Malaysian Journal of Analytical Sciences, Vol 27 No
6 (2023): 1216-1235
MICROPLASTICS IN THE ENVIRONMENT: PROPERTIES, IMPACTS AND REMOVAL
STRATEGIES
(Mikroplastik dalam Alam Sekitar: Sifat,
Kesan dan Strategi Penyingkiran)
1Microplastic Research Interest Group (MRIG), Faculty of
Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia.
2Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, Universiti 21030 Kuala Nerus,
Terengganu, Malaysia.
3Faculty of Ocean Engineering Technology and
Informatics,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia.
4Water Quality Laboratory, National Water Research
Institute of Malaysia (NAHRIM),
Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh,
43300, Seri Kembangan, Selangor, Malaysia
*Corresponding author: alyza.azzura@umt.edu.my
Received: 19 June 2023; Accepted: 15
October 2023: Published: 29 December 2023
Abstract
Microplastics (MPs) constitute
an emerging class of pollutants that have garnered significant attention due to
their omnipresence in marine and freshwater ecosystems. Particles with a
diameter of less than 5 mm result from the degradation of larger plastic debris
and the production of commercial plastic products. The pervasive occurrence of
MPs in the environment is a primary concern due to their potential adverse
effects on marine organisms and human health. MPs' high specific surface area
and hydrophobicity make them effective adsorbents of other pollutants. Consequently,
ingestion of MPs by organisms can lead to enhanced toxicity and bioaccumulation
of these pollutants, causing significant harm to the ecosystem. This study
offers a comprehensive overview of the properties of MPs, the routes of their entry
into the environment, their impacts on environmental and human health, and
current approaches for their removal. Physical, chemical, and biological
methods for MP removal are discussed, including their benefits and drawbacks.
However, there is an urgent need to develop novel, efficient, and
cost-effective techniques for MP removal. The insights presented in this review
aim to guide policymakers, scientists, and stakeholders in promoting
sustainable management practices.
Keywords: microplastics, chemical contaminants, wastewater treatment plants,
removal techniques
Abstrak
Mikroplastik (MP) merupakan kelas
pencemar yang muncul dan telah mendapat perhatian utama pada masa ini kerana
kehadirannya di dalam ekosistem marin dan air tawar. Zarah-zarah dengan
diameter kurang daripada 5 mm ini terhasil daripada degradasi serpihan plastik
yang lebih besar dan pengeluaran produk plastik komersial. Kemunculan MP yang
berleluasa di alam sekitar ini telah menimbulkan kebimbangan kerana ianya
berpotensi memberi kesan buruk terhadap organisma marin dan kesihatan manusia.
Luas permukaan spesifik yang tinggi dan hidrofobik MP menjadikannya sebagai
penjerap yang berkesan bagi bahan pencemar lain. Oleh itu, pendedahan MP
terhadap organisma boleh membawa kepada peningkatan ketoksikan dan bioakumulasi
bahan pencemar ini, dan seterusnya menyebabkan kemudaratan yang ketara kepada
ekosistem. Ulasan ini memberikan gambaran menyeluruh tentang sifat-sifat MP,
laluan masuk ke alam sekitar, kesannya terhadap alam sekitar dan kesihatan
manusia, dan pendekatan semasa untuk penyingkiran mereka. Kaedah fizikal, kimia
dan biologi untuk penyingkiran MP dibincangkan, termasuk kelebihan dan
kelemahannya. Walau bagaimanapun, terdapat keperluan mendesak untuk
membangunkan teknik baru yang cekap dan kos yang efektif untuk penyingkiran MP.
Ulasan ini memberikan pandangan yang berharga untuk penggubal dasar, saintis
dan pihak berkepentingan untuk menggalakkan amalan pengurusan yang mampan dan
mengurangkan percambahan MP dalam alam sekitar.
Kata kunci: mikroplastik, pencemar kimia, loji
rawatan sisa air, teknik penyingkiran
References
1.
