Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1216-1235

 

MICROPLASTICS IN THE ENVIRONMENT: PROPERTIES, IMPACTS AND REMOVAL STRATEGIES

 

(Mikroplastik dalam Alam Sekitar: Sifat, Kesan dan Strategi Penyingkiran)

 

Iwani W. Rushdi1,2, Rabiatul S. Rusidi1,2, Wan M. Khairul2, Sofiah Hamzah3, Wan Mohd Afiq Wan Mohd Khalik1,2, Sabiqah Tuan Anuar1,2, Nor Salmi Abdullah4, Nasehir Khan E.M. Yahya4 and Alyza A. Azmi1,2*

 

1Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

2Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, Universiti 21030 Kuala Nerus, Terengganu, Malaysia.

3Faculty of Ocean Engineering Technology and Informatics,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

4Water Quality Laboratory, National Water Research Institute of Malaysia (NAHRIM),

Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia

 

*Corresponding author: alyza.azzura@umt.edu.my

 

 

Received: 19 June 2023; Accepted: 15 October 2023: Published: 29 December 2023

 

 

Abstract

Microplastics (MPs) constitute an emerging class of pollutants that have garnered significant attention due to their omnipresence in marine and freshwater ecosystems. Particles with a diameter of less than 5 mm result from the degradation of larger plastic debris and the production of commercial plastic products. The pervasive occurrence of MPs in the environment is a primary concern due to their potential adverse effects on marine organisms and human health. MPs' high specific surface area and hydrophobicity make them effective adsorbents of other pollutants. Consequently, ingestion of MPs by organisms can lead to enhanced toxicity and bioaccumulation of these pollutants, causing significant harm to the ecosystem. This study offers a comprehensive overview of the properties of MPs, the routes of their entry into the environment, their impacts on environmental and human health, and current approaches for their removal. Physical, chemical, and biological methods for MP removal are discussed, including their benefits and drawbacks. However, there is an urgent need to develop novel, efficient, and cost-effective techniques for MP removal. The insights presented in this review aim to guide policymakers, scientists, and stakeholders in promoting sustainable management practices.

 

Keywords: microplastics, chemical contaminants, wastewater treatment plants, removal techniques

 

Abstrak

Mikroplastik (MP) merupakan kelas pencemar yang muncul dan telah mendapat perhatian utama pada masa ini kerana kehadirannya di dalam ekosistem marin dan air tawar. Zarah-zarah dengan diameter kurang daripada 5 mm ini terhasil daripada degradasi serpihan plastik yang lebih besar dan pengeluaran produk plastik komersial. Kemunculan MP yang berleluasa di alam sekitar ini telah menimbulkan kebimbangan kerana ianya berpotensi memberi kesan buruk terhadap organisma marin dan kesihatan manusia. Luas permukaan spesifik yang tinggi dan hidrofobik MP menjadikannya sebagai penjerap yang berkesan bagi bahan pencemar lain. Oleh itu, pendedahan MP terhadap organisma boleh membawa kepada peningkatan ketoksikan dan bioakumulasi bahan pencemar ini, dan seterusnya menyebabkan kemudaratan yang ketara kepada ekosistem. Ulasan ini memberikan gambaran menyeluruh tentang sifat-sifat MP, laluan masuk ke alam sekitar, kesannya terhadap alam sekitar dan kesihatan manusia, dan pendekatan semasa untuk penyingkiran mereka. Kaedah fizikal, kimia dan biologi untuk penyingkiran MP dibincangkan, termasuk kelebihan dan kelemahannya. Walau bagaimanapun, terdapat keperluan mendesak untuk membangunkan teknik baru yang cekap dan kos yang efektif untuk penyingkiran MP. Ulasan ini memberikan pandangan yang berharga untuk penggubal dasar, saintis dan pihak berkepentingan untuk menggalakkan amalan pengurusan yang mampan dan mengurangkan percambahan MP dalam alam sekitar.

