Malaysian Journal of Analytical
Sciences, Vol 27
No 6 (2023): 1192 - 1204
TRANSESTERIFICATION
OF LOW-GRADE PALM COOKING OIL TO PRODUCE BIODIESEL USING SPENT BLEACHING CLAY
CATALYSTS
(Transesterifikasi
Minyak Masak Kelapa Sawit Gred Rendah Kepada Biodiesel Menggunakan Pemangkin
Tanah Pemutih Terpakai)
Thivya
Keasavan1, Nurhannani Mohd Radzi1, Wan Nazwanie Wan
Abdullah1*, Salmiah Jamal Mat Rosid2, Nurasmat Mohd Shukri3, and Noorfatimah
Yahaya4
1School of Chemical Science,
Universiti Sains Malaysia, 11800 Penang, Malaysia.
2Unisza Science and Medicine
Foundation Centre, Universiti Sultan Zainal Abidin, Kampus Gong Badak, 21300,
Kuala Nerus, Terengganu, Malaysia.
3School of Health Sciences,
Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan.
4Department of Toxicology, Advanced
Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam
Kepala Batas, Penang, Malaysia.
*Corresponding author: wanazwanie@usm.my
Received: 15 June 2023; Accepted: 15 October
2023; Published: 29 December 2023
Abstract
In this study, spent bleaching clay doped with
potassium hydroxide and sodium hydroxide (SBC/KOH and SBC/NaOH) were used as
catalysts in the transesterification process of low-grade cooking oil to
produce biodiesel. The physicochemical properties of the catalyst were studied
using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric
Analysis (TGA), X-ray Diffraction (XRD), Brunauer-Emmett-Teller
(BET), and Field Emission Scanning Electron microscopy with Energy Dispersive
X-ray Spectroscopy (FESEM-EDX). Several parameters including the types of
catalyst, calcination temperature of the catalyst, catalyst dosage, ratio of
oil to methanol, reaction time, and reaction temperature were used to determine
the optimal conditions for the transesterification reaction. According to the
experimental findings, the catalyst effectively converted free fatty acids
(FFA) into fatty acid methyl esters (FAMEs). The
maximum biodiesel yield of 47.66 % was obtained at optimum reaction conditions:
catalyst amount 2 wt.% of SBE/KOH calcined at 500 °C
(SBC/KOH 500), reaction time 2 h, reaction temperature 55 °C and oil
to methanol molar ratio 1:20.
Keywords: clay, cooking oil, biodiesel, transesterification, catalyst
Abstrak
Dalam kajian ini, tanah liat peluntur
bekas yang didop dengan kalium hidroksida dan natrium hidroksida (SBC/KOH dan
SBC/NaOH) digunakan sebagai mangkin dalam proses transesterifikasi minyak masak
gred rendah untuk menghasilkan biodiesel. Sifat fizikokimia mangkin dikaji
menggunakan spektroskopi inframerah transformasi Fourier (FTIR), analisis
termogravimetrik (TGA), pembelauan sinar-X (XRD), Brunauer-Emmett-Teller (BET),
dan mikroskop elektron pengimbasan pancaran medan dengan serakan tenaga sinar-X
(FESEM-EDX). Beberapa parameter termasuk jenis mangkin, suhu pengkalsinan
mangkin, dos mangkin, nisbah minyak kepada metanol, masa tindak balas, dan suhu
tindak balas telah digunakan untuk menentukan keadaan optimum bagi tindak balas
transesterifikasi. Menurut penemuan eksperimen, mangkin secara berkesan menukar
asid lemak bebas (FFA) kepada asid lemak metil ester (FAMEs). Hasil biodiesel
maksimum sebanyak 47.66 % diperoleh pada keadaan tindak balas optimum: jumlah
mangkin 2 wt.% SBE/KOH dikalsinkan pada 500 °C (SBC/KOH 500), masa tindak balas
2 jam, suhu tindak balas 55 °C dan minyak kepada metanol nisbah molar 1:20.
Kata
kunci: tanah
liat, minyak masak, biodiesel, transesterifikasi, mangkin
References
1. Rezania,
S., Oryani, B., Park, J., Hashemi, B., Yadav, K. K.,
Kwon, E. E., Hur, J. and Cho, J. (2019). Review on transesterification of
non-edible sources for biodiesel production with a focus on economic aspects,
fuel properties and by-product applications. Energy Conversion and
Management, 201: 112155.
2. Naser,
J., Avbenake, O. P., Dabai, F. N. and Jibril, B. Y.
(2021). Regeneration of spent bleaching earth and conversion of recovered oil
to biodiesel. Waste Management, 126: 258-265.
3. Chua,
S. Y., Periasamy, L. A., Goh, C. M. H., Tan, Y. H.,
Mubarak, N. M., Kansedo, J., Khalid, M., Walvekar, R. and
Abdullah, E. C. (2020). Biodiesel synthesis using natural solid catalyst
derived from biomass waste — A review. Journal
of Industrial and Engineering Chemistry, 81: 41-60.
4. Syafiuddin,
A., Chong, J. H., Yuniarto, A. and Hadibarata, T. (2020). The current scenario and challenges
of biodiesel production in Asian countries: A review. Bioresource Technology
Reports, 12: 100608.
5. Miyuranga,
K. V., Arachchige, U. S., Marso, T. M. M. and Samarakoon, G. (2023). Biodiesel
production through the
transesterification of waste cooking oil over typical heterogeneous base or
acid catalysts. Catalysts, 13(3): 546.