Leal
Filho, W., Salvia, A. L., Bonoli, A., Saari, U. A., Voronova, V., Klőga, M.,
... and Barbir, J. (2021). An assessment of attitudes
towards plastics and bioplastics in Europe. Science of the Total
Environment, 755: 142732
2.
Anik, A. H., Hossain, S.,
Alam, M., Sultan, M. B., Hasnine, M. T. and Rahman, M. M. (2021). Microplastics
pollution: A comprehensive review on the sources, fates, effects, and potential
remediation. Environmental Nanotechnology, Monitoring & Management, 16:
100530.
3.
Kumar, R., Sharma, P.,
Manna, C. and Jain, M. (2021). Abundance, interaction, ingestion, ecological
concerns, and mitigation policies of microplastic pollution in riverine
ecosystem: A review. Science of The Total Environment, 782:
146695.
4.
Golwala, H., Zhang, X.,
Iskander, S. M. and Smith, A. L. (2021). Solid waste: An overlooked source of
microplastics to the environment. Science of the Total Environment, 769:
144581.
5.
Stenger, K. S., Wikmark,
O. G., Bezuidenhout, C. C. and Molale-Tom, L. G. (2021). Microplastics
pollution in the ocean: Potential carrier of resistant bacteria and resistance
genes. Environmental Pollution, 291: 118130.
6.
Sangkham, S., Faikhaw, O.,
Munkong, N., Sakunkoo, P., Arunlertaree, C., Chavali, M., ... and Tiwari, A.
(2022). A review on microplastics and nanoplastics in the environment: Their
occurrence, exposure routes, toxic studies, and potential effects on human
health. Marine Pollution Bulletin, 181: 113832.
7.
Huang, D., Tao, J., Cheng,
M., Deng, R., Chen, S., Yin, L. and Li, R. (2021). Microplastics and
nanoplastics in the environment: Macroscopic transport and effects on
creatures. Journal of Hazardous Materials, 407: 124399.
8.
Yang, C. and Gao, X.
(2022). Impact of microplastics from polyethylene and biodegradable mulch films
on rice (Oryza sativa L.). Science of The Total Environment, 828:
154579.
9.
Kurniawan, S. B., Said, N.
S. M., Imron, M. F. and Abdullah, S. R. S. (2021). Microplastic pollution in
the environment: Insights into emerging sources and potential threats. Environmental
Technology & Innovation, 23: 101790.
10. Melo-Agustín,
P., Kozak, E. R., de Jesús Perea-Flores, M. and Mendoza-Pérez, J. A. (2022). Identification
of microplastics and associated contaminants using ultra high resolution
microscopic and spectroscopic techniques. Science of The Total
Environment, 828: 154434.
11. Alvim,
C. B., Mendoza-Roca, J. A. and Bes-Piá, A. (2020). Wastewater
treatment plant as microplastics release sourceQuantification and
identification techniques. Journal of Environmental Management, 255:
109739.
12. Katsumi,
N., Kusube, T., Nagao, S. and Okochi, H. (2020). The role of coated fertilizer
used in paddy fields as a source of microplastics in the marine
environment. Marine Pollution Bulletin, 161:
111727.
13. Hanun, J. N., Hassan, F.
and Jiang, J. J. (2021). Occurrence, fate, and
sorption behavior of contaminants of emerging concern to microplastics:
Influence of the weathering/aging process. Journal of Environmental
Chemical Engineering, 9(5): 106290.
14. Pan, Z., Liu, Q., Sun,
X., Li, W., Zou, Q., Cai, S. and Lin, H. (2022). Widespread
occurrence of microplastic pollution in open sea surface waters: Evidence from
the mid-North Pacific Ocean. Gondwana Research, 108: 31-40.
15. Chellasamy,
G., Kiriyanthan, R. M., Maharajan, T., Radha, A. and Yun, K. (2022).