 

Kata kunci: mikroplastik, pencemar kimia, loji rawatan sisa air, teknik penyingkiran

 


References

1.       Leal Filho, W., Salvia, A. L., Bonoli, A., Saari, U. A., Voronova, V., Klőga, M., ... and Barbir, J. (2021). An assessment of attitudes towards plastics and bioplastics in Europe. Science of the Total Environment, 755: 142732

2.       Anik, A. H., Hossain, S., Alam, M., Sultan, M. B., Hasnine, M. T. and Rahman, M. M. (2021). Microplastics pollution: A comprehensive review on the sources, fates, effects, and potential remediation. Environmental Nanotechnology, Monitoring & Management, 16: 100530.

3.       Kumar, R., Sharma, P., Manna, C. and Jain, M. (2021). Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review. Science of The Total Environment, 782: 146695.

4.       Golwala, H., Zhang, X., Iskander, S. M. and Smith, A. L. (2021). Solid waste: An overlooked source of microplastics to the environment. Science of the Total Environment, 769: 144581.

5.       Stenger, K. S., Wikmark, O. G., Bezuidenhout, C. C. and Molale-Tom, L. G. (2021). Microplastics pollution in the ocean: Potential carrier of resistant bacteria and resistance genes. Environmental Pollution, 291: 118130.

6.       Sangkham, S., Faikhaw, O., Munkong, N., Sakunkoo, P., Arunlertaree, C., Chavali, M., ... and Tiwari, A. (2022). A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Marine Pollution Bulletin, 181: 113832.

7.       Huang, D., Tao, J., Cheng, M., Deng, R., Chen, S., Yin, L. and Li, R. (2021). Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. Journal of Hazardous Materials, 407: 124399.

8.       Yang, C. and Gao, X. (2022). Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). Science of The Total Environment, 828: 154579.

9.       Kurniawan, S. B., Said, N. S. M., Imron, M. F. and Abdullah, S. R. S. (2021). Microplastic pollution in the environment: Insights into emerging sources and potential threats. Environmental Technology & Innovation, 23: 101790.

10.    Melo-Agustín, P., Kozak, E. R., de Jesús Perea-Flores, M. and Mendoza-Pérez, J. A. (2022). Identification of microplastics and associated contaminants using ultra high resolution microscopic and spectroscopic techniques. Science of The Total Environment, 828: 154434.

11.    Alvim, C. B., Mendoza-Roca, J. A. and Bes-Piá, A. (2020). Wastewater treatment plant as microplastics release source–Quantification and identification techniques. Journal of Environmental Management255: 109739.

12.    Katsumi, N., Kusube, T., Nagao, S. and Okochi, H. (2020). The role of coated fertilizer used in paddy fields as a source of microplastics in the marine environment. Marine Pollution Bulletin, 161: 111727.

13.    Hanun, J. N., Hassan, F. and Jiang, J. J. (2021). Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: Influence of the weathering/aging process. Journal of Environmental Chemical Engineering, 9(5): 106290.

14.    Pan, Z., Liu, Q., Sun, X., Li, W., Zou, Q., Cai, S. and Lin, H. (2022). Widespread occurrence of microplastic pollution in open sea surface waters: Evidence from the mid-North Pacific Ocean. Gondwana Research, 108: 31-40.

15.    Chellasamy, G., Kiriyanthan, R. M., Maharajan, T., Radha, A. and Yun, K. (2022). Remediation of microplastics using bionanomaterials: A review. Environmental Research, 208: 112724.

16.    Hu, K., Yang, Y., Zuo, J., Tian, W., Wang, Y., Duan, X. and Wang, S. (2022). Emerging microplastics in the environment: properties, distributions, and impacts. Chemosphere297: 134118.

