Yadav, K.K. and Gupta, N. (2020). Application of response surface
method for total organic carbon reduction in leachate treatment using Fenton
process. Environmental Technology & Innovation, 19: 101009.
39. Ravikumar, K.,
Krishnan, S., Ramalingam, S. and Balu, K. (2007). Optimization of process
variables by the application of response surface methodology for dye removal
using a novel adsorbent. Dye Pigment, 72: 66-74.
40. Thirugnanasambandham,
K., Sivakumar, V. and Maran, J.P. (2013). Application of chitosan as an
adsorbent to treat rice mill wastewater-mechanism, modelling and optimization. Carbohydrate
Polymers, 97: 451-457.
41. Kamyab, H.,
Yuzir, M.A., Al-Qaim, F.F., Purba, L.D.A. and Riyadi, F.A. (2021).
Application of Box-Behnken design to mineralization and color removal of palm
oil mill effluent by electrocoagulation process. Environmental Science and
Pollution Research, 30(28): 71741-71753.
42. Barrera-Díaz,
C.E., Frontana-Uribe, B.A., Roa-Morales, G. and Bilyeu, B.W. (2015). Reduction
of pollutants and disinfection of industrial wastewater by an integrated system
of copper electrocoagulation and electrochemically generated hydrogen peroxide.
Journal of Environmental Science and Health, Part A, 50: 406-413.
43. Prajapati, A.K.,
Chaudhari, P.K., Pal, D., Chandrakar, A. and Choudhary, R. (2016). Electrocoagulation treatment of
rice grain based distillery effluent using copper electrode. Journal of
Water Process Engineering, 11: 1-7.
44. Safwat, S.M., Hamed,
A. and Rozaik, E. (2019). Electrocoagulation/electroflotation of real printing
wastewater using copper electrodes: a comparative study with aluminum
electrodes. Separation Science and Technology, 54: 183-194.
45. Niazmand, R.,
Jahani, M. and Kalantarian, S. (2019). Treatment of olive processing wastewater
by electrocoagulation: An effectiveness and economic assessment. Journal of
Environmental Management, 248: 109262.
46. El-Ashtoukhy,
E.S.Z., Amin, N.K., Abd El-Latif, M.M., Bassyouni, D.G. and Hamad, H.A. (2017).
New insights into the anodic oxidation and electrocoagulation using a self-gas
stirred reactor: A comparative study for synthetic CI Reactive Violet 2
wastewater. Journal of Cleaner Production, 167: 432-446.
47. Nasution, A.,
Ng, B.L., Ali, E., Yaakob, Z. and Kamarudin, S.K. (2014).
Electrocoagulation of palm oil mill effluent for treatment and hydrogen
production using response surface methodology. Polish Journal of
Environmental Studies, 23(5):1669-1677.
48. Liu, H., Cheng,
S. and Logan, B.E. (2005).. Power generation in fed-batch microbial fuel cells
as a function of ionic strength, temperature, and reactor configuration. Environmental
Science & Technology, 39: 5488-5493.
49. Paulista, L.O.,
Presumido, P.H., Theodoro, J.D.P. and Pinheiro, A.L.N. (2018). Efficiency
analysis of the electrocoagulation and electroflotation treatment of poultry
slaughterhouse wastewater using aluminum and graphite anodes. Environmental
Science and Pollution Research, 25: 19790-19800.
50. Garcia-Segura,
S., Eiband, M.M.S.G., de Melo, J.V. and Martínez-Huitle, C.A. (2017).
Electrocoagulation and advanced electrocoagulation processes: A general review
about the fundamentals, emerging applications and its association with other
technologies. Journal of Electroanalytical Chemistry, 801: 267-299
51. Alaoui, A., El Kacemi, K., El Ass, K.,
Kitane, S. and El Bouzidi, S. (2015). Activity of Pt/MnO2
electrode in the electrochemical degradation of methylene blue in aqueous
solution. Separation and Purification Technology, 154:
281-289.
52. Ashrafi, S.D.,
Safari, G.H., Sharafi, K., Kamani, H. and Jaafari, J. (2021).
Adsorption of 4-nitrophenol on calcium alginate-multiwall carbon nanotube
beads: Modeling, kinetics, equilibriums and reusability studies. International
Journal of Biological Macromolecules, 185: 66-76.
53. Shokoohi, R., Nematollahi, D., Samarghandi, M.R., Azarian, G. and Latifi, Z. (2020).
Optimization of three-dimensional electrochemical process for degradation of
methylene blue from aqueous environments using central composite design. Environmental
Technology & Innovation, 18: 100711.