Remediation of microplastics using bionanomaterials: A review. Environmental
Research, 208: 112724.
16. Hu,
K., Yang, Y., Zuo, J., Tian, W., Wang, Y., Duan, X. and Wang, S. (2022).
Emerging microplastics in the environment: properties, distributions, and
impacts. Chemosphere, 297: 134118.
17. Wang,
T., Li, B., Zou, X., Wang, Y., Li, Y., Xu, Y., ... and Yu, W. (2019). Emission
of primary microplastics in mainland China: invisible but not negligible. Water
Research, 162: 214-224.
18. Lehtiniemi,
M., Hartikainen, S., Näkki, P., Engström-Öst, J., Koistinen, A. and Setälä, O.
(2018). Size matters more than shape:
Ingestion of primary and secondary microplastics by small predators. Food
Webs, 17: e00097.
19. Jaikumar,
G., Brun, N. R., Vijver, M. G. and Bosker, T. (2019). Reproductive
toxicity of primary and secondary microplastics to three cladocerans during
chronic exposure. Environmental Pollution, 249:
638-646.
20. Tang, Y., Zhang, S., Su,
Y., Wu, D., Zhao, Y. and Xie, B. (2021). Removal
of microplastics from aqueous solutions by magnetic carbon nanotubes. Chemical
Engineering Journal, 406: 126804.
21. Akhbarizadeh, R.,
Dobaradaran, S., Nabipour, I., Tangestani, M., Abedi, D., Javanfekr, F., ... and
Zendehboodi, A. (2021). Abandoned Covid-19 personal protective equipment along
the Bushehr shores, the Persian Gulf: an emerging source of secondary
microplastics in coastlines. Marine Pollution Bulletin, 168:
112386.
22. Huang,
D., Wang, X., Yin, L., Chen, S., Tao, J., Zhou, W., ... and Xiao, R. (2022).
Research progress of microplastics in soil-plant system: ecological effects and
potential risks. Science of The Total Environment, 812:
151487.
23. Ahmed,
R., Hamid, A. K., Krebsbach, S. A., He, J. and Wang, D. (2022). Critical review
of microplastics removal from the environment. Chemosphere, 293:
133557.
24. Li,
J., Peng, D., Ouyang, Z., Liu, P., Fang, L. and Guo, X. (2022). Occurrence
status of microplastics in main agricultural areas of Xinjiang Uygur Autonomous
Region, China. Science of The Total Environment, 828: 154259.
25. Suzuki,
G., Uchida, N., Tanaka, K., Matsukami, H., Kunisue, T., Takahashi, S., ... and Osako,
M. (2022). Mechanical recycling of plastic waste as a point source of
microplastic pollution. Environmental Pollution, 303: 119114.
26. Goßmann,
I., Halbach, M., and Scholz-Böttcher, B. M. (2021). Car and truck tire wear
particles in complex environmental samplesa quantitative comparison with
traditional microplastic polymer mass loads. Science of the Total
Environment, 773: 145667.
27. Lett,
Z., Hall, A., Skidmore, S. and Alves, N. J. (2021). Environmental microplastic
and nanoplastic: Exposure routes and effects on coagulation and the
cardiovascular system. Environmental Pollution, 291:
118190.
28. Vieira, Y., Lima, E. C.,
Foletto, E. L., and Dotto, G. L. (2021). Microplastics
physicochemical properties, specific adsorption modeling and their interaction
with pharmaceuticals and other emerging contaminants. Science of the
Total Environment, 753: 141981.
29. Maghsodian, Z., Sanati,
A. M., Tahmasebi, S., Shahriari, M. H. and Ramavandi, B. (2022). Study
of microplastics pollution in sediments and organisms in mangrove forests: A
review. Environmental Research, 208: 112725.