17.    Wang, T., Li, B., Zou, X., Wang, Y., Li, Y., Xu, Y., ... and Yu, W. (2019). Emission of primary microplastics in mainland China: invisible but not negligible. Water Research, 162: 214-224.

18.    Lehtiniemi, M., Hartikainen, S., Näkki, P., Engström-Öst, J., Koistinen, A. and Setälä, O. (2018). Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs, 17: e00097.

19.    Jaikumar, G., Brun, N. R., Vijver, M. G. and Bosker, T. (2019). Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. Environmental Pollution, 249: 638-646.

20.    Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y. and Xie, B. (2021). Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chemical Engineering Journal, 406: 126804.

21.    Akhbarizadeh, R., Dobaradaran, S., Nabipour, I., Tangestani, M., Abedi, D., Javanfekr, F., ... and Zendehboodi, A. (2021). Abandoned Covid-19 personal protective equipment along the Bushehr shores, the Persian Gulf: an emerging source of secondary microplastics in coastlines. Marine Pollution Bulletin, 168: 112386.

22.    Huang, D., Wang, X., Yin, L., Chen, S., Tao, J., Zhou, W., ... and Xiao, R. (2022). Research progress of microplastics in soil-plant system: ecological effects and potential risks. Science of The Total Environment, 812: 151487.

23.    Ahmed, R., Hamid, A. K., Krebsbach, S. A., He, J. and Wang, D. (2022). Critical review of microplastics removal from the environment. Chemosphere, 293: 133557.

24.    Li, J., Peng, D., Ouyang, Z., Liu, P., Fang, L. and Guo, X. (2022). Occurrence status of microplastics in main agricultural areas of Xinjiang Uygur Autonomous Region, China. Science of The Total Environment, 828: 154259.

25.    Suzuki, G., Uchida, N., Tanaka, K., Matsukami, H., Kunisue, T., Takahashi, S., ... and Osako, M. (2022). Mechanical recycling of plastic waste as a point source of microplastic pollution. Environmental Pollution, 303: 119114.

26.    Goßmann, I., Halbach, M., and Scholz-Böttcher, B. M. (2021). Car and truck tire wear particles in complex environmental samples–a quantitative comparison with “traditional” microplastic polymer mass loads. Science of the Total Environment, 773: 145667.

27.    Lett, Z., Hall, A., Skidmore, S. and Alves, N. J. (2021). Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system. Environmental Pollution, 291: 118190.

28.    Vieira, Y., Lima, E. C., Foletto, E. L., and Dotto, G. L. (2021). Microplastics physicochemical properties, specific adsorption modeling and their interaction with pharmaceuticals and other emerging contaminants. Science of the Total Environment, 753: 141981.

29.    Maghsodian, Z., Sanati, A. M., Tahmasebi, S., Shahriari, M. H. and Ramavandi, B. (2022). Study of microplastics pollution in sediments and organisms in mangrove forests: A review. Environmental Research, 208: 112725.

30.    Terzi, Y., Gedik, K., Eryaşar, A. R., Öztürk, R. Ç., Şahin, A. and Yılmaz, F. (2022). Microplastic contamination and characteristics spatially vary in the southern Black Sea beach sediment and sea surface water. Marine Pollution Bulletin, 174: 113228.

31.    Hu, K., Tian, W., Yang, Y., Nie, G., Zhou, P., Wang, Y., ... and Wang, S. (2021). Microplastics remediation in aqueous systems: Strategies and technologies. Water Research, 198: 117144.

32.    Zhang, Z., Gao, S. H., Luo, G., Kang, Y., Zhang, L., Pan, Y., ... and Wang, A. (2022). The contamination of microplastics in China's aquatic environment: Occurrence, detection and implications for ecological risk. Environmental Pollution, 296: 118737.

33.    Vaid, M., Sarma, K. and Gupta, A. (2021). Microplastic pollution in aquatic environments with special emphasis on riverine systems: current understanding and way forward. Journal of Environmental Management, 293: 112860.