6. Thangaraj,
B., Solomon, P. R., Muniyandi, B., Ranganathan, S. and Lin, L. (2018).
Catalysis in biodiesel production—a review. Clean Energy, 3(1): 2-23.
7. Naser,
J., Avbenake, O. P., Dabai, F. N. and Jibril, B. Y.
(2021). Regeneration of spent bleaching earth and conversion of recovered oil
to biodiesel. Waste Management, 126: 258-265.
8. Abdelbasir, S. M., Shehab, A. I. and Khalek, M. A. A. (2023). Spent bleaching
earth; recycling and utilization techniques: A review. Resources,
Conservation and Recycling Advances, 17: 200124.
9. Yusuf, Nik N. A. N.,
Kamarudin, S. K. and Yaakob, Z. (2012). Overview on the production of biodiesel
from Jatropha curcas L. by using heterogeneous
catalysts. Biofuels, Bioproducts & Biorefining, 6(3): 319-334.
10. Dossin,
T., Reyniers, M. and Marin, G. (2006). Kinetics of
heterogeneously MgO-catalyzed transesterification. Applied Catalysis B:
Environmental, 62 (1-2): 35-45.
11. Esan, A. O., Smith, S.
M. and Ganesan, S. (2022). Dimethyl carbonate assisted catalytic esterification
of palm fatty acid distillate using catalyst derived from spent bleaching clay.
Journal of Cleaner Production, 337: 130574.
12. Hu,
W., Zhou, X., Tan, J., Hou, J., Xie, Y., Wang, X., Wang, Y. and Zhang, Y.
(2020). In situ transesterification of wet sewage sludge via hydrothermal
process: Biodiesel production and residue utilization. Biomass and Bioenergy,
141: 105715.
13. Cong,
W. J., Wang, Y. T., Li, H., Fang, Z., Sun, J., Liu, H. T., Liu, J. T., Tang, S.
and Xu, L. (2020). Direct production of biodiesel from waste oils with a
strong solid base from alkalized industrial clay ash. Applied Energy,
264: 114735.
14. Loh, S. K., Cheong, K.
Y. and Salimon, J. (2017). Surface-active
physicochemical characteristics of spent
bleaching earth on soil-plant interaction and water-nutrient uptake: A
review. Applied Clay Science, 140: 59-65.
15. Musa, M. L., Mat, R.
and Tuan Abdullah, T. A. (2018). Catalytic conversion of residual palm oil in
spent bleaching earth (SBE) by HZSM-5 zeolite based-catalysts. Bulletin of
Chemical Reaction Engineering and Catalysis, 13(3): 456.
16. Rabie, A. M., Shaban,
M., Abukhadra, M. R., Hosny, R., Ahmed, S. A. and
Negm, N. A. (2019). Diatomite supported by CaO/MgO
nanocomposite as heterogeneous catalyst for biodiesel production from waste
cooking oil. Journal of Molecular Liquids, 279: 224-231.
17. Oyerinde, A. and Bello, E. (2016). Use of Fourier
transformation infrared (FTIR) spectroscopy for analysis of functional groups in peanut oil biodiesel
and its blends. British Journal of Applied Science & Technology, 13
(3): 1–14.
18. Enguilo Gonzaga, V., Romero, R., Gómez-Espinosa, R.
M., Romero, A., Martínez, S. L. and Natividad, R. (2021). Biodiesel Production
from Waste Cooking Oil Catalyzed by a Bifunctional Catalyst. ACS Omega,
6(37): 24092-24105.
19. Roschat, W., Phewphong, S., Pholsupho,
P., Namwongsa, K., Wongka,
P., Moonsin, P., Yoosuk, B.
and Promarak, V. (2022). The synthesis of a
high-quality biodiesel product derived from Krabok (Irvingia Malayana)
seed oil as a new raw material of Thailand. Fuel,
308: 122009.
20. Pinto,
B. F., Garcia, M. A. S., Costa, J. L., De Moura, C. V. R., De Abreu, W. C. and
De Moura, E. M. (2019). Effect of calcination temperature on the
application of molybdenum trioxide acid catalyst:
Screening
of substrates for biodiesel production. Fuel, 239: 290-296.
21. Akbar, E., Binitha,
N., Yaakob, Z., Kamarudin, S. K. and Salimon, J.
(2009). Preparation of Na doped SiO2 solid catalysts by the sol-gel
method for the production of biodiesel from jatropha oil. Green Chemistry,
11 (11): 1862.
22. NolHakim, M. A. H. L., Shohaimi,
N. A. M., Mokhtar, W. N. A. W., Lokman, I. M. and Abdullah, R. F. (2021). Immobilization of potassium-based
heterogeneous catalyst over alumina beads and powder support in the
transesterification of waste cooking oil. Catalysts, 11(8): 976.
23. Shahbazi, M. R.,
Khoshandam, B., Nasiri, M. and Ghazvini, M. (2012). Biodiesel production via
alkali-catalyzed transesterification of Malaysian RBD palm oil –
Characterization, kinetics model. Journal of the Taiwan Institute of
Chemical Engineers, 43(4): 504-510.
24. Yaakob, Z., Mohammad,
M., Alherbawi, M., Alam, Z. and Sopian,
K. (2013). Overview of the production of biodiesel from Waste cooking oil. Renewable
and Sustainable Energy Reviews, 18: 184-193.