30. Terzi,
Y., Gedik, K., Eryaşar, A. R., Öztürk, R. Ç., Şahin, A. and Yılmaz,
F. (2022). Microplastic contamination and characteristics spatially vary in the
southern Black Sea beach sediment and sea surface water. Marine
Pollution Bulletin, 174: 113228.
31. Hu,
K., Tian, W., Yang, Y., Nie, G., Zhou, P., Wang, Y., ... and Wang, S. (2021).
Microplastics remediation in aqueous systems: Strategies and
technologies. Water Research, 198: 117144.
32. Zhang,
Z., Gao, S. H., Luo, G., Kang, Y., Zhang, L., Pan, Y., ... and Wang, A. (2022).
The contamination of microplastics in China's aquatic environment: Occurrence,
detection and implications for ecological risk. Environmental Pollution, 296:
118737.
33. Vaid, M., Sarma, K. and Gupta,
A. (2021). Microplastic pollution in aquatic
environments with special emphasis on riverine systems: current understanding
and way forward. Journal of Environmental Management, 293:
112860.
34. Kacprzak,
S. and Tijing, L. D. (2022). Microplastics in indoor environment: Sources,
mitigation and fate. Journal of Environmental Chemical Engineering, 10(2):
107359.
35. Cai,
L., Wu, D., Xia, J., Shi, H. and Kim, H. (2019). Influence of physicochemical
surface properties on the adhesion of bacteria onto four types of
plastics. Science of the Total Environment, 671: 1101-1107.
36. Cui, W., Hale, R. C.,
Huang, Y., Zhou, F., Wu, Y., Liang, X., ... and
Chen, D. (2023). Sorption of representative organic contaminants on
microplastics: Effects of chemical physicochemical properties, particle size,
and biofilm presence. Ecotoxicology and Environmental Safety, 251:
114533.
37. Liu,
X., Deng, Q., Zheng, Y., Wang, D. and Ni, B. J. (2022). Microplastics aging in
wastewater treatment plants: Focusing on physicochemical characteristics
changes and corresponding environmental risks. Water Research, 221:
118780.
38. Wang,
X., Zhang, R., Li, Z. and Yan, B. (2022). Adsorption properties and influencing
factors of Cu (II) on polystyrene and polyethylene terephthalate microplastics
in seawater. Science of the Total Environment, 812: 152573.
39. Zhang,
Y., Diehl, A., Lewandowski, A., Gopalakrishnan, K. and Baker, T. (2020).
Removal efficiency of micro-and nanoplastics (180 nm125 μm) during
drinking water treatment. Science of the Total Environment, 720:
137383.
40. Wang, J., Liu, X., Liu,
G., Zhang, Z., Wu, H., Cui, B., ... and Zhang,
W. (2019). Size effect of polystyrene microplastics on sorption of phenanthrene
and nitrobenzene. Ecotoxicology and Environmental Safety, 173:
331-338.
41. Fadare,
O. O., Wan, B., Guo, L. H. and Zhao, L. (2020). Microplastics from consumer
plastic food containers: are we consuming it? Chemosphere, 253:
126787.
42. Zhang,
Y., Zhao, J., Liu, Z., Tian, S., Lu, J., Mu, R. and Yuan, H. (2021).
Coagulation removal of microplastics from wastewater by magnetic magnesium
hydroxide and PAM. Journal of Water Process Engineering, 43:
102250.
43. Kieu-Le,
T. C., Thuong, Q. T., Tran, Q. V. and Strady, E. (2023). Baseline concentration
of microplastics in surface water and sediment of the northern branches of the
Mekong River Delta, Vietnam. Marine Pollution Bulletin, 187:
114605.
44. Purwiyanto,
A. I. S., Prartono, T., Riani, E., Koropitan, A. F., Naulita, Y., Takarina, N.
D. and Cordova, M. R. (2022). The contribution of
estuaries to the abundance of microplastics in Jakarta Bay, Indonesia. Marine
Pollution Bulletin, 184: 114117.