34.    Kacprzak, S. and Tijing, L. D. (2022). Microplastics in indoor environment: Sources, mitigation and fate. Journal of Environmental Chemical Engineering, 10(2): 107359.

35.    Cai, L., Wu, D., Xia, J., Shi, H. and Kim, H. (2019). Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Science of the Total Environment, 671: 1101-1107.

36.    Cui, W., Hale, R. C., Huang, Y., Zhou, F., Wu, Y., Liang, X., ... and Chen, D. (2023). Sorption of representative organic contaminants on microplastics: Effects of chemical physicochemical properties, particle size, and biofilm presence. Ecotoxicology and Environmental Safety, 251: 114533.

37.    Liu, X., Deng, Q., Zheng, Y., Wang, D. and Ni, B. J. (2022). Microplastics aging in wastewater treatment plants: Focusing on physicochemical characteristics changes and corresponding environmental risks. Water Research, 221: 118780.

38.    Wang, X., Zhang, R., Li, Z. and Yan, B. (2022). Adsorption properties and influencing factors of Cu (II) on polystyrene and polyethylene terephthalate microplastics in seawater. Science of the Total Environment, 812: 152573.

39.    Zhang, Y., Diehl, A., Lewandowski, A., Gopalakrishnan, K. and Baker, T. (2020). Removal efficiency of micro-and nanoplastics (180 nm–125 μm) during drinking water treatment. Science of the Total Environment, 720: 137383.

40.    Wang, J., Liu, X., Liu, G., Zhang, Z., Wu, H., Cui, B., ... and Zhang, W. (2019). Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicology and Environmental Safety, 173: 331-338.

41.    Fadare, O. O., Wan, B., Guo, L. H. and Zhao, L. (2020). Microplastics from consumer plastic food containers: are we consuming it? Chemosphere, 253: 126787.

42.    Zhang, Y., Zhao, J., Liu, Z., Tian, S., Lu, J., Mu, R. and Yuan, H. (2021). Coagulation removal of microplastics from wastewater by magnetic magnesium hydroxide and PAM. Journal of Water Process Engineering, 43: 102250.

43.    Kieu-Le, T. C., Thuong, Q. T., Tran, Q. V. and Strady, E. (2023). Baseline concentration of microplastics in surface water and sediment of the northern branches of the Mekong River Delta, Vietnam. Marine Pollution Bulletin, 187: 114605.

44.    Purwiyanto, A. I. S., Prartono, T., Riani, E., Koropitan, A. F., Naulita, Y., Takarina, N. D. and Cordova, M. R. (2022). The contribution of estuaries to the abundance of microplastics in Jakarta Bay, Indonesia. Marine Pollution Bulletin, 184: 114117.

45.    Lahive, E., Walton, A., Horton, A. A., Spurgeon, D. J. and Svendsen, C. (2019). Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environmental Pollution, 255: 113174.

46.    Napper, I. E. and Thompson, R. C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine pollution bulletin, 112(1-2): 39-45.

47.    Li, J., Liu, H. and Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water research, 137: 362-374.

48.    Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., ... and Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218: 1045-1054.

49.    Deng, H., Wei, R., Luo, W., Hu, L., Li, B. and Shi, H. (2020). Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 258: 113658.

50.    Alvim, C. B., Mendoza-Roca, J. A. and Bes-Piá, A. (2020). Wastewater treatment plant as microplastics release source–Quantification and identification techniques. Journal of Environmental Management, 255: 109739.

51.    Viitala, M., Steinmetz, Z., Sillanpää, M., Mänttäri, M. and Sillanpää, M. (2022). Historical and current occurrence of microplastics in water and sediment of a Finnish lake affected by WWTP effluents. Environmental Pollution, 314: 120298.

