Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1192 - 1204

 

TRANSESTERIFICATION OF LOW-GRADE PALM COOKING OIL TO PRODUCE BIODIESEL USING SPENT BLEACHING CLAY CATALYSTS

 

(Transesterifikasi Minyak Masak Kelapa Sawit Gred Rendah Kepada Biodiesel Menggunakan Pemangkin Tanah Pemutih Terpakai)

 

Thivya Keasavan1, Nurhannani Mohd Radzi1, Wan Nazwanie Wan Abdullah1*, Salmiah Jamal Mat Rosid2,  Nurasmat Mohd Shukri3, and Noorfatimah Yahaya4

 

1School of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia.

2Unisza Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Kampus Gong Badak, 21300, Kuala Nerus, Terengganu, Malaysia.

3School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan.

4Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam Kepala Batas, Penang, Malaysia.

 

*Corresponding author: wanazwanie@usm.my

 

 

Received: 15 June 2023; Accepted: 15 October 2023; Published:  29 December 2023

 

 

Abstract

In this study, spent bleaching clay doped with potassium hydroxide and sodium hydroxide (SBC/KOH and SBC/NaOH) were used as catalysts in the transesterification process of low-grade cooking oil to produce biodiesel. The physicochemical properties of the catalyst were studied using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), and Field Emission Scanning Electron microscopy with Energy Dispersive X-ray Spectroscopy (FESEM-EDX). Several parameters including the types of catalyst, calcination temperature of the catalyst, catalyst dosage, ratio of oil to methanol, reaction time, and reaction temperature were used to determine the optimal conditions for the transesterification reaction. According to the experimental findings, the catalyst effectively converted free fatty acids (FFA) into fatty acid methyl esters (FAMEs). The maximum biodiesel yield of 47.66 % was obtained at optimum reaction conditions: catalyst amount 2 wt.% of SBE/KOH calcined at 500 °C (SBC/KOH 500), reaction time 2 h, reaction temperature 55 °C and oil to methanol molar ratio 1:20.

 

Keywords: clay, cooking oil, biodiesel, transesterification, catalyst

 

Abstrak

Dalam kajian ini, tanah liat peluntur bekas yang didop dengan kalium hidroksida dan natrium hidroksida (SBC/KOH dan SBC/NaOH) digunakan sebagai mangkin dalam proses transesterifikasi minyak masak gred rendah untuk menghasilkan biodiesel. Sifat fizikokimia mangkin dikaji menggunakan spektroskopi inframerah transformasi Fourier (FTIR), analisis termogravimetrik (TGA), pembelauan sinar-X (XRD), Brunauer-Emmett-Teller (BET), dan mikroskop elektron pengimbasan pancaran medan dengan serakan tenaga sinar-X (FESEM-EDX). Beberapa parameter termasuk jenis mangkin, suhu pengkalsinan mangkin, dos mangkin, nisbah minyak kepada metanol, masa tindak balas, dan suhu tindak balas telah digunakan untuk menentukan keadaan optimum bagi tindak balas transesterifikasi. Menurut penemuan eksperimen, mangkin secara berkesan menukar asid lemak bebas (FFA) kepada asid lemak metil ester (FAMEs). Hasil biodiesel maksimum sebanyak 47.66 % diperoleh pada keadaan tindak balas optimum: jumlah mangkin 2 wt.% SBE/KOH dikalsinkan pada 500 °C (SBC/KOH 500), masa tindak balas 2 jam, suhu tindak balas 55 °C dan minyak kepada metanol nisbah molar 1:20.

 

Kata kunci: tanah liat, minyak masak, biodiesel, transesterifikasi, mangkin

 


 

References

1.       Rezania, S., Oryani, B., Park, J., Hashemi, B., Yadav, K. K., Kwon, E. E., Hur, J. and Cho, J. (2019). Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Conversion and Management, 201: 112155.

2.       Naser, J., Avbenake, O. P., Dabai, F. N. and Jibril, B. Y. (2021). Regeneration of spent bleaching earth and conversion of recovered oil to biodiesel. Waste Management, 126: 258-265.

3.       Chua, S. Y., Periasamy, L. A., Goh, C. M. H., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M.,  Walvekar, R. and Abdullah, E. C. (2020). Biodiesel synthesis using natural solid catalyst derived from  biomass waste — A review. Journal of Industrial and Engineering Chemistry, 81: 41-60.

4.       Syafiuddin, A., Chong, J. H., Yuniarto, A. and Hadibarata, T. (2020). The current scenario and challenges of biodiesel production in Asian countries: A review. Bioresource Technology Reports, 12: 100608.

5.       Miyuranga, K. V., Arachchige, U. S., Marso, T. M. M. and Samarakoon, G. (2023). Biodiesel production  through the transesterification of waste cooking oil over typical heterogeneous base or acid catalysts. Catalysts, 13(3): 546.