45. Lahive,
E., Walton, A., Horton, A. A., Spurgeon, D. J. and Svendsen, C. (2019).
Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus
crypticus in a soil exposure. Environmental Pollution, 255: 113174.
46. Napper,
I. E. and Thompson, R. C. (2016). Release of synthetic microplastic plastic
fibres from domestic washing machines: Effects of fabric type and washing
conditions. Marine pollution bulletin, 112(1-2):
39-45.
47. Li, J., Liu, H. and Chen,
J. P. (2018). Microplastics in freshwater systems:
A review on occurrence, environmental effects, and methods for microplastics
detection. Water research, 137: 362-374.
48. Mason,
S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., ... and
Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal
wastewater treatment plant effluent. Environmental
Pollution, 218: 1045-1054.
49. Deng, H., Wei, R., Luo,
W., Hu, L., Li, B. and Shi, H. (2020). Microplastic
pollution in water and sediment in a textile industrial area. Environmental
Pollution, 258: 113658.
50. Alvim,
C. B., Mendoza-Roca, J. A. and Bes-Piá, A. (2020). Wastewater
treatment plant as microplastics release sourceQuantification and
identification techniques. Journal of Environmental Management, 255:
109739.
51. Viitala,
M., Steinmetz, Z., Sillanpää, M., Mänttäri, M. and Sillanpää, M. (2022).
Historical and current occurrence of microplastics in water and sediment of a
Finnish lake affected by WWTP effluents. Environmental Pollution, 314:
120298.
52. Rose,
P. K., Jain, M., Kataria, N., Sahoo, P. K., Garg, V. K. and Yadav, A. (2023).
Microplastics in multimedia environment: A systematic review on its fate,
transport, quantification, health risk, and remedial measures. Groundwater
for Sustainable Development, 2023: 100889.
53. Klein,
M. and Fischer, E. K. (2019). Microplastic abundance in atmospheric deposition
within the Metropolitan area of Hamburg, Germany. Science of the Total
Environment, 685: 96-103.
54. Sridharan,
S., Kumar, M., Singh, L., Bolan, N. S. and Saha, M. (2021). Microplastics as an
emerging source of particulate air pollution: A critical review. Journal
of Hazardous Materials, 418: 126245.
55. Sangkham,
S., Faikhaw, O., Munkong, N., Sakunkoo, P., Arunlertaree, C., Chavali, M., ... and
Tiwari, A. (2022). A review on microplastics and nanoplastics in the
environment: Their occurrence, exposure routes, toxic studies, and potential
effects on human health. Marine Pollution Bulletin, 181:
113832.
56. Shi,
X., Zhang, X., Gao, W., Zhang, Y. and He, D. (2022). Removal of microplastics
from water by magnetic nano-Fe3O4. Science of The Total Environment, 802:
149838.
57. Caruso,
G. (2019). Microplastics as vectors of contaminants. Marine Pollution
Bulletin, 146: 921-924.
58. Khalid,
N., Aqeel, M., Noman, A., Khan, S. M. and Akhter, N. (2021). Interactions and
effects of microplastics with heavy metals in aquatic and terrestrial
environments. Environmental Pollution, 290: 118104.
59. Tang,
K. H. D. and Hadibarata, T. (2021). Microplastics removal through water
treatment plants: Its feasibility, efficiency, future prospects and enhancement
by proper waste management. Environmental Challenges, 5:
100264.
60. Tumwesigye,
E., Nnadozie, C. F., Akamagwuna, F. C., Noundou, X. S., Nyakairu, G. W. and Odume,
O. N. (2023). Microplastics as vectors of chemical contaminants and biological
agents in freshwater ecosystems: Current knowledge status and future
perspectives. Environmental Pollution, 2023:
121829.