52.    Rose, P. K., Jain, M., Kataria, N., Sahoo, P. K., Garg, V. K. and Yadav, A. (2023). Microplastics in multimedia environment: A systematic review on its fate, transport, quantification, health risk, and remedial measures. Groundwater for Sustainable Development, 2023: 100889.

53.    Klein, M. and Fischer, E. K. (2019). Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Science of the Total Environment, 685: 96-103.

54.    Sridharan, S., Kumar, M., Singh, L., Bolan, N. S. and Saha, M. (2021). Microplastics as an emerging source of particulate air pollution: A critical review. Journal of Hazardous Materials, 418: 126245.

55.    Sangkham, S., Faikhaw, O., Munkong, N., Sakunkoo, P., Arunlertaree, C., Chavali, M., ... and Tiwari, A. (2022). A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Marine Pollution Bulletin, 181: 113832.

56.    Shi, X., Zhang, X., Gao, W., Zhang, Y. and He, D. (2022). Removal of microplastics from water by magnetic nano-Fe3O4. Science of The Total Environment, 802: 149838.

57.    Caruso, G. (2019). Microplastics as vectors of contaminants. Marine Pollution Bulletin, 146: 921-924.

58.    Khalid, N., Aqeel, M., Noman, A., Khan, S. M. and Akhter, N. (2021). Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution, 290: 118104.

59.    Tang, K. H. D. and Hadibarata, T. (2021). Microplastics removal through water treatment plants: Its feasibility, efficiency, future prospects and enhancement by proper waste management. Environmental Challenges5: 100264.

60.    Tumwesigye, E., Nnadozie, C. F., Akamagwuna, F. C., Noundou, X. S., Nyakairu, G. W. and Odume, O. N. (2023). Microplastics as vectors of chemical contaminants and biological agents in freshwater ecosystems: Current knowledge status and future perspectives. Environmental Pollution, 2023: 121829.

61.    Torres, F. G., Dioses-Salinas, D. C., Pizarro-Ortega, C. I. and De-la-Torre, G. E. (2021). Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Science of the Total Environment, 757: 143875.

62.    Song, X., Zhuang, W., Cui, H., Liu, M., Gao, T., Li, A. and Gao, Z. (2022). Interactions of microplastics with organic, inorganic and bio-pollutants and the ecotoxicological effects on terrestrial and aquatic organisms. Science of the Total Environment, 838: 156068.

63.    Luo, H., Tu, C., He, D., Zhang, A., Sun, J., Li, J., ... and Pan, X. (2023). Interactions between microplastics and contaminants: A review focusing on the effect of aging process. Science of the Total Environment, 899: 165615.

64.    Liu, S., Huang, J., Zhang, W., Shi, L., Yi, K., Yu, H., ... and Li, J. (2022). Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. Journal of Environmental Management, 302: 113995.

65.    Anastopoulos, I., Pashalidis, I., Kayan, B. and Kalderis, D. (2022). Microplastics as carriers of hydrophilic pollutants in an aqueous environment. Journal of Molecular Liquids, 350: 118182.

66.    Tu, C., Chen, T., Zhou, Q., Liu, Y., Wei, J., Waniek, J. J. and Luo, Y. (2020). Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Science of the Total Environment, 734: 139237.

67.    He, H., Wen, H. P., Liu, J. P., Wu, C. C., Mai, L. and Zeng, E. Y. (2023). Hydrophobic organic contaminants affiliated with polymer-specific microplastics in urban river tributaries and estuaries. Science of The Total Environment, 899: 166415.

68.    Chang, J., Fang, W., Liang, J., Zhang, P., Zhang, G., Zhang, H., ... and Wang, Q. (2022). A critical review on interaction of microplastics with organic contaminants in soil and their ecological risks on soil organisms. Chemosphere, 306: 135573.

69.    Li, J., Zhang, K. and Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution, 237: 460-467.

70.    Fu, J., Li, Y., Peng, L., Gao, W. and Wang, G. (2022). Distinct chemical adsorption behaviors of sulfanilamide as a model antibiotic onto weathered microplastics in complex systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648: 129337.