6.       Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S. and Lin, L. (2018). Catalysis in biodiesel production—a review. Clean Energy, 3(1): 2-23.

7.       Naser, J., Avbenake, O. P., Dabai, F. N. and Jibril, B. Y. (2021). Regeneration of spent bleaching earth and conversion of recovered oil to biodiesel. Waste Management, 126: 258-265.

8.       Abdelbasir, S. M., Shehab, A. I. and  Khalek, M. A. A. (2023). Spent bleaching earth; recycling and utilization techniques: A review. Resources, Conservation and Recycling Advances, 17: 200124.

9.       Yusuf, Nik N. A. N., Kamarudin, S. K. and Yaakob, Z. (2012). Overview on the production of biodiesel from Jatropha curcas L. by using heterogeneous catalysts. Biofuels, Bioproducts & Biorefining, 6(3): 319-334.

10.    Dossin, T., Reyniers, M. and Marin, G. (2006). Kinetics of heterogeneously MgO-catalyzed transesterification. Applied Catalysis B: Environmental, 62 (1-2): 35-45.

11.    Esan, A. O., Smith, S. M. and Ganesan, S. (2022). Dimethyl carbonate assisted catalytic esterification of palm fatty acid distillate using catalyst derived from spent bleaching clay. Journal of Cleaner Production, 337: 130574.

12.    Hu, W., Zhou, X., Tan, J., Hou, J., Xie, Y., Wang, X., Wang, Y. and Zhang, Y. (2020). In situ transesterification of wet sewage sludge via hydrothermal process: Biodiesel production and residue utilization. Biomass and Bioenergy, 141: 105715.

13.    Cong, W. J., Wang, Y. T., Li, H., Fang, Z., Sun, J., Liu, H. T., Liu, J. T., Tang, S. and Xu, L. (2020). Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash. Applied Energy, 264: 114735.

14.    Loh, S. K., Cheong, K. Y. and Salimon, J. (2017). Surface-active physicochemical characteristics of spent  bleaching earth on soil-plant interaction and water-nutrient uptake: A review. Applied Clay Science, 140: 59-65.

15.    Musa, M. L., Mat, R. and Tuan Abdullah, T. A. (2018). Catalytic conversion of residual palm oil in spent bleaching earth (SBE) by HZSM-5 zeolite based-catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 13(3): 456.

16.    Rabie, A. M., Shaban, M., Abukhadra, M. R., Hosny, R., Ahmed, S. A. and Negm, N. A. (2019). Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids, 279: 224-231.

17.    Oyerinde, A. and Bello, E. (2016). Use of Fourier transformation infrared (FTIR) spectroscopy for analysis  of functional groups in peanut oil biodiesel and its blends. British Journal of Applied Science & Technology, 13 (3): 1–14.

18.    Enguilo Gonzaga, V., Romero, R., Gómez-Espinosa, R. M., Romero, A., Martínez, S. L. and Natividad, R. (2021). Biodiesel Production from Waste Cooking Oil Catalyzed by a Bifunctional Catalyst. ACS Omega, 6(37): 24092-24105.

19.    Roschat, W., Phewphong, S., Pholsupho, P., Namwongsa, K., Wongka, P., Moonsin, P., Yoosuk, B. and Promarak, V. (2022). The synthesis of a high-quality biodiesel product derived from Krabok (Irvingia Malayana) seed oil as a new raw material of Thailand. Fuel, 308: 122009.

20.    Pinto, B. F., Garcia, M. A. S., Costa, J. L., De Moura, C. V. R., De Abreu, W. C. and De Moura, E. M. (2019). Effect of calcination temperature on the application of molybdenum trioxide acid catalyst: Screening of substrates for biodiesel production. Fuel, 239: 290-296.

21.    Akbar, E., Binitha, N., Yaakob, Z., Kamarudin, S. K. and Salimon, J. (2009). Preparation of Na doped SiO2 solid catalysts by the sol-gel method for the production of biodiesel from jatropha oil. Green Chemistry, 11 (11): 1862.

22.    NolHakim, M. A. H. L., Shohaimi, N. A. M., Mokhtar, W. N. A. W., Lokman, I. M. and Abdullah, R. F.  (2021). Immobilization of potassium-based heterogeneous catalyst over alumina beads and powder support in the transesterification of waste cooking oil. Catalysts, 11(8): 976.

23.    Shahbazi, M. R., Khoshandam, B., Nasiri, M. and Ghazvini, M. (2012). Biodiesel production via alkali-catalyzed transesterification of Malaysian RBD palm oil – Characterization, kinetics model. Journal of the Taiwan Institute of Chemical Engineers, 43(4): 504-510.

24.    Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z. and Sopian, K. (2013). Overview of the production of biodiesel from Waste cooking oil. Renewable and Sustainable Energy Reviews, 18: 184-193.