61. Torres,
F. G., Dioses-Salinas, D. C., Pizarro-Ortega, C. I. and De-la-Torre, G. E.
(2021). Sorption of chemical contaminants on
degradable and non-degradable microplastics: Recent progress and research trends. Science
of the Total Environment, 757: 143875.
62. Song, X., Zhuang, W.,
Cui, H., Liu, M., Gao, T., Li, A. and Gao, Z. (2022). Interactions
of microplastics with organic, inorganic and bio-pollutants and the
ecotoxicological effects on terrestrial and aquatic organisms. Science
of the Total Environment, 838: 156068.
63. Luo,
H., Tu, C., He, D., Zhang, A., Sun, J., Li, J., ... and Pan, X. (2023).
Interactions between microplastics and contaminants: A review focusing on the
effect of aging process. Science of the Total Environment, 899: 165615.
64. Liu,
S., Huang, J., Zhang, W., Shi, L., Yi, K., Yu, H., ... and Li, J. (2022).
Microplastics as a vehicle of heavy metals in aquatic environments: A review of
adsorption factors, mechanisms, and biological effects. Journal of
Environmental Management, 302: 113995.
65. Anastopoulos,
I., Pashalidis, I., Kayan, B. and Kalderis, D. (2022). Microplastics
as carriers of hydrophilic pollutants in an aqueous environment. Journal
of Molecular Liquids, 350: 118182.
66. Tu, C., Chen, T., Zhou,
Q., Liu, Y., Wei, J., Waniek, J. J. and Luo,
Y. (2020). Biofilm formation and its influences on the properties of
microplastics as affected by exposure time and depth in the seawater. Science
of the Total Environment, 734: 139237.
67. He,
H., Wen, H. P., Liu, J. P., Wu, C. C., Mai, L. and Zeng, E. Y. (2023).
Hydrophobic organic contaminants affiliated with polymer-specific microplastics
in urban river tributaries and estuaries. Science of The Total
Environment, 899: 166415.
68. Chang, J., Fang, W.,
Liang, J., Zhang, P., Zhang, G., Zhang, H., ... and
Wang, Q. (2022). A critical review on interaction of microplastics with organic
contaminants in soil and their ecological risks on soil organisms. Chemosphere, 306:
135573.
69. Li, J., Zhang, K. and Zhang,
H. (2018). Adsorption of antibiotics on
microplastics. Environmental Pollution, 237:
460-467.
70. Fu, J., Li, Y., Peng,
L., Gao, W. and Wang, G. (2022). Distinct chemical
adsorption behaviors of sulfanilamide as a model antibiotic onto weathered
microplastics in complex systems. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 648: 129337.
71. Wang,
Q., Li, J., Zhu, X., Sun, C., Teng, J., Chen, L., ... and Zhao, J. (2022).
Microplastics in fish meals: An exposure route for aquaculture animals. Science
of the Total Environment, 807: 151049.
72. González-Soto,
N., Hatfield, J., Katsumiti, A., Duroudier, N., Lacave, J. M., Bilbao, E., ... and
Cajaraville, M. P. (2019). Impacts of dietary exposure to different sized
polystyrene microplastics alone and with sorbed benzo [a] pyrene on biomarkers
and whole organism responses in mussels Mytilus galloprovincialis. Science
of the Total Environment, 684: 548-566.
73. Teng,
J., Wang, Q., Ran, W., Wu, D., Liu, Y., Sun, S., ... and Zhao, J. (2019).
Microplastic in cultured oysters from different coastal areas of China. Science
of the Total Environment, 653: 1282-1292.
74. Prata,
J. C., da Costa, J. P., Lopes, I., Andrady, A. L., Duarte, A. C. and Rocha-Santos,
T. (2021). A one health perspective of the
impacts of microplastics on animal, human and environmental health. Science
of the Total Environment, 777: 146094.
75. Jabeen,
K., Su, L., Li, J., Yang, D., Tong, C., Mu, J. and Shi, H. (2017).