71.    Wang, Q., Li, J., Zhu, X., Sun, C., Teng, J., Chen, L., ... and Zhao, J. (2022). Microplastics in fish meals: An exposure route for aquaculture animals. Science of the Total Environment, 807: 151049.

72.    González-Soto, N., Hatfield, J., Katsumiti, A., Duroudier, N., Lacave, J. M., Bilbao, E., ... and Cajaraville, M. P. (2019). Impacts of dietary exposure to different sized polystyrene microplastics alone and with sorbed benzo [a] pyrene on biomarkers and whole organism responses in mussels Mytilus galloprovincialis. Science of the Total Environment, 684: 548-566.

73.    Teng, J., Wang, Q., Ran, W., Wu, D., Liu, Y., Sun, S., ... and Zhao, J. (2019). Microplastic in cultured oysters from different coastal areas of China. Science of the Total Environment, 653: 1282-1292.

74.    Prata, J. C., da Costa, J. P., Lopes, I., Andrady, A. L., Duarte, A. C. and Rocha-Santos, T. (2021). A one health perspective of the impacts of microplastics on animal, human and environmental health. Science of the Total Environment, 777: 146094.

75.    Jabeen, K., Su, L., Li, J., Yang, D., Tong, C., Mu, J. and Shi, H. (2017). Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environmental Pollution, 221: 141-149.

76.    Han, Y., Shi, W., Tang, Y., Zhou, W., Sun, H., Zhang, J., ... and Liu, G. (2022). Microplastics and bisphenol A hamper gonadal development of whiteleg shrimp (Litopenaeus vannamei) by interfering with metabolism and disrupting hormone regulation. Science of the total environment, 810: 152354.

77.    Zhang, T., Lin, L., Li, D., Wu, S., Kong, L., Wang, J. and Shi, H. (2021). The microplastic pollution in beaches that served as historical nesting grounds for green turtles on Hainan Island, China. Marine Pollution Bulletin, 173: 113069.

78.    Sridhar, A., Kannan, D., Kapoor, A. and Prabhakar, S. (2022). Extraction and detection methods of microplastics in food and marine systems: a critical review. Chemosphere, 286: 131653.

79.    Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C. and Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702: 134455.

80.    Masiá, P., Ardura, A. and Garcia-Vazquez, E. (2022). Microplastics in seafood: Relative input of Mytilus galloprovincialis and table salt in mussel dishes. Food Research International, 153: 110973.

81.    Alma, A. M., de Groot, G. S. and Buteler, M. (2023). Microplastics incorporated by honeybees from food are transferred to honey, wax and larvae. Environmental Pollution, 320: 121078.

82.    Nakat, Z., Dgheim, N., Ballout, J. and Bou-Mitri, C. (2023). Occurrence and exposure to microplastics in salt for human consumption, present on the Lebanese market. Food Control, 145: 109414.

83.    Turroni, S., Wright, S., Rampelli, S., Brigidi, P., Zinzani, P. L. and Candela, M. (2021). Microplastics shape the ecology of the human gastrointestinal intestinal tract. Current Opinion in Toxicology, 28: 32-37.

84.    Wu, P., Lin, S., Cao, G., Wu, J., Jin, H., Wang, C., ... and Cai, Z. (2022). Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. Journal of Hazardous Materials, 437: 129361.

85.    Khan, A. and Jia, Z. (2023). Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. Iscience, 26: 106061.

86.    Bhatt, P., Pathak, V. M., Bagheri, A. R. and Bilal, M. (2021). Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. Environmental Research, 200: 111762.

87.    Rahman, A., Sarkar, A., Yadav, O. P., Achari, G. and Slobodnik, J. (2021). Potential human health risks due to environmental exposure to nano-and microplastics and knowledge gaps: a scoping review. Science of the Total Environment, 757: 143872.