Microplastics and mesoplastics in fish from coastal and fresh waters of
China. Environmental Pollution, 221:
141-149.
76. Han, Y., Shi, W., Tang,
Y., Zhou, W., Sun, H., Zhang, J., ... and
Liu, G. (2022). Microplastics and bisphenol A hamper gonadal development of
whiteleg shrimp (Litopenaeus vannamei) by interfering with metabolism
and disrupting hormone regulation. Science of the total environment, 810:
152354.
77. Zhang,
T., Lin, L., Li, D., Wu, S., Kong, L., Wang, J. and Shi, H. (2021). The
microplastic pollution in beaches that served as historical nesting grounds for
green turtles on Hainan Island, China. Marine Pollution Bulletin, 173:
113069.
78. Sridhar,
A., Kannan, D., Kapoor, A. and Prabhakar, S. (2022). Extraction
and detection methods of microplastics in food and marine systems: a critical
review. Chemosphere, 286:
131653.
79. Prata, J. C., da Costa,
J. P., Lopes, I., Duarte, A. C. and Rocha-Santos, T. (2020). Environmental
exposure to microplastics: An overview on possible human health effects. Science
of the Total Environment, 702: 134455.
80. Masiá, P., Ardura, A.
and Garcia-Vazquez, E. (2022). Microplastics in seafood:
Relative input of Mytilus galloprovincialis and table salt in mussel
dishes. Food Research International, 153: 110973.
81. Alma,
A. M., de Groot, G. S. and Buteler, M. (2023). Microplastics incorporated by
honeybees from food are transferred to honey, wax and larvae. Environmental
Pollution, 320: 121078.
82. Nakat, Z., Dgheim, N.,
Ballout, J. and Bou-Mitri, C. (2023). Occurrence
and exposure to microplastics in salt for human consumption, present on the
Lebanese market. Food Control, 145: 109414.
83. Turroni,
S., Wright, S., Rampelli, S., Brigidi, P., Zinzani, P. L. and Candela, M.
(2021). Microplastics shape the ecology of the human gastrointestinal
intestinal tract. Current Opinion in Toxicology, 28: 32-37.
84. Wu,
P., Lin, S., Cao, G., Wu, J., Jin, H., Wang, C., ... and Cai, Z. (2022).
Absorption, distribution, metabolism, excretion and toxicity of microplastics
in the human body and health implications. Journal of Hazardous
Materials, 437: 129361.
85. Khan,
A. and Jia, Z. (2023). Recent insights into uptake, toxicity, and molecular
targets of microplastics and nanoplastics relevant to human health
impacts. Iscience, 26: 106061.
86. Bhatt,
P., Pathak, V. M., Bagheri, A. R. and Bilal, M. (2021). Microplastic
contaminants in the aqueous environment, fate, toxicity consequences, and
remediation strategies. Environmental Research, 200: 111762.
87. Rahman,
A., Sarkar, A., Yadav, O. P., Achari, G. and Slobodnik, J. (2021). Potential
human health risks due to environmental exposure to nano-and microplastics and
knowledge gaps: a scoping review. Science of the Total Environment, 757:
143872.
88. Guo,
X. and Wang, J. (2019). The chemical behaviors of microplastics in marine
environment: A review. Marine Pollution Bulletin, 142: 1-14.
89. Barboza,
L. G. A., Vethaak, A. D., Lavorante, B. R., Lundebye, A. K. and Guilhermino, L.
(2018). Marine microplastic debris: An emerging issue for food security, food
safety and human health. Marine pollution bulletin, 133:
336-348.
90. Lee,
J., Kim, J., Lee, R., Lee, E., Choi, T. G., Lee, A. S., ... and Tak, E. (2022).
Therapeutic strategies for liver diseases based on redox control systems. Biomedicine
& Pharmacotherapy, 156: 113764.