88.    Guo, X. and Wang, J. (2019). The chemical behaviors of microplastics in marine environment: A review. Marine Pollution Bulletin, 142: 1-14.

89.    Barboza, L. G. A., Vethaak, A. D., Lavorante, B. R., Lundebye, A. K. and Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine pollution bulletin, 133: 336-348.

90.    Lee, J., Kim, J., Lee, R., Lee, E., Choi, T. G., Lee, A. S., ... and Tak, E. (2022). Therapeutic strategies for liver diseases based on redox control systems. Biomedicine & Pharmacotherapy, 156: 113764.

91.    Mahamud, A. S. U., Anu, M. S., Baroi, A., Datta, A., Khan, M. S. U., Rahman, M., ... and Rahman, T. (2022). Microplastics in fishmeal: A threatening issue for sustainable aquaculture and human health. Aquaculture Reports25: 101205.

92.    Tirkey, A. and Upadhyay, L. S. B. (2021). Microplastics: An overview on separation, identification and characterization of microplastics. Marine Pollution Bulletin, 170: 112604.

93.    Zhang, Y., Jiang, H., Bian, K., Wang, H. and Wang, C. (2021). A critical review of control and removal strategies for microplastics from aquatic environments. Journal of Environmental Chemical Engineering, 9(4): 105463.

94.    Liu, W., Zhang, J., Liu, H., Guo, X., Zhang, X., Yao, X., ... and Zhang, T. (2021). A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environment International, 146: 106277.

95.    Wang, Z., Lin, T. and Chen, W. (2020). Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Science of the Total Environment, 700: 134520.

96.    Wang, Z., Sedighi, M. and Lea-Langton, A. (2020). Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Research, 184: 116165.

97.    Lu, S., Liu, L., Yang, Q., Demissie, H., Jiao, R., An, G. and Wang, D. (2021). Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Science of the Total Environment, 786: 147508.

98.    Elkhatib, D., Oyanedel-Craver, V. and Carissimi, E. (2021). Electro-coagulation applied for the removal of microplastics from wastewater treatment facilities. Separation and Purification Technology, 276: 118877.

99.    Ariza-Tarazona, M. C., Villarreal-Chiu, J. F., Hernández-López, J. M., De la Rosa, J. R., Barbieri, V., Siligardi, C. and Cedillo-González, E. I. (2020). Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process. Journal of hazardous materials, 395: 122632.

100. Nabi, I., Li, K., Cheng, H., Wang, T., Liu, Y., Ajmal, S., ... and Zhang, L. (2020). Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film. Iscience23(7): 101326.

101. Cunha, C., Faria, M., Nogueira, N., Ferreira, A. and Cordeiro, N. (2019). Marine vs freshwater microalgae exopolymers as biosolutions to microplastics pollution. Environmental Pollution, 249: 372-380.

102. Cheng, Y. R. and Wang, H. Y. (2022). Highly effective removal of microplastics by microalgae Scenedesmus abundance. Chemical Engineering Journal, 435: 135079.

103. Adegoke, K. A., Adu, F. A., Oyebamiji, A. K., Bamisaye, A., Adigun, R. A., Olasoji, S. O. and Ogunjinmi, O. E. (2023). Microplastics toxicity, detection, and removal from water/wastewater. Marine Pollution Bulletin, 187: 114546.

104. Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R. and Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133: 553-561.

105. Gao, W., Zhang, Y., Mo, A., Jiang, J., Liang, Y., Cao, X. and He, D. (2022). Removal of microplastics in water: Technology progress and green strategies. Green Analytical Chemistry, 3: 100042.

106. Wenzel, M., Schoettl, J., Pruin, L., Fischer, B., Wolf, C., Kube, C., ... and Tuerk, J. (2023). Determination of atmospherically deposited microplastics in moss: Method development and performance evaluation. Green Analytical Chemistry, 7: 100078.