91. Mahamud, A. S. U., Anu,
M. S., Baroi, A., Datta, A., Khan, M. S. U., Rahman, M., ... and
Rahman, T. (2022). Microplastics in fishmeal: A threatening issue for
sustainable aquaculture and human health. Aquaculture Reports, 25:
101205.
92. Tirkey,
A. and Upadhyay, L. S. B. (2021). Microplastics: An overview on separation,
identification and characterization of microplastics. Marine Pollution
Bulletin, 170: 112604.
93. Zhang,
Y., Jiang, H., Bian, K., Wang, H. and Wang, C. (2021). A critical review of
control and removal strategies for microplastics from aquatic
environments. Journal of Environmental Chemical Engineering, 9(4):
105463.
94. Liu,
W., Zhang, J., Liu, H., Guo, X., Zhang, X., Yao, X., ... and Zhang, T. (2021).
A review of the removal of microplastics in global wastewater treatment plants:
Characteristics and mechanisms. Environment International, 146:
106277.
95. Wang,
Z., Lin, T. and Chen, W. (2020). Occurrence and removal of microplastics in an
advanced drinking water treatment plant (ADWTP). Science of the Total
Environment, 700: 134520.
96. Wang,
Z., Sedighi, M. and Lea-Langton, A. (2020). Filtration of microplastic spheres
by biochar: removal efficiency and immobilisation mechanisms. Water
Research, 184: 116165.
97. Lu,
S., Liu, L., Yang, Q., Demissie, H., Jiao, R., An, G. and Wang, D. (2021).
Removal characteristics and mechanism of microplastics and tetracycline
composite pollutants by coagulation process. Science of the Total
Environment, 786: 147508.
98. Elkhatib,
D., Oyanedel-Craver, V. and Carissimi, E. (2021). Electro-coagulation applied
for the removal of microplastics from wastewater treatment facilities. Separation
and Purification Technology, 276: 118877.
99. Ariza-Tarazona,
M. C., Villarreal-Chiu, J. F., Hernández-López, J. M., De la Rosa, J. R.,
Barbieri, V., Siligardi, C. and Cedillo-González, E. I. (2020). Microplastic
pollution reduction by a carbon and nitrogen-doped TiO2: Effect of
pH and temperature in the photocatalytic degradation process. Journal
of hazardous materials, 395: 122632.
100. Nabi,
I., Li, K., Cheng, H., Wang, T., Liu, Y., Ajmal, S., ... and Zhang, L. (2020).
Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle
film. Iscience, 23(7):
101326.
101. Cunha,
C., Faria, M., Nogueira, N., Ferreira, A. and Cordeiro, N. (2019). Marine
vs freshwater microalgae exopolymers as biosolutions to microplastics
pollution. Environmental Pollution, 249: 372-380.
102. Cheng,
Y. R. and Wang, H. Y. (2022). Highly effective removal of microplastics by
microalgae Scenedesmus abundance. Chemical Engineering Journal, 435:
135079.
103. Adegoke,
K. A., Adu, F. A., Oyebamiji, A. K., Bamisaye, A., Adigun, R. A., Olasoji, S.
O. and Ogunjinmi, O. E. (2023). Microplastics toxicity, detection, and removal
from water/wastewater. Marine Pollution Bulletin, 187: 114546.
104. Gies,
E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R. and Ross,
P. S. (2018). Retention of microplastics in a major secondary wastewater
treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133:
553-561.
105. Gao,
W., Zhang, Y., Mo, A., Jiang, J., Liang, Y., Cao, X. and He, D. (2022). Removal
of microplastics in water: Technology progress and green strategies. Green
Analytical Chemistry, 3: 100042.
106. Wenzel,
M., Schoettl, J., Pruin, L., Fischer, B., Wolf, C., Kube, C., ... and Tuerk, J.
(2023). Determination of atmospherically deposited microplastics in moss:
Method development and performance evaluation. Green Analytical
Chemistry, 7: 100078.